Properties

Label 31.19.b.a.30.1
Level 3131
Weight 1919
Character 31.30
Self dual yes
Analytic conductor 63.67063.670
Analytic rank 00
Dimension 11
CM discriminant -31
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [31,19,Mod(30,31)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(31, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 19, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("31.30");
 
S:= CuspForms(chi, 19);
 
N := Newforms(S);
 
Level: N N == 31 31
Weight: k k == 19 19
Character orbit: [χ][\chi] == 31.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.669702690063.6697026900
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 30.1
Character χ\chi == 31.30

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q495.000q217119.0q43.35569e6q5+7.22602e7q7+1.38235e8q8+3.87420e8q9+1.66106e9q103.57688e10q146.39388e10q161.91773e11q183.01506e11q19+5.74460e10q20+7.44593e12q251.23702e12q282.64396e13q314.58783e12q322.42483e14q356.63225e12q36+1.49245e14q384.63874e14q40+6.40888e14q411.30006e15q454.84327e14q47+3.59312e15q493.68574e15q50+9.98890e15q561.47537e16q59+1.30876e16q62+2.79951e16q63+1.90321e16q64+3.38863e16q67+1.20029e17q708.62604e16q71+5.35551e16q72+5.16148e15q76+2.14558e17q80+1.50095e17q813.17239e17q82+6.43530e17q90+2.39742e17q94+1.01176e18q95+1.38834e18q971.77860e18q98+O(q100)q-495.000 q^{2} -17119.0 q^{4} -3.35569e6 q^{5} +7.22602e7 q^{7} +1.38235e8 q^{8} +3.87420e8 q^{9} +1.66106e9 q^{10} -3.57688e10 q^{14} -6.39388e10 q^{16} -1.91773e11 q^{18} -3.01506e11 q^{19} +5.74460e10 q^{20} +7.44593e12 q^{25} -1.23702e12 q^{28} -2.64396e13 q^{31} -4.58783e12 q^{32} -2.42483e14 q^{35} -6.63225e12 q^{36} +1.49245e14 q^{38} -4.63874e14 q^{40} +6.40888e14 q^{41} -1.30006e15 q^{45} -4.84327e14 q^{47} +3.59312e15 q^{49} -3.68574e15 q^{50} +9.98890e15 q^{56} -1.47537e16 q^{59} +1.30876e16 q^{62} +2.79951e16 q^{63} +1.90321e16 q^{64} +3.38863e16 q^{67} +1.20029e17 q^{70} -8.62604e16 q^{71} +5.35551e16 q^{72} +5.16148e15 q^{76} +2.14558e17 q^{80} +1.50095e17 q^{81} -3.17239e17 q^{82} +6.43530e17 q^{90} +2.39742e17 q^{94} +1.01176e18 q^{95} +1.38834e18 q^{97} -1.77860e18 q^{98} +O(q^{100})

Character values

We give the values of χ\chi on generators for (Z/31Z)×\left(\mathbb{Z}/31\mathbb{Z}\right)^\times.

nn 33
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −495.000 −0.966797 −0.483398 0.875400i 0.660598π-0.660598\pi
−0.483398 + 0.875400i 0.660598π0.660598\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 −17119.0 −0.0653038
55 −3.35569e6 −1.71811 −0.859056 0.511882i 0.828948π-0.828948\pi
−0.859056 + 0.511882i 0.828948π0.828948\pi
66 0 0
77 7.22602e7 1.79068 0.895338 0.445388i 0.146934π-0.146934\pi
0.895338 + 0.445388i 0.146934π0.146934\pi
88 1.38235e8 1.02993
99 3.87420e8 1.00000
1010 1.66106e9 1.66106
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 −3.57688e10 −1.73122
1515 0 0
1616 −6.39388e10 −0.930432
1717 0 0 1.00000 00
−1.00000 π\pi
1818 −1.91773e11 −0.966797
1919 −3.01506e11 −0.934358 −0.467179 0.884163i 0.654730π-0.654730\pi
−0.467179 + 0.884163i 0.654730π0.654730\pi
2020 5.74460e10 0.112199
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 7.44593e12 1.95191
2626 0 0
2727 0 0
2828 −1.23702e12 −0.116938
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 −2.64396e13 −1.00000
3232 −4.58783e12 −0.130394
3333 0 0
3434 0 0
3535 −2.42483e14 −3.07658
3636 −6.63225e12 −0.0653038
3737 0 0 1.00000 00
−1.00000 π\pi
3838 1.49245e14 0.903334
3939 0 0
4040 −4.63874e14 −1.76954
4141 6.40888e14 1.95762 0.978808 0.204782i 0.0656486π-0.0656486\pi
0.978808 + 0.204782i 0.0656486π0.0656486\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 −1.30006e15 −1.71811
