Properties

Label 3104.1.et.a.1327.1
Level 31043104
Weight 11
Character 3104.1327
Analytic conductor 1.5491.549
Analytic rank 00
Dimension 1616
Projective image D48D_{48}
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3104,1,Mod(335,3104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3104, base_ring=CyclotomicField(48))
 
chi = DirichletCharacter(H, H._module([24, 24, 29]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3104.335");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3104=2597 3104 = 2^{5} \cdot 97
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3104.et (of order 4848, degree 1616, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.549097799211.54909779921
Analytic rank: 00
Dimension: 1616
Coefficient field: Q(ζ48)\Q(\zeta_{48})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x8+1 x^{16} - x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 776)
Projective image: D48D_{48}
Projective field: Galois closure of Q[x]/(x48+)\mathbb{Q}[x]/(x^{48} + \cdots)

Embedding invariants

Embedding label 1327.1
Root 0.9914450.130526i0.991445 - 0.130526i of defining polynomial
Character χ\chi == 3104.1327
Dual form 3104.1.et.a.2159.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.2071071.57313i)q3+(1.465930.392794i)q9+(1.53264+1.17604i)q11+(1.75928+0.867580i)q17+(0.9238801.38268i)q19+(0.9914450.130526i)q25+(0.314313+0.758819i)q27+(2.167482.16748i)q33+(0.8354000.732626i)q41+(0.2521570.0675653i)q43+(0.608761+0.793353i)q49+(1.729182.58790i)q51+(2.36649+1.16702i)q57+(0.1254190.369474i)q59+(1.25026+0.835400i)q67+(0.3660251.36603i)q731.58671iq75+(0.1856870.107206i)q81+(0.837633+1.69855i)q83+(1.831950.758819i)q89+(0.130526+0.991445i)q97+(1.784802.32599i)q99+O(q100)q+(0.207107 - 1.57313i) q^{3} +(-1.46593 - 0.392794i) q^{9} +(1.53264 + 1.17604i) q^{11} +(1.75928 + 0.867580i) q^{17} +(-0.923880 - 1.38268i) q^{19} +(0.991445 - 0.130526i) q^{25} +(-0.314313 + 0.758819i) q^{27} +(2.16748 - 2.16748i) q^{33} +(-0.835400 - 0.732626i) q^{41} +(0.252157 - 0.0675653i) q^{43} +(-0.608761 + 0.793353i) q^{49} +(1.72918 - 2.58790i) q^{51} +(-2.36649 + 1.16702i) q^{57} +(0.125419 - 0.369474i) q^{59} +(-1.25026 + 0.835400i) q^{67} +(-0.366025 - 1.36603i) q^{73} -1.58671i q^{75} +(-0.185687 - 0.107206i) q^{81} +(-0.837633 + 1.69855i) q^{83} +(1.83195 - 0.758819i) q^{89} +(-0.130526 + 0.991445i) q^{97} +(-1.78480 - 2.32599i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q8q38q9+16q27+8q7324q81+O(q100) 16 q - 8 q^{3} - 8 q^{9} + 16 q^{27} + 8 q^{73} - 24 q^{81}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3104Z)×\left(\mathbb{Z}/3104\mathbb{Z}\right)^\times.

