Properties

Label 3104.1.et.a.3055.1
Level 31043104
Weight 11
Character 3104.3055
Analytic conductor 1.5491.549
Analytic rank 00
Dimension 1616
Projective image D48D_{48}
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3104,1,Mod(335,3104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3104, base_ring=CyclotomicField(48))
 
chi = DirichletCharacter(H, H._module([24, 24, 29]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3104.335");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3104=2597 3104 = 2^{5} \cdot 97
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3104.et (of order 4848, degree 1616, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.549097799211.54909779921
Analytic rank: 00
Dimension: 1616
Coefficient field: Q(ζ48)\Q(\zeta_{48})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x8+1 x^{16} - x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 776)
Projective image: D48D_{48}
Projective field: Galois closure of Q[x]/(x48+)\mathbb{Q}[x]/(x^{48} + \cdots)

Embedding invariants

Embedding label 3055.1
Root 0.608761+0.793353i0.608761 + 0.793353i of defining polynomial
Character χ\chi == 3104.3055
Dual form 3104.1.et.a.1647.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.207107+0.158919i)q3+(0.2411810.900100i)q9+(0.06756530.513210i)q11+(0.389345+0.0255190i)q17+(0.9238800.617317i)q19+(0.608761+0.793353i)q25+(0.1929930.465926i)q27+(0.09555180.0955518i)q33+(0.5345341.57469i)q41+(0.4106701.53264i)q43+(0.9914450.130526i)q49+(0.08469150.0565890i)q51+(0.289445+0.0189712i)q57+(1.474791.29335i)q59+(0.357164+0.534534i)q67+(1.36603+0.366025i)q73+0.261052iq75+(0.692993+0.400100i)q81+(0.0862466+1.31587i)q83+(1.12484+0.465926i)q89+(0.793353+0.608761i)q97+(0.478235+0.0629609i)q99+O(q100)q+(0.207107 + 0.158919i) q^{3} +(-0.241181 - 0.900100i) q^{9} +(0.0675653 - 0.513210i) q^{11} +(-0.389345 + 0.0255190i) q^{17} +(0.923880 - 0.617317i) q^{19} +(0.608761 + 0.793353i) q^{25} +(0.192993 - 0.465926i) q^{27} +(0.0955518 - 0.0955518i) q^{33} +(-0.534534 - 1.57469i) q^{41} +(0.410670 - 1.53264i) q^{43} +(-0.991445 - 0.130526i) q^{49} +(-0.0846915 - 0.0565890i) q^{51} +(0.289445 + 0.0189712i) q^{57} +(1.47479 - 1.29335i) q^{59} +(0.357164 + 0.534534i) q^{67} +(1.36603 + 0.366025i) q^{73} +0.261052i q^{75} +(-0.692993 + 0.400100i) q^{81} +(0.0862466 + 1.31587i) q^{83} +(-1.12484 + 0.465926i) q^{89} +(0.793353 + 0.608761i) q^{97} +(-0.478235 + 0.0629609i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q8q38q9+16q27+8q7324q81+O(q100) 16 q - 8 q^{3} - 8 q^{9} + 16 q^{27} + 8 q^{73} - 24 q^{81}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3104Z)×\left(\mathbb{Z}/3104\mathbb{Z}\right)^\times.

