Properties

Label 312.2.bk.b.205.12
Level $312$
Weight $2$
Character 312.205
Analytic conductor $2.491$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,2,Mod(205,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.205");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 205.12
Character \(\chi\) \(=\) 312.205
Dual form 312.2.bk.b.277.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.135990 + 1.40766i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-1.96301 - 0.382856i) q^{4} -2.83647 q^{5} +(-0.586059 - 1.28706i) q^{6} +(0.691790 + 0.399405i) q^{7} +(0.805882 - 2.71119i) q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.135990 + 1.40766i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-1.96301 - 0.382856i) q^{4} -2.83647 q^{5} +(-0.586059 - 1.28706i) q^{6} +(0.691790 + 0.399405i) q^{7} +(0.805882 - 2.71119i) q^{8} +(0.500000 - 0.866025i) q^{9} +(0.385732 - 3.99279i) q^{10} +(-0.296401 - 0.513382i) q^{11} +(1.89145 - 0.649944i) q^{12} +(-1.09999 - 3.43366i) q^{13} +(-0.656303 + 0.919490i) q^{14} +(2.45646 - 1.41824i) q^{15} +(3.70684 + 1.50310i) q^{16} +(0.0832632 - 0.144216i) q^{17} +(1.15107 + 0.821601i) q^{18} +(2.45002 - 4.24357i) q^{19} +(5.56803 + 1.08596i) q^{20} -0.798810 q^{21} +(0.762975 - 0.347417i) q^{22} +(-3.46719 - 6.00535i) q^{23} +(0.657681 + 2.75090i) q^{24} +3.04557 q^{25} +(4.98301 - 1.08147i) q^{26} +1.00000i q^{27} +(-1.20508 - 1.04889i) q^{28} +(-8.75998 + 5.05758i) q^{29} +(1.66234 + 3.65072i) q^{30} -2.98291i q^{31} +(-2.61995 + 5.01357i) q^{32} +(0.513382 + 0.296401i) q^{33} +(0.191684 + 0.136818i) q^{34} +(-1.96224 - 1.13290i) q^{35} +(-1.31307 + 1.50859i) q^{36} +(0.561354 + 0.972293i) q^{37} +(5.64032 + 4.02588i) q^{38} +(2.66945 + 2.42364i) q^{39} +(-2.28586 + 7.69022i) q^{40} +(-6.29600 + 3.63500i) q^{41} +(0.108630 - 1.12445i) q^{42} +(0.928831 + 0.536261i) q^{43} +(0.385288 + 1.12125i) q^{44} +(-1.41824 + 2.45646i) q^{45} +(8.92500 - 4.06396i) q^{46} -2.38164i q^{47} +(-3.96177 + 0.551696i) q^{48} +(-3.18095 - 5.50957i) q^{49} +(-0.414168 + 4.28713i) q^{50} +0.166526i q^{51} +(0.844697 + 7.16146i) q^{52} +2.56107i q^{53} +(-1.40766 - 0.135990i) q^{54} +(0.840734 + 1.45619i) q^{55} +(1.64036 - 1.55370i) q^{56} +4.90005i q^{57} +(-5.92808 - 13.0189i) q^{58} +(5.47256 - 9.47875i) q^{59} +(-5.36504 + 1.84355i) q^{60} +(-11.6003 - 6.69744i) q^{61} +(4.19892 + 0.405646i) q^{62} +(0.691790 - 0.399405i) q^{63} +(-6.70111 - 4.36980i) q^{64} +(3.12009 + 9.73948i) q^{65} +(-0.487047 + 0.682360i) q^{66} +(3.39369 + 5.87804i) q^{67} +(-0.218661 + 0.251220i) q^{68} +(6.00535 + 3.46719i) q^{69} +(1.86159 - 2.60811i) q^{70} +(-3.04531 - 1.75821i) q^{71} +(-1.94502 - 2.05351i) q^{72} +2.97283i q^{73} +(-1.44500 + 0.657973i) q^{74} +(-2.63754 + 1.52279i) q^{75} +(-6.43410 + 7.39217i) q^{76} -0.473537i q^{77} +(-3.77468 + 3.42809i) q^{78} -6.54925 q^{79} +(-10.5144 - 4.26351i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-4.26064 - 9.35695i) q^{82} +14.0561 q^{83} +(1.56808 + 0.305829i) q^{84} +(-0.236174 + 0.409065i) q^{85} +(-0.881184 + 