Properties

Label 3104.1.cy.a.943.1
Level 31043104
Weight 11
Character 3104.943
Analytic conductor 1.5491.549
Analytic rank 00
Dimension 88
Projective image D16D_{16}
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3104,1,Mod(79,3104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3104, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([8, 8, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3104.79");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3104=2597 3104 = 2^{5} \cdot 97
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3104.cy (of order 1616, degree 88, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.549097799211.54909779921
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ16)\Q(\zeta_{16})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 776)
Projective image: D16D_{16}
Projective field: Galois closure of Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)

Embedding invariants

Embedding label 943.1
Root 0.923880+0.382683i-0.923880 + 0.382683i of defining polynomial
Character χ\chi == 3104.943
Dual form 3104.1.cy.a.79.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.70711+0.707107i)q3+(1.70711+1.70711i)q9+(1.30656+0.541196i)q11+(1.630991.08979i)q17+(0.923880+1.38268i)q19+(0.3826830.923880i)q25+(1.00000+2.41421i)q27+(1.84776+1.84776i)q33+(0.2167731.08979i)q41+(1.306561.30656i)q43+(0.382683+0.923880i)q49+(2.013673.01367i)q51+(2.55487+1.70711i)q57+(0.3826830.0761205i)q59+(0.3244230.216773i)q67+(1.000001.00000i)q731.84776iq75+2.41421iq81+(0.2167730.324423i)q83+(0.7071070.292893i)q89+(0.923880+0.382683i)q97+(1.30656+3.15432i)q99+O(q100)q+(1.70711 + 0.707107i) q^{3} +(1.70711 + 1.70711i) q^{9} +(1.30656 + 0.541196i) q^{11} +(-1.63099 - 1.08979i) q^{17} +(-0.923880 + 1.38268i) q^{19} +(-0.382683 - 0.923880i) q^{25} +(1.00000 + 2.41421i) q^{27} +(1.84776 + 1.84776i) q^{33} +(-0.216773 - 1.08979i) q^{41} +(1.30656 - 1.30656i) q^{43} +(-0.382683 + 0.923880i) q^{49} +(-2.01367 - 3.01367i) q^{51} +(-2.55487 + 1.70711i) q^{57} +(-0.382683 - 0.0761205i) q^{59} +(-0.324423 - 0.216773i) q^{67} +(-1.00000 - 1.00000i) q^{73} -1.84776i q^{75} +2.41421i q^{81} +(0.216773 - 0.324423i) q^{83} +(-0.707107 - 0.292893i) q^{89} +(0.923880 + 0.382683i) q^{97} +(1.30656 + 3.15432i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q3+8q9+8q278q73+O(q100) 8 q + 8 q^{3} + 8 q^{9} + 8 q^{27} - 8 q^{73}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3104Z)×\left(\mathbb{Z}/3104\mathbb{Z}\right)^\times.

nn 389389 27212721 29112911
χ(n)\chi(n) 1-1 e(1116)e\left(\frac{11}{16}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 00
0.707107 + 0.707107i 0.250000π0.250000\pi
44 0 0
55 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
66 0 0
77 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
88 0 0
99 1.70711 + 1.70711i 1.70711 + 1.70711i
1010 0 0
1111 1.30656 + 0.541196i 1.30656 + 0.541196i 0.923880 0.382683i 0.125000π-0.125000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
1212 0 0
1313 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
1414 0 0
1515 0 0
1616 0 0
1717 −1.63099 1.08979i −1.63099 1.08979i −0.923880 0.382683i 0.875000π-0.875000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
1818 0 0
1919 −0.923880 + 1.38268i −0.923880 + 1.38268i 1.00000i 0.5π0.5\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
2424 0 0
2525 −0.382683 0.923880i −0.382683 0.923880i
2626 0 0
2727 1.00000 + 2.41421i 1.00000 + 2.41421i
2828 0 0
2929 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
3030 0 0
3131 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
3232 0 0
3333 1.84776 + 1.84776i 1.84776 + 1.84776i
3434 0 0
3535 0 0
3636 0 0
3737 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
3838 0 0
3939 0 0
4040 0 0
4141 −0.216773 1.08979i −0.216773 1.08979i −0.923880 0.382683i 0.875000π-0.875000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
4242 0 0
4343 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i 0.375000π-0.375000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4848 0 0
4949 −0.382683 + 0.923880i −0.382683 + 0.923880i
5050 0 0
5151 −2.01367 3.01367i −2.01367 3.01367i
5252 0 0
5353 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
5454 0 0
5555 0 0
5656 0 0
5757 −2.55487 + 1.70711i −2.55487 + 1.70711i
5858 0 0