4646 0 0
4747 −4.84327e14 −0.432771 −0.216386 0.976308i 0.569427π-0.569427\pi
−0.216386 + 0.976308i 0.569427π0.569427\pi
4848 0 0
4949 3.59312e15 2.20652
5050 −3.68574e15 −1.88710
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 9.98890e15 1.84427
5757 0 0
5858 0 0
5959 −1.47537e16 −1.70308 −0.851538 0.524293i 0.824330π-0.824330\pi
−0.851538 + 0.524293i 0.824330π0.824330\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 1.30876e16 0.966797
6363 2.79951e16 1.79068
6464 1.90321e16 1.05650
6565 0 0
6666 0 0
6767 3.38863e16 1.24552 0.622761 0.782412i 0.286011π-0.286011\pi
0.622761 + 0.782412i 0.286011π0.286011\pi
6868 0 0
6969 0 0
7070 1.20029e17 2.97443
7171 −8.62604e16 −1.88142 −0.940712 0.339207i 0.889841π-0.889841\pi
−0.940712 + 0.339207i 0.889841π0.889841\pi
7272 5.35551e16 1.02993
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 5.16148e15 0.0610171
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 2.14558e17 1.59859
8181 1.50095e17 1.00000
8282 −3.17239e17 −1.89262
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 6.43530e17 1.66106
9191 0 0
9292 0 0
9393 0 0
9494 2.39742e17 0.418402
9595 1.01176e18 1.60533
9696 0 0
9797 1.38834e18 1.82621 0.913104 0.407726i 0.133678π-0.133678\pi
0.913104 + 0.407726i 0.133678π0.133678\pi
9898 −1.77860e18 −2.13325
9999 0 0
100100 −1.27467e17 −0.127467
101101 −2.14631e18 −1.96246 −0.981230 0.192839i 0.938231π-0.938231\pi
−0.981230 + 0.192839i 0.938231π0.938231\pi
102102 0 0
103103 1.85003e18 1.41789 0.708946 0.705262i 0.249171π-0.249171\pi
0.708946 + 0.705262i 0.249171π0.249171\pi
104104 0 0
105105 0 0
106106 0 0
107107 −5.50705e17 −0.299547 −0.149774 0.988720i 0.547854π-0.547854\pi
−0.149774 + 0.988720i 0.547854π0.547854\pi
108108 0 0
109109 9.97975e17 0.459496 0.229748 0.973250i 0.426210π-0.426210\pi
0.229748 + 0.973250i 0.426210π0.426210\pi
110110 0 0
111111 0 0
112112 −4.62023e18 −1.66610
113113 5.97094e18 1.98764 0.993818 0.111020i 0.0354119π-0.0354119\pi
0.993818 + 0.111020i 0.0354119π0.0354119\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 7.30310e18 1.64653
119119 0 0
120120 0 0
121121 5.55992e18 1.00000
122122 0 0
123123 0 0
124124 4.52620e17 0.0653038
125125 −1.21853e19 −1.63548
126126 −1.38576e19 −1.73122
127127 0 0 1.00000 00
−1.00000 π\pi
128128 −8.21824e18 −0.891023
129129 0 0
130130 0 0
131131 −2.18370e19 −1.92199 −0.960994 0.276568i 0.910803π-0.910803\pi
−0.960994 + 0.276568i 0.910803π0.910803\pi
132132 0 0
133133 −2.17869e19 −1.67313
134134 −1.67737e19 −1.20417
135135 0 0
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 4.15106e18 0.200912
141141 0 0
142142 4.26989e19 1.81895
143143 0 0
144144 −2.47712e19 −0.930432
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −1.84284e19 −0.509109 −0.254554 0.967058i 0.581929π-0.581929\pi
−0.254554 + 0.967058i 0.581929π0.581929\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 −4.16787e19 −0.962325
153153 0 0
154154 0 0
155155 8.87231e19 1.71811
156156 0 0
157157 2.33197e19 0.402371 0.201185 0.979553i 0.435521π-0.435521\pi
0.201185 + 0.979553i 0.435521π0.435521\pi
158158 0 0
159159 0 0
160160 1.53953e19 0.224031
161161 0 0
162162 −7.42968e19 −0.966797
163163 9.72517e19 1.19732 0.598658 0.801005i 0.295701π-0.295701\pi
0.598658 + 0.801005i 0.295701π0.295701\pi
164164 −1.09714e19 −0.127840
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 1.12455e20 1.00000
170170 0 0
171171 −1.16810e20 −0.934358
172172 0 0
173173 2.16429e20 1.55920 0.779599 0.626279i 0.215423π-0.215423\pi
0.779599 + 0.626279i 0.215423π0.215423\pi
174174 0 0
175175 5.38045e20 3.49523
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 2.22558e19 0.112199