nn 389389 27212721 29112911
χ(n)\chi(n) 1-1 e(748)e\left(\frac{7}{48}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0.207107 + 0.158919i 0.207107 + 0.158919i 0.707107 0.707107i 0.250000π-0.250000\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
44 0 0
55 0 0 −0.896873 0.442289i 0.854167π-0.854167\pi
0.896873 + 0.442289i 0.145833π0.145833\pi
66 0 0
77 0 0 0.0654031 0.997859i 0.479167π-0.479167\pi
−0.0654031 + 0.997859i 0.520833π0.520833\pi
88 0 0
99 −0.241181 0.900100i −0.241181 0.900100i
1010 0 0
1111 0.0675653 0.513210i 0.0675653 0.513210i −0.923880 0.382683i 0.875000π-0.875000\pi
0.991445 0.130526i 0.0416667π-0.0416667\pi
1212 0 0
1313 0 0 0.442289 0.896873i 0.354167π-0.354167\pi
−0.442289 + 0.896873i 0.645833π0.645833\pi
1414 0 0
1515 0 0
1616 0 0
1717 −0.389345 + 0.0255190i −0.389345 + 0.0255190i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
1818 0 0
1919 0.923880 0.617317i 0.923880 0.617317i 1.00000i 0.5π-0.5\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 −0.751840 0.659346i 0.770833π-0.770833\pi
0.751840 + 0.659346i 0.229167π0.229167\pi
2424 0 0
2525 0.608761 + 0.793353i 0.608761 + 0.793353i
2626 0 0
2727 0.192993 0.465926i 0.192993 0.465926i
2828 0 0
2929 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
3030 0 0
3131 0 0 0.608761 0.793353i 0.291667π-0.291667\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
3232 0 0
3333 0.0955518 0.0955518i 0.0955518 0.0955518i
3434 0 0
3535 0 0
3636 0 0
3737 0 0 −0.659346 0.751840i 0.729167π-0.729167\pi
0.659346 + 0.751840i 0.270833π0.270833\pi
3838 0 0
3939 0 0
4040 0 0
4141 −0.534534 1.57469i −0.534534 1.57469i −0.793353 0.608761i 0.791667π-0.791667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
4242 0 0
4343 0.410670 1.53264i 0.410670 1.53264i −0.382683 0.923880i 0.625000π-0.625000\pi
0.793353 0.608761i 0.208333π-0.208333\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4848 0 0
4949 −0.991445 0.130526i −0.991445 0.130526i
5050 0 0
5151 −0.0846915 0.0565890i −0.0846915 0.0565890i
5252 0 0
5353 0 0 −0.130526 0.991445i 0.541667π-0.541667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
5454 0 0
5555 0 0
5656 0 0
5757 0.289445 + 0.0189712i 0.289445 + 0.0189712i
5858 0 0
5959 1.47479 1.29335i 1.47479 1.29335i 0.608761 0.793353i 0.291667π-0.291667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
6060 0 0
6161 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 0.357164 + 0.534534i 0.357164 + 0.534534i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 0.321439 0.946930i 0.395833π-0.395833\pi
−0.321439 + 0.946930i 0.604167π0.604167\pi
7272 0 0
7373 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7474 0 0
7575 0.261052i 0.261052i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
8080 0 0
8181 −0.692993 + 0.400100i −0.692993 + 0.400100i
8282 0 0
8383 0.0862466 + 1.31587i 0.0862466 + 1.31587i 0.793353 + 0.608761i 0.208333π0.208333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −1.12484 + 0.465926i −1.12484 + 0.465926i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0.793353 + 0.608761i 0.793353 + 0.608761i
9898 0 0
9999 −0.478235 + 0.0629609i −0.478235 + 0.0629609i
100100 0 0
101101 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
102102 0 0
103103 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
104104 0 0
105105 0 0
106106 0 0
107107 −0.123864 0.0420463i −0.123864 0.0420463i 0.258819 0.965926i 0.416667π-0.416667\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
108108 0 0
109109 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
110110 0 0
111111 0 0
112112 0 0
113113 1.05441 0.608761i 1.05441 0.608761i 0.130526 0.991445i 0.458333π-0.458333\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0.707107 + 0.189469i 0.707107 + 0.189469i
122122 0 0
123123 0.139541 0.411076i 0.139541 0.411076i
124124 0 0
125125 0 0
126126 0 0
127127 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