5959 −0.382683 0.0761205i −0.382683 0.0761205i 1.00000i 0.5π-0.5\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 −0.324423 0.216773i −0.324423 0.216773i 0.382683 0.923880i 0.375000π-0.375000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
7272 0 0
7373 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
7474 0 0
7575 1.84776i 1.84776i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
8080 0 0
8181 2.41421i 2.41421i
8282 0 0
8383 0.216773 0.324423i 0.216773 0.324423i −0.707107 0.707107i 0.750000π-0.750000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −0.707107 0.292893i −0.707107 0.292893i 1.00000i 0.5π-0.5\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0.923880 + 0.382683i 0.923880 + 0.382683i
9898 0 0
9999 1.30656 + 3.15432i 1.30656 + 3.15432i
100100 0 0
101101 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 0 0
107107 1.08979 + 0.216773i 1.08979 + 0.216773i 0.707107 0.707107i 0.250000π-0.250000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
108108 0 0
109109 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.765367i 0.765367i 0.923880 + 0.382683i 0.125000π0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0.707107 + 0.707107i 0.707107 + 0.707107i
122122 0 0
123123 0.400544 2.01367i 0.400544 2.01367i
124124 0 0
125125 0 0
126126 0 0
127127 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
128128 0 0
129129 3.15432 1.30656i 3.15432 1.30656i
130130 0 0
131131 0.216773 1.08979i 0.216773 1.08979i −0.707107 0.707107i 0.750000π-0.750000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 1.38268 0.923880i 1.38268 0.923880i 0.382683 0.923880i 0.375000π-0.375000\pi
1.00000 00
138138 0 0
139139 −1.38268 + 0.923880i −1.38268 + 0.923880i −0.382683 + 0.923880i 0.625000π0.625000\pi
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 −1.30656 + 1.30656i −1.30656 + 1.30656i
148148 0 0
149149 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
150150 0 0
151151 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
152152 0 0
153153 −0.923880 4.64466i −0.923880 4.64466i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −0.765367 + 1.84776i −0.765367 + 1.84776i −0.382683 + 0.923880i 0.625000π0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
168168 0 0
169169 0.382683 + 0.923880i 0.382683 + 0.923880i
170170 0 0
171171 −3.93755 + 0.783227i −3.93755 + 0.783227i
172172 0 0
173173 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
174174 0 0
175175 0 0
176176 0 0
177177 −0.599456 0.400544i −0.599456 0.400544i
178178 0 0
179179 0.324423 0.216773i 0.324423 0.216773i −0.382683 0.923880i 0.625000π-0.625000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
180180 0 0
181181 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −1.54120 2.30656i −1.54120 2.30656i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
192192 0 0
193193 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
198198 0 0
199199 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
200200 0 0
201201 −0.400544 0.599456i −0.400544 0.599456i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 −1.95541 + 1.30656i −1.95541 + 1.30656i
210210 0 0
211211 1.63099 + 1.08979i 1.63099 + 1.08979i 0.923880 + 0.382683i 0.125000π0.125000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 −1.00000 2.41421i −1.00000 2.41421i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
224224 0 0
225225 0.923880 2.23044i 0.923880 2.23044i
226226 0 0
227227 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 −1.08979 1.63099i −1.08979 1.63099i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.382683 0.923880i 0.625000π-0.625000\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
240240 0 0
241241 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
242242 0 0
243243 −0.707107 + 1.70711i −0.707107 + 1.70711i
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0.599456 0.400544i 0.599456 0.400544i
250250 0 0
251251 −0.923880 + 0.617317i −0.923880 + 0.617317i −0.923880 0.382683i 0.875000π-0.875000\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0.324423 1.63099i 0.324423 1.63099i −0.382683 0.923880i 0.625000π-0.625000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
264264 0 0
265265 0 0
266266 0 0
267267 −1.00000 1.00000i −1.00000 1.00000i
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
272272 0 0
273273 0 0
274274 0 0
275275 1.41421i 1.41421i
276276 0 0
277277 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
278278 0 0