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 8.29120e18 0.0282616
189189 0 0
190190 −5.00821e20 −1.55203
191191 6.42984e20 1.90064 0.950319 0.311277i 0.100757π-0.100757\pi
0.950319 + 0.311277i 0.100757π0.100757\pi
192192 0 0
193193 −7.24969e20 −1.95121 −0.975605 0.219534i 0.929546π-0.929546\pi
−0.975605 + 0.219534i 0.929546π0.929546\pi
194194 −6.87229e20 −1.76557
195195 0 0
196196 −6.15107e19 −0.144094
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 1.02929e21 2.01033
201201 0 0
202202 1.06243e21 1.89730
203203 0 0
204204 0 0
205205 −2.15062e21 −3.36340
206206 −9.15764e20 −1.37081
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 1.38850e21 1.67496 0.837480 0.546469i 0.184028π-0.184028\pi
0.837480 + 0.546469i 0.184028π0.184028\pi
212212 0 0
213213 0 0
214214 2.72599e20 0.289601
215215 0 0
216216 0 0
217217 −1.91053e21 −1.79068
218218 −4.93998e20 −0.444239
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 −3.31518e20 −0.233493
225225 2.88471e21 1.95191
226226 −2.95562e21 −1.92164
227227 2.76142e21 1.72544 0.862720 0.505682i 0.168759π-0.168759\pi
0.862720 + 0.505682i 0.168759π0.168759\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 −1.78653e21 −0.882685 −0.441343 0.897339i 0.645498π-0.645498\pi
−0.441343 + 0.897339i 0.645498π0.645498\pi
234234 0 0
235235 1.62525e21 0.743549
236236 2.52569e20 0.111217
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 −2.75216e21 −0.966797
243243 0 0
244244 0 0
245245 −1.20574e22 −3.79104
246246 0 0
247247 0 0
248248 −3.65489e21 −1.02993
249249 0 0
250250 6.03171e21 1.58118
251251 0 0 1.00000 00
−1.00000 π\pi
252252 −4.79248e20 −0.116938
253253 0 0
254254 0 0
255255 0 0
256256 −9.21134e20 −0.195058
257257 9.68560e21 1.98029 0.990144 0.140053i 0.0447274π-0.0447274\pi
0.990144 + 0.140053i 0.0447274π0.0447274\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 1.08093e22 1.85817
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 1.07845e22 1.61758
267267 0 0
268268 −5.80100e20 −0.0813373
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 −1.02433e22 −1.00000
280280 −3.35196e22 −3.16867
281281 −1.99984e22 −1.83079 −0.915396 0.402554i 0.868123π-0.868123\pi
−0.915396 + 0.402554i 0.868123π0.868123\pi
282282 0 0
283283 1.26496e22 1.08642 0.543209 0.839597i 0.317209π-0.317209\pi
0.543209 + 0.839597i 0.317209π0.317209\pi
284284 1.47669e21 0.122864
285285 0 0
286286 0 0
287287 4.63107e22 3.50545
288288 −1.77742e21 −0.130394
289289 1.40631e22 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 3.12984e22 1.96659 0.983293 0.182031i 0.0582670π-0.0582670\pi
0.983293 + 0.182031i 0.0582670π0.0582670\pi
294294 0 0
295295 4.95089e22 2.92607
296296 0 0
297297 0 0
298298 9.12204e21 0.492205
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 1.92779e22 0.869356
305305 0 0
306306 0 0
307307 −3.50067e22 −1.44512 −0.722562 0.691306i 0.757036π-0.757036\pi
−0.722562 + 0.691306i 0.757036π0.757036\pi
308308 0 0
309309 0 0
310310 −4.39179e22 −1.66106
311311 −3.25646e22 −1.19647 −0.598236 0.801320i 0.704131π-0.704131\pi
−0.598236 + 0.801320i 0.704131π0.704131\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 −1.15433e22 −0.389011
315315 −9.39427e22 −3.07658
316316 0 0
317317 4.84386e22 1.49850 0.749252 0.662285i 0.230413π-0.230413\pi
0.749252 + 0.662285i 0.230413π0.230413\pi
318318 0 0
319319 0 0
320320 −6.38659e22 −1.81518
321321 0 0
322322 0 0
323323 0 0
324324 −2.56947e21 −0.0653038
325325 0 0
326326 −4.81396e22 −1.15756
327327 0 0
328328 8.85932e22 2.01621
329329 −3.49976e22 −0.774952
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 −1.13712e23 −2.13995
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 −5.56654e22 −0.966797