128128 0 0
129129 0.328618 0.252157i 0.328618 0.252157i
130130 0 0
131131 −0.128293 + 0.0255190i −0.128293 + 0.0255190i −0.258819 0.965926i 0.583333π-0.583333\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −0.882683 0.0578541i −0.882683 0.0578541i −0.382683 0.923880i 0.625000π-0.625000\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
138138 0 0
139139 −0.491445 + 0.735499i −0.491445 + 0.735499i −0.991445 0.130526i 0.958333π-0.958333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 −0.184592 0.184592i −0.184592 0.184592i
148148 0 0
149149 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
150150 0 0
151151 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
152152 0 0
153153 0.116872 + 0.344295i 0.116872 + 0.344295i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 −0.659346 0.751840i 0.729167π-0.729167\pi
0.659346 + 0.751840i 0.270833π0.270833\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −0.608761 + 0.793353i −0.608761 + 0.793353i −0.991445 0.130526i 0.958333π-0.958333\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
168168 0 0
169169 −0.608761 0.793353i −0.608761 0.793353i
170170 0 0
171171 −0.778469 0.682699i −0.778469 0.682699i
172172 0 0
173173 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
174174 0 0
175175 0 0
176176 0 0
177177 0.510976 0.0334912i 0.510976 0.0334912i
178178 0 0
179179 0.867580 + 1.75928i 0.867580 + 1.75928i 0.608761 + 0.793353i 0.291667π0.291667\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
180180 0 0
181181 0 0 0.442289 0.896873i 0.354167π-0.354167\pi
−0.442289 + 0.896873i 0.645833π0.645833\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −0.0132096 + 0.201540i −0.0132096 + 0.201540i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
192192 0 0
193193 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
198198 0 0
199199 0 0 −0.896873 0.442289i 0.854167π-0.854167\pi
0.896873 + 0.442289i 0.145833π0.145833\pi
200200 0 0
201201 −0.0109763 + 0.167466i −0.0109763 + 0.167466i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 −0.254391 0.515853i −0.254391 0.515853i
210210 0 0
211211 −1.88981 + 0.123864i −1.88981 + 0.123864i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0.224745 + 0.292893i 0.224745 + 0.292893i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
224224 0 0
225225 0.567275 0.739288i 0.567275 0.739288i
226226 0 0
227227 −1.22474 + 1.22474i −1.22474 + 1.22474i −0.258819 + 0.965926i 0.583333π0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
228228 0 0
229229 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 0 0
231231 0 0
232232 0 0
233233 1.34861 0.665060i 1.34861 0.665060i 0.382683 0.923880i 0.375000π-0.375000\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
240240 0 0
241241 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
242242 0 0
243243 −0.707107 0.0930924i −0.707107 0.0930924i
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 −0.191254 + 0.286231i −0.191254 + 0.286231i
250250 0 0
251251 −1.65938 0.108761i −1.65938 0.108761i −0.793353 0.608761i 0.791667π-0.791667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 −1.95737 + 0.389345i −1.95737 + 0.389345i −0.965926 + 0.258819i 0.916667π0.916667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
264264 0 0
265265 0 0
266266 0 0
267267 −0.307007 0.0822623i −0.307007 0.0822623i
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0.448288 0.258819i 0.448288 0.258819i
276276 0 0
277277 0 0 −0.0654031 0.997859i 0.520833π-0.520833\pi
0.0654031 + 0.997859i 0.479167π0.479167\pi
278278 0 0
279279 0 0
280280 0 0
281281 −0.608761 0.206647i −0.608761 0.206647i 1.00000i 0.5π-0.5\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
282282 0 0
283283 1.30656 0.541196i 1.30656 0.541196i 0.382683 0.923880i 0.375000π-0.375000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.840506 + 0.110655i −0.840506 + 0.110655i
290290 0 0