nn 389389 27212721 29112911
χ(n)\chi(n) 1-1 e(4748)e\left(\frac{47}{48}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0.207107 1.57313i 0.207107 1.57313i −0.500000 0.866025i 0.666667π-0.666667\pi
0.707107 0.707107i 0.250000π-0.250000\pi
44 0 0
55 0 0 0.997859 0.0654031i 0.0208333π-0.0208333\pi
−0.997859 + 0.0654031i 0.979167π0.979167\pi
66 0 0
77 0 0 −0.442289 0.896873i 0.645833π-0.645833\pi
0.442289 + 0.896873i 0.354167π0.354167\pi
88 0 0
99 −1.46593 0.392794i −1.46593 0.392794i
1010 0 0
1111 1.53264 + 1.17604i 1.53264 + 1.17604i 0.923880 + 0.382683i 0.125000π0.125000\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
1212 0 0
1313 0 0 −0.0654031 0.997859i 0.520833π-0.520833\pi
0.0654031 + 0.997859i 0.479167π0.479167\pi
1414 0 0
1515 0 0
1616 0 0
1717 1.75928 + 0.867580i 1.75928 + 0.867580i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
1818 0 0
1919 −0.923880 1.38268i −0.923880 1.38268i −0.923880 0.382683i 0.875000π-0.875000\pi
1.00000i 0.5π-0.5\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 −0.321439 0.946930i 0.604167π-0.604167\pi
0.321439 + 0.946930i 0.395833π0.395833\pi
2424 0 0
2525 0.991445 0.130526i 0.991445 0.130526i
2626 0 0
2727 −0.314313 + 0.758819i −0.314313 + 0.758819i
2828 0 0
2929 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
3030 0 0
3131 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
3232 0 0
3333 2.16748 2.16748i 2.16748 2.16748i
3434 0 0
3535 0 0
3636 0 0
3737 0 0 −0.946930 0.321439i 0.895833π-0.895833\pi
0.946930 + 0.321439i 0.104167π0.104167\pi
3838 0 0
3939 0 0
4040 0 0
4141 −0.835400 0.732626i −0.835400 0.732626i 0.130526 0.991445i 0.458333π-0.458333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
4242 0 0
4343 0.252157 0.0675653i 0.252157 0.0675653i −0.130526 0.991445i 0.541667π-0.541667\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4848 0 0
4949 −0.608761 + 0.793353i −0.608761 + 0.793353i
5050 0 0
5151 1.72918 2.58790i 1.72918 2.58790i
5252 0 0
5353 0 0 0.793353 0.608761i 0.208333π-0.208333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
5454 0 0
5555 0 0
5656 0 0
5757 −2.36649 + 1.16702i −2.36649 + 1.16702i
5858 0 0
5959 0.125419 0.369474i 0.125419 0.369474i −0.866025 0.500000i 0.833333π-0.833333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
6060 0 0
6161 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 −1.25026 + 0.835400i −1.25026 + 0.835400i −0.991445 0.130526i 0.958333π-0.958333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 0.751840 0.659346i 0.229167π-0.229167\pi
−0.751840 + 0.659346i 0.770833π0.770833\pi
7272 0 0
7373 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
7474 0 0
7575 1.58671i 1.58671i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
8080 0 0
8181 −0.185687 0.107206i −0.185687 0.107206i
8282 0 0
8383 −0.837633 + 1.69855i −0.837633 + 1.69855i −0.130526 + 0.991445i 0.541667π0.541667\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 1.83195 0.758819i 1.83195 0.758819i 0.866025 0.500000i 0.166667π-0.166667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −0.130526 + 0.991445i −0.130526 + 0.991445i
9898 0 0
9999 −1.78480 2.32599i −1.78480 2.32599i
100100 0 0
101101 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
102102 0 0
103103 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
104104 0 0
105105 0 0
106106 0 0
107107 −0.583242 0.665060i −0.583242 0.665060i 0.382683 0.923880i 0.375000π-0.375000\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
108108 0 0
109109 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
110110 0 0
111111 0 0
112112 0 0
113113 −1.71723 0.991445i −1.71723 0.991445i −0.923880 0.382683i 0.875000π-0.875000\pi
−0.793353 0.608761i 0.791667π-0.791667\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0.707107 + 2.63896i 0.707107 + 2.63896i
122122 0 0
123123 −1.32553 + 1.16246i −1.32553 + 1.16246i
124124 0 0
125125 0 0
126126 0 0