279279 0 0
280280 0 0
281281 0.382683 + 0.0761205i 0.382683 + 0.0761205i 0.382683 0.923880i 0.375000π-0.375000\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i 0.625000π-0.625000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 1.08979 + 2.63099i 1.08979 + 2.63099i
290290 0 0
291291 1.30656 + 1.30656i 1.30656 + 1.30656i
292292 0 0
293293 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
294294 0 0
295295 0 0
296296 0 0
297297 3.69552i 3.69552i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0.765367i 0.765367i 0.923880 + 0.382683i 0.125000π0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
312312 0 0
313313 1.84776i 1.84776i −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
318318 0 0
319319 0 0
320320 0 0
321321 1.70711 + 1.14065i 1.70711 + 1.14065i
322322 0 0
323323 3.01367 1.24830i 3.01367 1.24830i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −0.923880 + 0.617317i −0.923880 + 0.617317i −0.923880 0.382683i 0.875000π-0.875000\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 1.08979 + 1.63099i 1.08979 + 1.63099i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
338338 0 0
339339 −0.541196 + 1.30656i −0.541196 + 1.30656i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 −0.382683 1.92388i −0.382683 1.92388i −0.382683 0.923880i 0.625000π-0.625000\pi
1.00000i 0.5π-0.5\pi
348348 0 0
349349 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
360360 0 0
361361 −0.675577 1.63099i −0.675577 1.63099i
362362 0 0
363363 0.707107 + 1.70711i 0.707107 + 1.70711i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
368368 0 0
369369 1.49033 2.23044i 1.49033 2.23044i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.831470 0.555570i 0.187500π-0.187500\pi
−0.831470 + 0.555570i 0.812500π0.812500\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
384384 0 0
385385 0 0
386386 0 0
387387 4.46088 4.46088
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 0 0
393393 1.14065 1.70711i 1.14065 1.70711i
394394 0 0
395395 0 0
396396 0 0
397397 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
398398 0 0
399399 0 0
400400 0 0
401401 −0.923880 0.617317i −0.923880 0.617317i 1.00000i 0.5π-0.5\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0.0761205 + 0.382683i 0.0761205 + 0.382683i 1.00000 00
−0.923880 + 0.382683i 0.875000π0.875000\pi
410410 0 0
411411 3.01367 0.599456i 3.01367 0.599456i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 −3.01367 + 0.599456i −3.01367 + 0.599456i
418418 0 0
419419 −0.292893 + 0.707107i −0.292893 + 0.707107i 0.707107 + 0.707107i 0.250000π0.250000\pi
−1.00000 π\pi
420420 0 0
421421 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
422422 0 0
423423 0 0
424424 0 0
425425 −0.382683 + 1.92388i −0.382683 + 1.92388i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
432432 0 0
433433 −0.382683 + 0.0761205i −0.382683 + 0.0761205i −0.382683 0.923880i 0.625000π-0.625000\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
440440 0 0
441441 −2.23044 + 0.923880i −2.23044 + 0.923880i
442442 0 0
443443 −0.923880 + 0.617317i −0.923880 + 0.617317i −0.923880 0.382683i 0.875000π-0.875000\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0.765367 0.765367 0.382683 0.923880i 0.375000π-0.375000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
450450 0 0
451451 0.306563 1.54120i 0.306563 1.54120i
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.63099 + 0.324423i 1.63099 + 0.324423i 0.923880 0.382683i 0.125000π-0.125000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
458458 0 0
459459 1.00000 5.02734i 1.00000 5.02734i
460460 0 0
461461 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i 0.750000π-0.750000\pi
1.00000 00
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 2.41421 1.00000i 2.41421 1.00000i
474474 0 0
475475 1.63099 + 0.324423i 1.63099 + 0.324423i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
488488 0 0
489489 −2.61313 + 2.61313i −2.61313 + 2.61313i
490490 0 0
491491 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −0.923880 + 1.38268i −0.923880 + 1.38268i 1.00000i 0.5π0.5\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
504504 0 0
505505 0 0
506506 0 0
507507 1.84776i 1.84776i
508508 0 0
509509 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
510510 0 0
511511 0 0
512512 0 0
513513 −4.26197 0.847759i −4.26197 0.847759i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