339339 0 0
340340 0 0
341341 0 0
342342 5.78207e22 0.903334
343343 1.41970e23 2.16048
344344 0 0
345345 0 0
346346 −1.07132e23 −1.50743
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 7.35446e22 0.957463 0.478731 0.877961i 0.341097π-0.341097\pi
0.478731 + 0.877961i 0.341097π0.341097\pi
350350 −2.66332e23 −3.37918
351351 0 0
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 2.89463e23 3.23249
356356 0 0
357357 0 0
358358 0 0
359359 5.17272e22 0.522238 0.261119 0.965307i 0.415908π-0.415908\pi
0.261119 + 0.965307i 0.415908π0.415908\pi
360360 −1.79714e23 −1.76954
361361 −1.32216e22 −0.126976
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 2.48293e23 1.95762
370370 0 0
371371 0 0
372372 0 0
373373 1.81191e23 1.29645 0.648226 0.761448i 0.275511π-0.275511\pi
0.648226 + 0.761448i 0.275511π0.275511\pi
374374 0 0
375375 0 0
376376 −6.69511e22 −0.445725
377377 0 0
378378 0 0
379379 3.09640e23 1.91913 0.959563 0.281493i 0.0908297π-0.0908297\pi
0.959563 + 0.281493i 0.0908297π0.0908297\pi
380380 −1.73203e22 −0.104834
381381 0 0
382382 −3.18277e23 −1.83753
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 3.58860e23 1.88642
387387 0 0
388388 −2.37670e22 −0.119258
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 4.96696e23 2.27256
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 2.88400e23 1.17728 0.588642 0.808394i 0.299663π-0.299663\pi
0.588642 + 0.808394i 0.299663π0.299663\pi
398398 0 0
399399 0 0
400400 −4.76084e23 −1.81612
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 3.67428e22 0.128156
405405 −5.03670e23 −1.71811
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 1.06456e24 3.25173
411411 0 0
412412 −3.16706e22 −0.0925938
413413 −1.06611e24 −3.04966
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 −3.97712e23 −0.999177 −0.499588 0.866263i 0.666515π-0.666515\pi
−0.499588 + 0.866263i 0.666515π0.666515\pi
420420 0 0
421421 1.51229e23 0.363995 0.181998 0.983299i 0.441744π-0.441744\pi
0.181998 + 0.983299i 0.441744π0.441744\pi
422422 −6.87308e23 −1.61935
423423 −1.87638e23 −0.432771
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 9.42752e21 0.0195616
429429 0 0
430430 0 0
431431 1.78560e23 0.347928 0.173964 0.984752i 0.444342π-0.444342\pi
0.173964 + 0.984752i 0.444342π0.444342\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 9.45714e23 1.73122
435435 0 0
436436 −1.70843e22 −0.0300068
437437 0 0
438438 0 0
439439 −9.80551e23 −1.61916 −0.809580 0.587010i 0.800305π-0.800305\pi
−0.809580 + 0.587010i 0.800305π0.800305\pi
440440 0 0
441441 1.39205e24 2.20652
442442 0 0
443443 −9.29782e23 −1.41497 −0.707486 0.706728i 0.750171π-0.750171\pi
−0.707486 + 0.706728i 0.750171π0.750171\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 1.37527e24 1.89184
449449 0 0 1.00000 00
−1.00000 π\pi
450450 −1.42793e24 −1.88710
451451 0 0
452452 −1.02217e23 −0.129800
453453 0 0
454454 −1.36690e24 −1.66815
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 8.84330e23 0.853377
467467 1.82772e24 1.73005 0.865025 0.501729i 0.167302π-0.167302\pi
0.865025 + 0.501729i 0.167302π0.167302\pi
468468 0 0
469469 2.44863e24 2.23033
470470 −8.04499e23 −0.718861
471471 0 0
472472 −2.03949e24 −1.75405
473473 0 0
474474 0 0
475475 −2.24499e24 −1.82378
476476 0 0
477477 0 0
478478 0 0
479479 −2.26203e24 −1.70403 −0.852017 0.523514i 0.824621π-0.824621\pi
−0.852017 + 0.523514i 0.824621π0.824621\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −9.51802e22 −0.0653038
485485 −4.65883e24 −3.13763
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 5.96841e24 3.66517
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 1.69052e24 0.930432
497497 −6.23320e24 −3.36902