291291 0.0675653 + 0.252157i 0.0675653 + 0.252157i
292292 0 0
293293 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
294294 0 0
295295 0 0
296296 0 0
297297 −0.226078 0.130526i −0.226078 0.130526i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 −1.71723 + 0.991445i −1.71723 + 0.991445i −0.793353 + 0.608761i 0.791667π0.791667\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
312312 0 0
313313 1.58671i 1.58671i 0.608761 + 0.793353i 0.291667π0.291667\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.321439 0.946930i 0.395833π-0.395833\pi
−0.321439 + 0.946930i 0.604167π0.604167\pi
318318 0 0
319319 0 0
320320 0 0
321321 −0.0189712 0.0283924i −0.0189712 0.0283924i
322322 0 0
323323 −0.343955 + 0.263926i −0.343955 + 0.263926i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 1.78990 + 0.117317i 1.78990 + 0.117317i 0.923880 0.382683i 0.125000π-0.125000\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 1.25026 + 0.835400i 1.25026 + 0.835400i 0.991445 0.130526i 0.0416667π-0.0416667\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
338338 0 0
339339 0.315118 + 0.0414861i 0.315118 + 0.0414861i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 −0.483342 1.42388i −0.483342 1.42388i −0.866025 0.500000i 0.833333π-0.833333\pi
0.382683 0.923880i 0.375000π-0.375000\pi
348348 0 0
349349 0 0 0.896873 0.442289i 0.145833π-0.145833\pi
−0.896873 + 0.442289i 0.854167π0.854167\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
360360 0 0
361361 0.0897902 0.216773i 0.0897902 0.216773i
362362 0 0
363363 0.116337 + 0.151613i 0.116337 + 0.151613i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
368368 0 0
369369 −1.28846 + 0.860919i −1.28846 + 0.860919i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.442289 0.896873i 0.645833π-0.645833\pi
0.442289 + 0.896873i 0.354167π0.354167\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0.448288 + 1.67303i 0.448288 + 1.67303i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.896873 0.442289i 0.854167π-0.854167\pi
0.896873 + 0.442289i 0.145833π0.145833\pi
384384 0 0
385385 0 0
386386 0 0
387387 −1.47858 −1.47858
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 0 0
393393 −0.0306258 0.0151030i −0.0306258 0.0151030i
394394 0 0
395395 0 0
396396 0 0
397397 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
398398 0 0
399399 0 0
400400 0 0
401401 −0.793353 + 1.60876i −0.793353 + 1.60876i 1.00000i 0.5π0.5\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0.869474 0.991445i 0.869474 0.991445i −0.130526 0.991445i 0.541667π-0.541667\pi
1.00000 00
410410 0 0
411411 −0.173616 0.152257i −0.173616 0.152257i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 −0.218666 + 0.0742271i −0.218666 + 0.0742271i
418418 0 0
419419 1.20711 1.57313i 1.20711 1.57313i 0.500000 0.866025i 0.333333π-0.333333\pi
0.707107 0.707107i 0.250000π-0.250000\pi
420420 0 0
421421 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
422422 0 0
423423 0 0
424424 0 0
425425 −0.257264 0.293353i −0.257264 0.293353i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
432432 0 0
433433 −0.125419 + 0.630526i −0.125419 + 0.630526i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
440440 0 0
441441 0.121631 + 0.923880i 0.121631 + 0.923880i
442442 0 0
443443 −0.996552 + 1.49144i −0.996552 + 1.49144i −0.130526 + 0.991445i 0.541667π0.541667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −0.991445 1.71723i −0.991445 1.71723i −0.608761 0.793353i 0.708333π-0.708333\pi
−0.382683 0.923880i 0.625000π-0.625000\pi
450450 0 0
451451 −0.844261 + 0.167934i −0.844261 + 0.167934i
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0.389345 + 1.95737i 0.389345 + 1.95737i 0.258819 + 0.965926i 0.416667π0.416667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
458458 0 0
459459 −0.0632508 + 0.186331i −0.0632508 + 0.186331i
460460 0 0
461461 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 00