127127 0 0 0.831470 0.555570i 0.187500π-0.187500\pi
−0.831470 + 0.555570i 0.812500π0.812500\pi
128128 0 0
129129 −0.0540657 0.410670i −0.0540657 0.410670i
130130 0 0
131131 0.172572 + 0.867580i 0.172572 + 0.867580i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −0.117317 + 0.0578541i −0.117317 + 0.0578541i −0.500000 0.866025i 0.666667π-0.666667\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
138138 0 0
139139 −0.108761 0.0726721i −0.108761 0.0726721i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 1.12197 + 1.12197i 1.12197 + 1.12197i
148148 0 0
149149 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
150150 0 0
151151 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
152152 0 0
153153 −2.23819 1.96284i −2.23819 1.96284i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 −0.946930 0.321439i 0.895833π-0.895833\pi
0.946930 + 0.321439i 0.104167π0.104167\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −0.991445 0.130526i −0.991445 0.130526i −0.382683 0.923880i 0.625000π-0.625000\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
168168 0 0
169169 −0.991445 + 0.130526i −0.991445 + 0.130526i
170170 0 0
171171 0.811230 + 2.38981i 0.811230 + 2.38981i
172172 0 0
173173 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
174174 0 0
175175 0 0
176176 0 0
177177 −0.555256 0.273822i −0.555256 0.273822i
178178 0 0
179179 0.0255190 0.389345i 0.0255190 0.389345i −0.965926 0.258819i 0.916667π-0.916667\pi
0.991445 0.130526i 0.0416667π-0.0416667\pi
180180 0 0
181181 0 0 −0.0654031 0.997859i 0.520833π-0.520833\pi
0.0654031 + 0.997859i 0.479167π0.479167\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 1.67604 + 3.39867i 1.67604 + 3.39867i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
192192 0 0
193193 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
198198 0 0
199199 0 0 0.997859 0.0654031i 0.0208333π-0.0208333\pi
−0.997859 + 0.0654031i 0.979167π0.979167\pi
200200 0 0
201201 1.05526 + 2.13985i 1.05526 + 2.13985i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0.210111 3.20567i 0.210111 3.20567i
210210 0 0
211211 1.18270 + 0.583242i 1.18270 + 0.583242i 0.923880 0.382683i 0.125000π-0.125000\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 −2.22474 + 0.292893i −2.22474 + 0.292893i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
224224 0 0
225225 −1.50465 0.198092i −1.50465 0.198092i
226226 0 0
227227 1.22474 1.22474i 1.22474 1.22474i 0.258819 0.965926i 0.416667π-0.416667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
228228 0 0
229229 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 0 0
232232 0 0
233233 −0.641502 0.0420463i −0.641502 0.0420463i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
240240 0 0
241241 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
242242 0 0
243243 −0.707107 + 0.921519i −0.707107 + 0.921519i
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 2.49857 + 1.66949i 2.49857 + 1.66949i
250250 0 0
251251 0.996552 0.491445i 0.996552 0.491445i 0.130526 0.991445i 0.458333π-0.458333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 −0.349942 1.75928i −0.349942 1.75928i −0.608761 0.793353i 0.708333π-0.708333\pi
0.258819 0.965926i 0.416667π-0.416667\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
264264 0 0
265265 0 0
266266 0 0
267267 −0.814313 3.03906i −0.814313 3.03906i
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
272272 0 0
273273 0 0
274274 0 0
275275 1.67303 + 0.965926i 1.67303 + 0.965926i
276276 0 0
277277 0 0 0.442289 0.896873i 0.354167π-0.354167\pi
−0.442289 + 0.896873i 0.645833π0.645833\pi
278278 0 0
279279 0 0
280280 0 0
281281 −0.991445 1.13053i −0.991445 1.13053i −0.991445 0.130526i 0.958333π-0.958333\pi
1.00000i 0.5π-0.5\pi
282282 0 0
283283 −1.30656 + 0.541196i −1.30656 + 0.541196i −0.923880 0.382683i 0.875000π-0.875000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 1.73361 + 2.25928i 1.73361 + 2.25928i