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 2.08600e23 0.106803
501501 0 0
502502 0 0
503503 4.05523e24 1.96745 0.983724 0.179684i 0.0575077π-0.0575077\pi
0.983724 + 0.179684i 0.0575077π0.0575077\pi
504504 3.86991e24 1.84427
505505 7.20236e24 3.37173
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 2.61032e24 1.07960
513513 0 0
514514 −4.79437e24 −1.91454
515515 −6.20812e24 −2.43610
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 3.80252e24 1.34441 0.672205 0.740365i 0.265347π-0.265347\pi
0.672205 + 0.740365i 0.265347π0.265347\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 3.73827e23 0.125513
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 3.24415e24 1.00000
530530 0 0
531531 −5.71590e24 −1.70308
532532 3.72969e23 0.109262
533533 0 0
534534 0 0
535535 1.84799e24 0.514655
536536 4.68429e24 1.28280
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 4.79616e24 1.20814 0.604071 0.796931i 0.293544π-0.293544\pi
0.604071 + 0.796931i 0.293544π0.293544\pi
542542 0 0
543543 0 0
544544 0 0
545545 −3.34889e24 −0.789464
546546 0 0
547547 −1.64032e24 −0.374148 −0.187074 0.982346i 0.559900π-0.559900\pi
−0.187074 + 0.982346i 0.559900π0.559900\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 5.07041e24 0.966797
559559 0 0
560560 1.55040e25 2.86255
561561 0 0
562562 9.89923e24 1.77000
563563 1.07900e25 1.89865 0.949327 0.314289i 0.101766π-0.101766\pi
0.949327 + 0.314289i 0.101766π0.101766\pi
564564 0 0
565565 −2.00366e25 −3.41498
566566 −6.26153e24 −1.05035
567567 1.08459e25 1.79068
568568 −1.19242e25 −1.93774
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 −2.29238e25 −3.38906
575575 0 0
576576 7.37344e24 1.05650
577577 −1.14591e25 −1.61647 −0.808237 0.588858i 0.799578π-0.799578\pi
−0.808237 + 0.588858i 0.799578π0.799578\pi
578578 −6.96123e24 −0.966797
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −1.54927e25 −1.90129
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 7.97170e24 0.934358
590590 −2.45069e25 −2.82892
591591 0 0
592592 0 0
593593 −1.79575e25 −1.98040 −0.990202 0.139640i 0.955406π-0.955406\pi
−0.990202 + 0.139640i 0.955406π0.955406\pi
594594 0 0
595595 0 0
596596 3.15475e23 0.0332467
597597 0 0
598598 0 0
599599 1.60900e25 1.62074 0.810372 0.585915i 0.199265π-0.199265\pi
0.810372 + 0.585915i 0.199265π0.199265\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 1.31283e25 1.24552
604604 0 0
605605 −1.86573e25 −1.71811
606606 0 0
607607 −1.28013e25 −1.14434 −0.572170 0.820135i 0.693898π-0.693898\pi
−0.572170 + 0.820135i 0.693898π0.693898\pi
608608 1.38326e24 0.121835
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 1.73283e25 1.39714
615615 0 0
616616 0 0
617617 1.01842e25 0.785890 0.392945 0.919562i 0.371456π-0.371456\pi
0.392945 + 0.919562i 0.371456π0.371456\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 −1.51885e24 −0.112199
621621 0 0
622622 1.61195e25 1.15674
623623 0 0
624624 0 0
625625 1.24860e25 0.858032
626626 0 0
627627 0 0
628628 −3.99210e23 −0.0262763
629629 0 0
630630 4.65016e25 2.97443
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 −2.39771e25 −1.44875
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 −3.34191e25 −1.88142
640640 2.75778e25 1.53088
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 2.07484e25 1.02993
649649 0 0
650650 0 0
651651 0 0
652652 −1.66485e24 −0.0781893
653653 −1.11850e25 −0.518106 −0.259053 0.965863i 0.583410π-0.583410\pi
−0.259053 + 0.965863i 0.583410π0.583410\pi
654654 0 0
655655 7.32780e25 3.30219
656656 −4.09776e25 −1.82143
657657 0 0
658658 1.73238e25 0.749222
659659 −4.49960e25 −1.91958 −0.959788 0.280727i 0.909425π-0.909425\pi