−0.707107 + 0.707107i 0.750000π0.750000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −0.758819 0.314313i −0.758819 0.314313i
474474 0 0
475475 1.05217 + 0.357164i 1.05217 + 0.357164i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
488488 0 0
489489 −0.252157 + 0.0675653i −0.252157 + 0.0675653i
490490 0 0
491491 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0.0726721 + 1.10876i 0.0726721 + 1.10876i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0.261052i 0.261052i
508508 0 0
509509 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
510510 0 0
511511 0 0
512512 0 0
513513 −0.109322 0.549597i −0.109322 0.549597i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
522522 0 0
523523 1.13053 0.991445i 1.13053 0.991445i 0.130526 0.991445i 0.458333π-0.458333\pi
1.00000 00
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.130526 + 0.991445i 0.130526 + 0.991445i
530530 0 0
531531 −1.51984 1.01552i −1.51984 1.01552i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −0.0999004 + 0.502233i −0.0999004 + 0.502233i
538538 0 0
539539 −0.133975 + 0.500000i −0.133975 + 0.500000i
540540 0 0
541541 0 0 −0.321439 0.946930i 0.604167π-0.604167\pi
0.321439 + 0.946930i 0.395833π0.395833\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0.793353 1.37413i 0.793353 1.37413i −0.130526 0.991445i 0.541667π-0.541667\pi
0.923880 0.382683i 0.125000π-0.125000\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
558558 0 0
559559 0 0
560560 0 0
561561 −0.0347643 + 0.0396410i −0.0347643 + 0.0396410i
562562 0 0
563563 −0.324423 + 0.216773i −0.324423 + 0.216773i −0.707107 0.707107i 0.750000π-0.750000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −0.837633 + 1.69855i −0.837633 + 1.69855i −0.130526 + 0.991445i 0.541667π0.541667\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
570570 0 0
571571 0.258819 1.96593i 0.258819 1.96593i 1.00000i 0.5π-0.5\pi
0.258819 0.965926i 0.416667π-0.416667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −1.69855 0.837633i −1.69855 0.837633i −0.991445 0.130526i 0.958333π-0.958333\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
578578 0 0
579579 0.207107 + 0.158919i 0.207107 + 0.158919i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.60876 0.793353i −1.60876 0.793353i −0.608761 0.793353i 0.708333π-0.708333\pi
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −0.130526 + 0.991445i −0.130526 + 0.991445i 0.793353 + 0.608761i 0.208333π0.208333\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 0.997859 0.0654031i 0.0208333π-0.0208333\pi
−0.997859 + 0.0654031i 0.979167π0.979167\pi
600600 0 0
601601 −1.63099 + 1.08979i −1.63099 + 1.08979i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
602602 0 0
603603 0.394993 0.450403i 0.394993 0.450403i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 0.608761 0.793353i 0.291667π-0.291667\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.923880 1.60021i 0.923880 1.60021i 0.130526 0.991445i 0.458333π-0.458333\pi
0.793353 0.608761i 0.208333π-0.208333\pi
618618 0 0
619619 −1.09645 1.25026i −1.09645 1.25026i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.130526 0.991445i 0.541667π-0.541667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.258819 + 0.965926i −0.258819 + 0.965926i
626626 0 0
627627 0.0292926 0.147264i 0.0292926 0.147264i
628628 0 0
629629 0 0
630630 0 0
631631 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
632632 0 0
633633 −0.411076 0.274672i −0.411076 0.274672i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −0.665060 + 0.583242i −0.665060 + 0.583242i −0.923880 0.382683i 0.875000π-0.875000\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
642642 0 0
643643 0.923880 + 1.60021i 0.923880 + 1.60021i 0.793353 + 0.608761i 0.208333π0.208333\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.793353 0.608761i 0.208333π-0.208333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