290290 0 0
291291 1.53264 + 0.410670i 1.53264 + 0.410670i
292292 0 0
293293 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
294294 0 0
295295 0 0
296296 0 0
297297 −1.37413 + 0.793353i −1.37413 + 0.793353i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 1.05441 + 0.608761i 1.05441 + 0.608761i 0.923880 0.382683i 0.125000π-0.125000\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
312312 0 0
313313 0.261052i 0.261052i −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 0.130526i 0.0416667π-0.0416667\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.751840 0.659346i 0.229167π-0.229167\pi
−0.751840 + 0.659346i 0.770833π0.770833\pi
318318 0 0
319319 0 0
320320 0 0
321321 −1.16702 + 0.779779i −1.16702 + 0.779779i
322322 0 0
323323 −0.425773 3.23407i −0.425773 3.23407i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −1.78990 + 0.882683i −1.78990 + 0.882683i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −0.357164 + 0.534534i −0.357164 + 0.534534i −0.965926 0.258819i 0.916667π-0.916667\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
338338 0 0
339339 −1.91532 + 2.49610i −1.91532 + 2.49610i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0.483342 + 0.423880i 0.483342 + 0.423880i 0.866025 0.500000i 0.166667π-0.166667\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
348348 0 0
349349 0 0 −0.997859 0.0654031i 0.979167π-0.979167\pi
0.997859 + 0.0654031i 0.0208333π0.0208333\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
360360 0 0
361361 −0.675577 + 1.63099i −0.675577 + 1.63099i
362362 0 0
363363 4.29788 0.565826i 4.29788 0.565826i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
368368 0 0
369369 0.936863 + 1.40211i 0.936863 + 1.40211i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.0654031 0.997859i 0.479167π-0.479167\pi
−0.0654031 + 0.997859i 0.520833π0.520833\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.67303 + 0.448288i 1.67303 + 0.448288i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.997859 0.0654031i 0.0208333π-0.0208333\pi
−0.997859 + 0.0654031i 0.979167π0.979167\pi
384384 0 0
385385 0 0
386386 0 0
387387 −0.396183 −0.396183
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 0 0
393393 1.40056 0.0917975i 1.40056 0.0917975i
394394 0 0
395395 0 0
396396 0 0
397397 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
398398 0 0
399399 0 0
400400 0 0
401401 0.130526 + 1.99144i 0.130526 + 1.99144i 0.130526 + 0.991445i 0.458333π0.458333\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 1.79335 0.608761i 1.79335 0.608761i 0.793353 0.608761i 0.208333π-0.208333\pi
1.00000 00
410410 0 0
411411 0.0667151 + 0.196536i 0.0667151 + 0.196536i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 −0.136848 + 0.156045i −0.136848 + 0.156045i
418418 0 0
419419 1.20711 + 0.158919i 1.20711 + 0.158919i 0.707107 0.707107i 0.250000π-0.250000\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
420420 0 0
421421 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
422422 0 0
423423 0 0
424424 0 0
425425 1.85747 + 0.630526i 1.85747 + 0.630526i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
432432 0 0
433433 −1.47479 0.293353i −1.47479 0.293353i −0.608761 0.793353i 0.708333π-0.708333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
440440 0 0
441441 1.20402 0.923880i 1.20402 0.923880i
442442 0 0
443443 1.65938 + 1.10876i 1.65938 + 1.10876i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −0.608761 + 1.05441i −0.608761 + 1.05441i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
450450 0 0
451451 −0.418773 2.10531i −0.418773 2.10531i
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −1.75928 + 0.349942i −1.75928 + 0.349942i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
458458 0 0
459459 −1.21130 + 1.06228i −1.21130 + 1.06228i
460460 0 0
461461 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 00