−0.959788 + 0.280727i 0.909425π0.909425\pi
660660 0 0
661661 −4.54205e25 −1.88555 −0.942776 0.333427i 0.891795π-0.891795\pi
−0.942776 + 0.333427i 0.891795π0.891795\pi
662662 0 0
663663 0 0
664664 0 0
665665 7.31099e25 2.87463
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 5.62874e25 2.06889
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 −1.92512e24 −0.0653038
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 1.00322e26 3.27015
680680 0 0
681681 0 0
682682 0 0
683683 2.07431e24 0.0641339 0.0320669 0.999486i 0.489791π-0.489791\pi
0.0320669 + 0.999486i 0.489791π0.489791\pi
684684 1.99966e24 0.0610171
685685 0 0
686686 −7.02754e25 −2.08875
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −7.17238e25 −1.99692 −0.998461 0.0554562i 0.982339π-0.982339\pi
−0.998461 + 0.0554562i 0.982339π0.982339\pi
692692 −3.70505e24 −0.101822
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 −3.64046e25 −0.925672
699699 0 0
700700 −9.21078e24 −0.228252
701701 8.07205e25 1.97479 0.987396 0.158268i 0.0505909π-0.0505909\pi
0.987396 + 0.158268i 0.0505909π0.0505909\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 −1.55093e26 −3.51413
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 −1.43284e26 −3.12517
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 −2.56050e25 −0.504899
719719 0 0 1.00000 00
−1.00000 π\pi
720720 8.31243e25 1.59859
721721 1.33683e26 2.53899
722722 6.54471e24 0.122760
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −9.21230e25 −1.62390 −0.811948 0.583729i 0.801593π-0.801593\pi
−0.811948 + 0.583729i 0.801593π0.801593\pi
728728 0 0
729729 5.81497e25 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 2.51738e25 0.412109 0.206055 0.978541i 0.433938π-0.433938\pi
0.206055 + 0.978541i 0.433938π0.433938\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 −1.22905e26 −1.89262
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 6.18398e25 0.874705
746746 −8.96894e25 −1.25341
747747 0 0
748748 0 0
749749 −3.97941e25 −0.536392
750750 0 0
751751 6.55355e25 0.862417 0.431208 0.902252i 0.358087π-0.358087\pi
0.431208 + 0.902252i 0.358087π0.358087\pi
752752 3.09673e25 0.402664
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −1.53272e26 −1.85541
759759 0 0
760760 1.39861e26 1.65338
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 7.21139e25 0.822807
764764 −1.10072e25 −0.124119
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 1.50203e26 1.59713 0.798565 0.601908i 0.205593π-0.205593\pi
0.798565 + 0.601908i 0.205593π0.205593\pi
770770 0 0
771771 0 0
772772 1.24108e25 0.127421
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 −1.96868e26 −1.95191
776776 1.91917e26 1.88087
777777 0 0
778778 0 0
779779 −1.93231e26 −1.82911
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −2.29740e26 −2.05301
785785 −7.82537e25 −0.691318
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 4.31462e26 3.55921
792792 0 0
793793 0 0
794794 −1.42758e26 −1.13819
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 −3.41607e25 −0.254517
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 −2.96696e26 −2.02120
809809 0 0 1.00000 00
−1.00000 π\pi
810810 2.49317e26 1.66106
811811 2.36134e26 1.55586 0.777929 0.628352i 0.216270π-0.216270\pi
0.777929 + 0.628352i 0.216270π0.216270\pi
812812 0 0
813813 0 0
814814 0 0
815815 −3.26346e26 −2.05712
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 3.68164e25 0.219643
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 2.55739e26 1.46033
825825 0 0
826826 5.27724e26 2.94840
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 1.96867e26 0.966001
839839 −1.31365e26 −0.637710 −0.318855 0.947804i 0.603298π-0.603298\pi