648648 0 0
649649 −0.564117 0.844261i −0.564117 0.844261i
650650 0 0
651651 0 0
652652 0 0
653653 0 0 0.321439 0.946930i 0.395833π-0.395833\pi
−0.321439 + 0.946930i 0.604167π0.604167\pi
654654 0 0
655655 0 0
656656 0 0
657657 1.31784i 1.31784i
658658 0 0
659659 1.95737 + 0.389345i 1.95737 + 0.389345i 0.991445 + 0.130526i 0.0416667π0.0416667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
660660 0 0
661661 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 1.71723 + 0.991445i 1.71723 + 0.991445i 0.923880 + 0.382683i 0.125000π0.125000\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
674674 0 0
675675 0.487130 0.130526i 0.487130 0.130526i
676676 0 0
677677 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
678678 0 0
679679 0 0
680680 0 0
681681 −0.448288 + 0.0590182i −0.448288 + 0.0590182i
682682 0 0
683683 1.91532 0.513210i 1.91532 0.513210i 0.923880 0.382683i 0.125000π-0.125000\pi
0.991445 0.130526i 0.0416667π-0.0416667\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i 0.250000π-0.250000\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0.248303 + 0.599456i 0.248303 + 0.599456i
698698 0 0
699699 0.384997 + 0.0765806i 0.384997 + 0.0765806i
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.997859 0.0654031i 0.979167π-0.979167\pi
0.997859 + 0.0654031i 0.0208333π0.0208333\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
728728 0 0
729729 0.434174 + 0.434174i 0.434174 + 0.434174i
730730 0 0
731731 −0.120781 + 0.607206i −0.120781 + 0.607206i
732732 0 0
733733 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
734734 0 0
735735 0 0
736736 0 0
737737 0.298460 0.147184i 0.298460 0.147184i
738738 0 0
739739 0.583242 + 0.665060i 0.583242 + 0.665060i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
744744 0 0
745745 0 0
746746 0 0
747747 1.16361 0.394993i 1.16361 0.394993i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
752752 0 0
753753 −0.326384 0.286231i −0.326384 0.286231i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 0.831470 0.555570i 0.187500π-0.187500\pi
−0.831470 + 0.555570i 0.812500π0.812500\pi
758758 0 0
759759 0 0
760760 0 0
761761 0.172572 + 0.349942i 0.172572 + 0.349942i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0.0726721 1.10876i 0.0726721 1.10876i −0.793353 0.608761i 0.791667π-0.791667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
770770 0 0
771771 −0.467259 0.230427i −0.467259 0.230427i
772772 0 0
773773 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 −1.46593 1.12484i −1.46593 1.12484i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 −0.241181 + 1.83195i −0.241181 + 1.83195i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
798798 0 0
799799 0 0
800800 0 0
801801 0.690671 + 0.900100i 0.690671 + 0.900100i
802802 0 0
803803 0.280144 0.676327i 0.280144 0.676327i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −0.541196 + 0.541196i −0.541196 + 0.541196i −0.923880 0.382683i 0.875000π-0.875000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
810810 0 0
811811 −0.608761 + 1.05441i −0.608761 + 1.05441i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −0.566715 1.66949i −0.566715 1.66949i
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
822822 0 0
823823 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
824824 0 0
825825 0.133975 + 0.0176381i 0.133975 + 0.0176381i
826826 0 0
827827 −1.57469 1.05217i −1.57469 1.05217i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.608761 0.793353i 0.708333π-0.708333\pi
828828 0 0
829829 0 0 −0.130526 0.991445i 0.541667π-0.541667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
830830 0 0
831831 0 0
832832 0 0
833833 0.389345 + 0.0255190i 0.389345 + 0.0255190i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
840840 0 0
841841 0.793353 0.608761i 0.793353 0.608761i
842842 0 0