−0.707107 + 0.707107i 0.750000π0.750000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0.465926 + 0.192993i 0.465926 + 0.192993i
474474 0 0
475475 −1.09645 1.25026i −1.09645 1.25026i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
488488 0 0
489489 −0.410670 + 1.53264i −0.410670 + 1.53264i
490490 0 0
491491 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −0.735499 + 1.49144i −0.735499 + 1.49144i 0.130526 + 0.991445i 0.458333π0.458333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
504504 0 0
505505 0 0
506506 0 0
507507 1.58671i 1.58671i
508508 0 0
509509 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
510510 0 0
511511 0 0
512512 0 0
513513 1.33959 0.266462i 1.33959 0.266462i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
522522 0 0
523523 0.206647 0.608761i 0.206647 0.608761i −0.793353 0.608761i 0.791667π-0.791667\pi
1.00000 00
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.793353 + 0.608761i −0.793353 + 0.608761i
530530 0 0
531531 −0.328983 + 0.492357i −0.328983 + 0.492357i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −0.607206 0.120781i −0.607206 0.120781i
538538 0 0
539539 −1.86603 + 0.500000i −1.86603 + 0.500000i
540540 0 0
541541 0 0 −0.751840 0.659346i 0.770833π-0.770833\pi
0.751840 + 0.659346i 0.229167π0.229167\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −0.130526 0.226078i −0.130526 0.226078i 0.793353 0.608761i 0.208333π-0.208333\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
558558 0 0
559559 0 0
560560 0 0
561561 5.69367 1.93274i 5.69367 1.93274i
562562 0 0
563563 −1.08979 1.63099i −1.08979 1.63099i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.382683 0.923880i 0.625000π-0.625000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0.0862466 + 1.31587i 0.0862466 + 1.31587i 0.793353 + 0.608761i 0.208333π0.208333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
570570 0 0
571571 −0.965926 0.741181i −0.965926 0.741181i 1.00000i 0.5π-0.5\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −1.31587 + 0.0862466i −1.31587 + 0.0862466i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
578578 0 0
579579 0.207107 1.57313i 0.207107 1.57313i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.99144 + 0.130526i −1.99144 + 0.130526i −0.991445 + 0.130526i 0.958333π0.958333\pi
−1.00000 1.00000π1.00000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0.793353 + 0.608761i 0.793353 + 0.608761i 0.923880 0.382683i 0.125000π-0.125000\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.896873 0.442289i 0.854167π-0.854167\pi
0.896873 + 0.442289i 0.145833π0.145833\pi
600600 0 0
601601 0.216773 + 0.324423i 0.216773 + 0.324423i 0.923880 0.382683i 0.125000π-0.125000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
602602 0 0
603603 2.16093 0.733538i 2.16093 0.733538i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
614614 0 0
615615 0 0
616616 0 0
617617 −0.923880 1.60021i −0.923880 1.60021i −0.793353 0.608761i 0.791667π-0.791667\pi
−0.130526 0.991445i 0.541667π-0.541667\pi
618618 0 0
619619 1.05217 + 0.357164i 1.05217 + 0.357164i 0.793353 0.608761i 0.208333π-0.208333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.965926 0.258819i 0.965926 0.258819i
626626 0 0
627627 −4.99943 0.994449i −4.99943 0.994449i
628628 0 0
629629 0 0
630630 0 0
631631 0 0 0.608761 0.793353i 0.291667π-0.291667\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
632632 0 0
633633 1.16246 1.73975i 1.16246 1.73975i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −0.0420463 + 0.123864i −0.0420463 + 0.123864i −0.965926 0.258819i 0.916667π-0.916667\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
642642 0 0
643643 −0.923880 + 1.60021i −0.923880 + 1.60021i −0.130526 + 0.991445i 0.541667π0.541667\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 −0.130526 0.991445i 0.541667π-0.541667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