−0.318855 + 0.947804i 0.603298π0.603298\pi
840840 0 0
841841 2.10457e26 1.00000
842842 −7.48582e25 −0.351909
843843 0 0
844844 −2.37698e25 −0.109381
845845 −3.77365e26 −1.71811
846846 9.28810e25 0.418402
847847 4.01761e26 1.79068
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 3.47267e26 1.45252 0.726259 0.687421i 0.241257π-0.241257\pi
0.726259 + 0.687421i 0.241257π0.241257\pi
854854 0 0
855855 3.91976e26 1.60533
856856 −7.61268e25 −0.308513
857857 −4.93332e26 −1.97839 −0.989196 0.146600i 0.953167π-0.953167\pi
−0.989196 + 0.146600i 0.953167π0.953167\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 −8.83873e25 −0.336376
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 −7.26269e26 −2.67887
866866 0 0
867867 0 0
868868 3.27064e25 0.116938
869869 0 0
870870 0 0
871871 0 0
872872 1.37955e26 0.473249
873873 5.37872e26 1.82621
874874 0 0
875875 −8.80511e26 −2.92862
876876 0 0
877877 −1.92960e26 −0.628740 −0.314370 0.949300i 0.601793π-0.601793\pi
−0.314370 + 0.949300i 0.601793π0.601793\pi
878878 4.85373e26 1.56540
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 −6.89065e26 −2.13325
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 4.60242e26 1.36799
887887 1.87744e26 0.552400 0.276200 0.961100i 0.410925π-0.410925\pi
0.276200 + 0.961100i 0.410925π0.410925\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 1.46027e26 0.404363
894894 0 0
895895 0 0
896896 −5.93852e26 −1.59553
897897 0 0
898898 0 0
899899 0 0
900900 −4.93833e25 −0.127467
901901 0 0
902902 0 0
903903 0 0
904904 8.25394e26 2.04713
905905 0 0
906906 0 0
907907 5.17762e26 1.24642 0.623211 0.782054i 0.285828π-0.285828\pi
0.623211 + 0.782054i 0.285828π0.285828\pi
908908 −4.72728e25 −0.112678
909909 −8.31526e26 −1.96246
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 −1.57794e27 −3.44166
918918 0 0
919919 −4.71308e26 −1.00801 −0.504006 0.863700i 0.668141π-0.668141\pi
−0.504006 + 0.863700i 0.668141π0.668141\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 7.16739e26 1.41789
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 −1.08335e27 −2.06168
932932 3.05835e25 0.0576427
933933 0 0
934934 −9.04723e26 −1.67261
935935 0 0
936936 0 0
937937 −5.61547e26 −1.00862 −0.504312 0.863521i 0.668254π-0.668254\pi
−0.504312 + 0.863521i 0.668254π0.668254\pi
938938 −1.21207e27 −2.15627
939939 0 0
940940 −2.78227e25 −0.0485566
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 9.43336e26 1.58460
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 1.11127e27 1.76322
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 −2.15765e27 −3.26551
956956 0 0
957957 0 0
958958 1.11970e27 1.64745
959959 0 0
960960 0 0
961961 6.99054e26 1.00000
962962 0 0
963963 −2.13355e26 −0.299547
964964 0 0
965965 2.43277e27 3.35240
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 7.68576e26 1.02993
969969 0 0
970970 2.30612e27 3.03345
971971 7.80188e26 1.01678 0.508389 0.861128i 0.330241π-0.330241\pi
0.508389 + 0.861128i 0.330241π0.330241\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 1.13144e27 1.39502 0.697510 0.716575i 0.254291π-0.254291\pi
0.697510 + 0.716575i 0.254291π0.254291\pi
978978 0 0
979979 0 0
980980 2.06411e26 0.247570
981981 3.86636e26 0.459496
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 1.21301e26 0.130394
993993 0 0
994994 3.08543e27 3.25716
995995 0 0
996996 0 0
997997 −1.94573e27 −1.99906 −0.999531 0.0306324i 0.990248π-0.990248\pi
−0.999531 + 0.0306324i 0.990248π0.990248\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.19.b.a.30.1 1
31.30 odd 2 CM 31.19.b.a.30.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.19.b.a.30.1 1 1.1 even 1 trivial
31.19.b.a.30.1 1 31.30 odd 2 CM