522522 0 0
523523 1.92388 + 0.382683i 1.92388 + 0.382683i 1.00000 00
0.923880 + 0.382683i 0.125000π0.125000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.923880 0.382683i 0.923880 0.382683i
530530 0 0
531531 −0.523336 0.783227i −0.523336 0.783227i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0.707107 0.140652i 0.707107 0.140652i
538538 0 0
539539 −1.00000 + 1.00000i −1.00000 + 1.00000i
540540 0 0
541541 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
558558 0 0
559559 0 0
560560 0 0
561561 −1.00000 5.02734i −1.00000 5.02734i
562562 0 0
563563 −1.08979 + 1.63099i −1.08979 + 1.63099i −0.382683 + 0.923880i 0.625000π0.625000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −1.63099 1.08979i −1.63099 1.08979i −0.923880 0.382683i 0.875000π-0.875000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
570570 0 0
571571 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i 0.250000π-0.250000\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −1.08979 + 1.63099i −1.08979 + 1.63099i −0.382683 + 0.923880i 0.625000π0.625000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
578578 0 0
579579 −3.41421 1.41421i −3.41421 1.41421i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −0.617317 + 0.923880i −0.617317 + 0.923880i 0.382683 + 0.923880i 0.375000π0.375000\pi
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 1.84776 + 0.765367i 1.84776 + 0.765367i 0.923880 + 0.382683i 0.125000π0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
600600 0 0
601601 0.216773 0.324423i 0.216773 0.324423i −0.707107 0.707107i 0.750000π-0.750000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
602602 0 0
603603 −0.183771 0.923880i −0.183771 0.923880i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
618618 0 0
619619 −0.216773 + 1.08979i −0.216773 + 1.08979i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.707107 + 0.707107i −0.707107 + 0.707107i
626626 0 0
627627 −4.26197 + 0.847759i −4.26197 + 0.847759i
628628 0 0
629629 0 0
630630 0 0
631631 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
632632 0 0
633633 2.01367 + 3.01367i 2.01367 + 3.01367i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 1.63099 + 0.324423i 1.63099 + 0.324423i 0.923880 0.382683i 0.125000π-0.125000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
642642 0 0
643643 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
648648 0 0
649649 −0.458804 0.306563i −0.458804 0.306563i
650650 0 0
651651 0 0
652652 0 0
653653 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
654654 0 0
655655 0 0
656656 0 0
657657 3.41421i 3.41421i
658658 0 0
659659 −0.324423 1.63099i −0.324423 1.63099i −0.707107 0.707107i 0.750000π-0.750000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
660660 0 0
661661 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0.765367i 0.765367i 0.923880 + 0.382683i 0.125000π0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
674674 0 0
675675 1.84776 1.84776i 1.84776 1.84776i
676676 0 0
677677 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −0.541196 + 0.541196i −0.541196 + 0.541196i −0.923880 0.382683i 0.875000π-0.875000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0.707107 0.292893i 0.707107 0.292893i 1.00000i 0.5π-0.5\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −0.834089 + 2.01367i −0.834089 + 2.01367i
698698 0 0
699699 −0.707107 3.55487i −0.707107 3.55487i
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.831470 0.555570i 0.187500π-0.187500\pi
−0.831470 + 0.555570i 0.812500π0.812500\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
728728 0 0
729729 −0.707107 + 0.707107i −0.707107 + 0.707107i
730730 0 0
731731 −3.55487 + 0.707107i −3.55487 + 0.707107i
732732 0 0
733733 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
734734 0 0
735735 0 0
736736 0 0
737737 −0.306563 0.458804i −0.306563 0.458804i
738738 0 0
739739 −0.324423 + 1.63099i −0.324423 + 1.63099i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0.923880 0.183771i 0.923880 0.183771i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
752752 0 0
753753 −2.01367 + 0.400544i −2.01367 + 0.400544i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.63099 + 1.08979i −1.63099 + 1.08979i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −0.923880 1.38268i −0.923880 1.38268i −0.923880 0.382683i 0.875000π-0.875000\pi
1.00000i 0.5π-0.5\pi