648648 0 0
649649 0.626738 0.418773i 0.626738 0.418773i
650650 0 0
651651 0 0
652652 0 0
653653 0 0 0.751840 0.659346i 0.229167π-0.229167\pi
−0.751840 + 0.659346i 0.770833π0.770833\pi
654654 0 0
655655 0 0
656656 0 0
657657 2.14626i 2.14626i
658658 0 0
659659 0.349942 1.75928i 0.349942 1.75928i −0.258819 0.965926i 0.583333π-0.583333\pi
0.608761 0.793353i 0.291667π-0.291667\pi
660660 0 0
661661 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −1.05441 + 0.608761i −1.05441 + 0.608761i −0.923880 0.382683i 0.875000π-0.875000\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
674674 0 0
675675 −0.212578 + 0.793353i −0.212578 + 0.793353i
676676 0 0
677677 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
678678 0 0
679679 0 0
680680 0 0
681681 −1.67303 2.18034i −1.67303 2.18034i
682682 0 0
683683 −0.315118 + 1.17604i −0.315118 + 1.17604i 0.608761 + 0.793353i 0.291667π0.291667\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i 0.250000π-0.250000\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −0.834089 2.01367i −0.834089 2.01367i
698698 0 0
699699 −0.199004 + 1.00046i −0.199004 + 1.00046i
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 0.831470 0.555570i 0.187500π-0.187500\pi
−0.831470 + 0.555570i 0.812500π0.812500\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.896873 0.442289i 0.145833π-0.145833\pi
−0.896873 + 0.442289i 0.854167π0.854167\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 0.608761 0.793353i 0.291667π-0.291667\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
728728 0 0
729729 1.15161 + 1.15161i 1.15161 + 1.15161i
730730 0 0
731731 0.502233 + 0.0999004i 0.502233 + 0.0999004i
732732 0 0
733733 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
734734 0 0
735735 0 0
736736 0 0
737737 −2.89867 0.189989i −2.89867 0.189989i
738738 0 0
739739 0.123864 + 0.0420463i 0.123864 + 0.0420463i 0.382683 0.923880i 0.375000π-0.375000\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
744744 0 0
745745 0 0
746746 0 0
747747 1.89509 2.16093i 1.89509 2.16093i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
752752 0 0
753753 −0.566715 1.66949i −0.566715 1.66949i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
758758 0 0
759759 0 0
760760 0 0
761761 −0.128293 + 1.95737i −0.128293 + 1.95737i 0.130526 + 0.991445i 0.458333π0.458333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −0.735499 1.49144i −0.735499 1.49144i −0.866025 0.500000i 0.833333π-0.833333\pi
0.130526 0.991445i 0.458333π-0.458333\pi
770770 0 0
771771 −2.84005 + 0.186147i −2.84005 + 0.186147i
772772 0 0
773773 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 −0.241181 + 1.83195i −0.241181 + 1.83195i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 −1.46593 1.12484i −1.46593 1.12484i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
798798 0 0
799799 0 0
800800 0 0
801801 −2.98356 + 0.392794i −2.98356 + 0.392794i
802802 0 0
803803 1.04551 2.52409i 1.04551 2.52409i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i 0.625000π-0.625000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
810810 0 0
811811 −0.991445 1.71723i −0.991445 1.71723i −0.608761 0.793353i 0.708333π-0.708333\pi
−0.382683 0.923880i 0.625000π-0.625000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −0.326384 0.286231i −0.326384 0.286231i
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
822822 0 0
823823 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
824824 0 0
825825 1.86603 2.43185i 1.86603 2.43185i
826826 0 0
827827 −0.732626 + 1.09645i −0.732626 + 1.09645i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
828828 0 0
829829 0 0 0.793353 0.608761i 0.208333π-0.208333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
830830 0 0
831831 0 0
832832 0 0
833833 −1.75928 + 0.867580i −1.75928 + 0.867580i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
840840 0 0