843843 −0.0932386 0.139541i −0.0932386 0.139541i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0.356604 + 0.0955518i 0.356604 + 0.0955518i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
854854 0 0
855855 0 0
856856 0 0
857857 0.448288 0.258819i 0.448288 0.258819i −0.258819 0.965926i 0.583333π-0.583333\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
858858 0 0
859859 0.00855514 + 0.130526i 0.00855514 + 0.130526i 1.00000 00
−0.991445 + 0.130526i 0.958333π0.958333\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.946930 0.321439i 0.895833π-0.895833\pi
0.946930 + 0.321439i 0.104167π0.104167\pi
864864 0 0
865865 0 0
866866 0 0
867867 −0.191660 0.110655i −0.191660 0.110655i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.356604 0.860919i 0.356604 0.860919i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
878878 0 0
879879 0 0
880880 0 0
881881 1.60021 0.662827i 1.60021 0.662827i 0.608761 0.793353i 0.291667π-0.291667\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
882882 0 0
883883 0.123864 + 0.0420463i 0.123864 + 0.0420463i 0.382683 0.923880i 0.375000π-0.375000\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.0654031 0.997859i 0.520833π-0.520833\pi
0.0654031 + 0.997859i 0.479167π0.479167\pi
888888 0 0
889889 0 0
890890 0 0
891891 0.158513 + 0.382683i 0.158513 + 0.382683i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 1.29335 0.257264i 1.29335 0.257264i 0.500000 0.866025i 0.333333π-0.333333\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.751840 0.659346i 0.229167π-0.229167\pi
−0.751840 + 0.659346i 0.770833π0.770833\pi
912912 0 0
913913 0.681144 + 0.0446445i 0.681144 + 0.0446445i
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
920920 0 0
921921 −0.513210 0.0675653i −0.513210 0.0675653i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.641502 + 1.88981i 0.641502 + 1.88981i 0.382683 + 0.923880i 0.375000π0.375000\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
930930 0 0
931931 −0.996552 + 0.491445i −0.996552 + 0.491445i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 1.22474 1.22474i 1.22474 1.22474i 0.258819 0.965926i 0.416667π-0.416667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
938938 0 0
939939 −0.252157 + 0.328618i −0.252157 + 0.328618i
940940 0 0
941941 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −0.991445 0.869474i −0.991445 0.869474i 1.00000i 0.5π-0.5\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 1.95737 0.128293i 1.95737 0.128293i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.258819 0.965926i −0.258819 0.965926i
962962 0 0
963963 −0.00797212 + 0.121631i −0.00797212 + 0.121631i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
968968 0 0
969969 −0.113178 −0.113178
970970 0 0
971971 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0.0255190 0.389345i 0.0255190 0.389345i −0.965926 0.258819i 0.916667π-0.916667\pi
0.991445 0.130526i 0.0416667π-0.0416667\pi
978978 0 0
979979 0.163117 + 0.608761i 0.163117 + 0.608761i
980980 0 0
981981 0 0
982982 0 0
983983 0 0 0.442289 0.896873i 0.354167π-0.354167\pi
−0.442289 + 0.896873i 0.645833π0.645833\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
992992 0 0
993993 0.352058 + 0.308746i 0.352058 + 0.308746i
994994 0 0
995995 0 0
996996 0 0
997997 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3104.1.et.a.3055.1 16
4.3 odd 2 776.1.bp.a.339.1 16
8.3 odd 2 CM 3104.1.et.a.3055.1 16
8.5 even 2 776.1.bp.a.339.1 16
97.95 even 48 inner 3104.1.et.a.1647.1 16
388.95 odd 48 776.1.bp.a.483.1 yes 16
776.483 odd 48 inner 3104.1.et.a.1647.1 16
776.677 even 48 776.1.bp.a.483.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
776.1.bp.a.339.1 16 4.3 odd 2
776.1.bp.a.339.1 16 8.5 even 2
776.1.bp.a.483.1 yes 16 388.95 odd 48
776.1.bp.a.483.1 yes 16 776.677 even 48
3104.1.et.a.1647.1 16 97.95 even 48 inner
3104.1.et.a.1647.1 16 776.483 odd 48 inner
3104.1.et.a.3055.1 16 1.1 even 1 trivial
3104.1.et.a.3055.1 16 8.3 odd 2 CM