770770 0 0
771771 1.70711 2.55487i 1.70711 2.55487i
772772 0 0
773773 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 1.70711 + 0.707107i 1.70711 + 0.707107i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 00
0.707107 + 0.707107i 0.250000π0.250000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
798798 0 0
799799 0 0
800800 0 0
801801 −0.707107 1.70711i −0.707107 1.70711i
802802 0 0
803803 −0.765367 1.84776i −0.765367 1.84776i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i 0.125000π-0.125000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
810810 0 0
811811 −0.765367 −0.765367 −0.382683 0.923880i 0.625000π-0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0.599456 + 3.01367i 0.599456 + 3.01367i
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
822822 0 0
823823 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
824824 0 0
825825 1.00000 2.41421i 1.00000 2.41421i
826826 0 0
827827 1.08979 + 1.63099i 1.08979 + 1.63099i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
828828 0 0
829829 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
830830 0 0
831831 0 0
832832 0 0
833833 1.63099 1.08979i 1.63099 1.08979i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
840840 0 0
841841 0.923880 0.382683i 0.923880 0.382683i
842842 0 0
843843 0.599456 + 0.400544i 0.599456 + 0.400544i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 −1.84776 1.84776i −1.84776 1.84776i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
858858 0 0
859859 0.617317 0.923880i 0.617317 0.923880i −0.382683 0.923880i 0.625000π-0.625000\pi
1.00000 00
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
864864 0 0
865865 0 0
866866 0 0
867867 5.26197i 5.26197i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.923880 + 2.23044i 0.923880 + 2.23044i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
882882 0 0
883883 −1.08979 0.216773i −1.08979 0.216773i −0.382683 0.923880i 0.625000π-0.625000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
888888 0 0
889889 0 0
890890 0 0
891891 −1.30656 + 3.15432i −1.30656 + 3.15432i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 −0.0761205 + 0.382683i −0.0761205 + 0.382683i 0.923880 + 0.382683i 0.125000π0.125000\pi
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
912912 0 0
913913 0.458804 0.306563i 0.458804 0.306563i
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
920920 0 0
921921 −0.541196 + 1.30656i −0.541196 + 1.30656i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.324423 + 1.63099i 0.324423 + 1.63099i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
930930 0 0
931931 −0.923880 1.38268i −0.923880 1.38268i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
938938 0 0
939939 1.30656 3.15432i 1.30656 3.15432i
940940 0 0
941941 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −0.382683 + 0.0761205i −0.382683 + 0.0761205i −0.382683 0.923880i 0.625000π-0.625000\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −0.324423 0.216773i −0.324423 0.216773i 0.382683 0.923880i 0.375000π-0.375000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.707107 0.707107i −0.707107 0.707107i
962962 0 0
963963 1.49033 + 2.23044i 1.49033 + 2.23044i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
968968 0 0
969969 6.02734 6.02734
970970 0 0
971971 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 1.08979 + 1.63099i 1.08979 + 1.63099i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
978978 0 0
979979 −0.765367 0.765367i −0.765367 0.765367i
980980 0 0
981981 0 0
982982 0 0
983983 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
992992 0 0
993993 −2.01367 + 0.400544i −2.01367 + 0.400544i
994994 0 0
995995 0 0
996996 0 0
997997 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3104.1.cy.a.943.1 8
4.3 odd 2 776.1.be.a.555.1 yes 8
8.3 odd 2 CM 3104.1.cy.a.943.1 8
8.5 even 2 776.1.be.a.555.1 yes 8
97.79 even 16 inner 3104.1.cy.a.79.1 8
388.79 odd 16 776.1.be.a.467.1 8
776.467 odd 16 inner 3104.1.cy.a.79.1 8
776.661 even 16 776.1.be.a.467.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
776.1.be.a.467.1 8 388.79 odd 16
776.1.be.a.467.1 8 776.661 even 16
776.1.be.a.555.1 yes 8 4.3 odd 2
776.1.be.a.555.1 yes 8 8.5 even 2
3104.1.cy.a.79.1 8 97.79 even 16 inner
3104.1.cy.a.79.1 8 776.467 odd 16 inner
3104.1.cy.a.943.1 8 1.1 even 1 trivial
3104.1.cy.a.943.1 8 8.3 odd 2 CM