841841 −0.130526 0.991445i −0.130526 0.991445i
842842 0 0
843843 −1.98380 + 1.32553i −1.98380 + 1.32553i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0.580775 + 2.16748i 0.580775 + 2.16748i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.67303 + 0.965926i 1.67303 + 0.965926i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
858858 0 0
859859 0.391239 0.793353i 0.391239 0.793353i −0.608761 0.793353i 0.708333π-0.708333\pi
1.00000 00
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.659346 0.751840i 0.729167π-0.729167\pi
0.659346 + 0.751840i 0.270833π0.270833\pi
864864 0 0
865865 0 0
866866 0 0
867867 3.91319 2.25928i 3.91319 2.25928i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.580775 1.40211i 0.580775 1.40211i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
878878 0 0
879879 0 0
880880 0 0
881881 1.60021 0.662827i 1.60021 0.662827i 0.608761 0.793353i 0.291667π-0.291667\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
882882 0 0
883883 0.583242 + 0.665060i 0.583242 + 0.665060i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.442289 0.896873i 0.354167π-0.354167\pi
−0.442289 + 0.896873i 0.645833π0.645833\pi
888888 0 0
889889 0 0
890890 0 0
891891 −0.158513 0.382683i −0.158513 0.382683i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0.369474 + 1.85747i 0.369474 + 1.85747i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.321439 0.946930i 0.395833π-0.395833\pi
−0.321439 + 0.946930i 0.604167π0.604167\pi
912912 0 0
913913 −3.28135 + 1.61818i −3.28135 + 1.61818i
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
920920 0 0
921921 1.17604 1.53264i 1.17604 1.53264i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 −1.34861 1.18270i −1.34861 1.18270i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.382683 0.923880i 0.625000π-0.625000\pi
930930 0 0
931931 1.65938 + 0.108761i 1.65938 + 0.108761i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −1.22474 + 1.22474i −1.22474 + 1.22474i −0.258819 + 0.965926i 0.583333π0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
938938 0 0
939939 −0.410670 0.0540657i −0.410670 0.0540657i
940940 0 0
941941 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −0.608761 1.79335i −0.608761 1.79335i −0.608761 0.793353i 0.708333π-0.708333\pi
1.00000i 0.5π-0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0.349942 + 0.172572i 0.349942 + 0.172572i 0.608761 0.793353i 0.291667π-0.291667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.965926 + 0.258819i 0.965926 + 0.258819i
962962 0 0
963963 0.593759 + 1.20402i 0.593759 + 1.20402i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
968968 0 0
969969 −5.17579 −5.17579
970970 0 0
971971 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0.867580 + 1.75928i 0.867580 + 1.75928i 0.608761 + 0.793353i 0.291667π0.291667\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
978978 0 0
979979 3.70012 + 0.991445i 3.70012 + 0.991445i
980980 0 0
981981 0 0
982982 0 0
983983 0 0 −0.0654031 0.997859i 0.520833π-0.520833\pi
0.0654031 + 0.997859i 0.479167π0.479167\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
992992 0 0
993993 1.01788 + 2.99857i 1.01788 + 2.99857i
994994 0 0
995995 0 0
996996 0 0
997997 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3104.1.et.a.1327.1 16
4.3 odd 2 776.1.bp.a.163.1 16
8.3 odd 2 CM 3104.1.et.a.1327.1 16
8.5 even 2 776.1.bp.a.163.1 16
97.25 even 48 inner 3104.1.et.a.2159.1 16
388.219 odd 48 776.1.bp.a.219.1 yes 16
776.219 odd 48 inner 3104.1.et.a.2159.1 16
776.413 even 48 776.1.bp.a.219.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
776.1.bp.a.163.1 16 4.3 odd 2
776.1.bp.a.163.1 16 8.5 even 2
776.1.bp.a.219.1 yes 16 388.219 odd 48
776.1.bp.a.219.1 yes 16 776.413 even 48
3104.1.et.a.1327.1 16 1.1 even 1 trivial
3104.1.et.a.1327.1 16 8.3 odd 2 CM
3104.1.et.a.2159.1 16 97.25 even 48 inner
3104.1.et.a.2159.1 16 776.219 odd 48 inner