1.23455i) q^{86} +(5.05758 - 8.75998i) q^{87} +(-1.63074 + 0.389875i) q^{88} +(-11.1252 + 6.42312i) q^{89} +(-3.26499 - 2.33045i) q^{90} +(0.610460 - 2.81471i) q^{91} +(4.50696 + 13.1160i) q^{92} +(1.49145 + 2.58327i) q^{93} +(3.35254 + 0.323880i) q^{94} +(-6.94942 + 12.0368i) q^{95} +(-0.237838 - 5.65185i) q^{96} +(11.5252 + 6.65406i) q^{97} +(8.18818 - 3.72845i) q^{98} -0.592802 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 6 q^{6} - 12 q^{7} + 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 48 q - 2 q^{4} + 6 q^{6} - 12 q^{7} + 24 q^{9} - 4 q^{10} - 8 q^{12} - 36 q^{14} - 2 q^{16} + 12 q^{17} + 54 q^{20} - 14 q^{22} + 20 q^{23} + 18 q^{24} + 48 q^{25} - 42 q^{26} + 6 q^{28} - 6 q^{30} + 12 q^{33} + 2 q^{36} - 28 q^{38} + 28 q^{39} - 8 q^{40} - 12 q^{41} - 10 q^{42} - 30 q^{46} - 8 q^{48} + 16 q^{49} - 84 q^{50} - 28 q^{52} + 6 q^{54} - 68 q^{55} + 18 q^{56} - 24 q^{58} + 24 q^{62} - 12 q^{63} - 68 q^{64} + 12 q^{65} - 44 q^{66} + 4 q^{68} - 12 q^{71} + 54 q^{74} - 54 q^{76} + 4 q^{78} - 192 q^{79} + 78 q^{80} - 24 q^{81} - 6 q^{82} + 30 q^{84} - 10 q^{88} - 48 q^{89} - 8 q^{90} - 12 q^{92} + 54 q^{94} - 20 q^{95} + 144 q^{97} + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.135990 + 1.40766i −0.0961596 + 0.995366i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) −1.96301 0.382856i −0.981507 0.191428i
\(5\) −2.83647 −1.26851 −0.634254 0.773124i \(-0.718693\pi\)
−0.634254 + 0.773124i \(0.718693\pi\)
\(6\) −0.586059 1.28706i −0.239258 0.525442i
\(7\) 0.691790 + 0.399405i 0.261472 + 0.150961i 0.625006 0.780620i \(-0.285097\pi\)
−0.363534 + 0.931581i \(0.618430\pi\)
\(8\) 0.805882 2.71119i 0.284922 0.958551i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.385732 3.99279i 0.121979 1.26263i
\(11\) −0.296401 0.513382i −0.0893683 0.154790i 0.817876 0.575395i \(-0.195151\pi\)
−0.907244 + 0.420604i \(0.861818\pi\)
\(12\) 1.89145 0.649944i 0.546014 0.187623i
\(13\) −1.09999 3.43366i −0.305082 0.952326i
\(14\) −0.656303 + 0.919490i −0.175404 + 0.245744i
\(15\) 2.45646 1.41824i 0.634254 0.366187i
\(16\) 3.70684 + 1.50310i 0.926711 + 0.375776i
\(17\) 0.0832632 0.144216i 0.0201943 0.0349775i −0.855752 0.517387i \(-0.826905\pi\)
0.875946 + 0.482409i \(0.160238\pi\)
\(18\) 1.15107 + 0.821601i 0.271311 + 0.193653i
\(19\) 2.45002 4.24357i 0.562074 0.973541i −0.435241 0.900314i \(-0.643337\pi\)
0.997315 0.0732270i \(-0.0233298\pi\)
\(20\) 5.56803 + 1.08596i 1.24505 + 0.242828i
\(21\) −0.798810 −0.174315
\(22\) 0.762975 0.347417i 0.162667 0.0740696i
\(23\) −3.46719 6.00535i −0.722959 1.25220i −0.959808 0.280656i \(-0.909448\pi\)
0.236849 0.971546i \(-0.423885\pi\)
\(24\) 0.657681 + 2.75090i 0.134249 + 0.561525i
\(25\) 3.04557 0.609114
\(26\) 4.98301 1.08147i 0.977249 0.212093i
\(27\) 1.00000i 0.192450i
\(28\) −1.20508 1.04889i −0.227738 0.198222i
\(29\) −8.75998 + 5.05758i −1.62669 + 0.939168i −0.641615 + 0.767027i \(0.721735\pi\)
−0.985072 + 0.172141i \(0.944931\pi\)
\(30\) 1.66234 + 3.65072i 0.303500 + 0.666528i
\(31\) 2.98291i 0.535746i −0.963454 0.267873i \(-0.913679\pi\)
0.963454 0.267873i \(-0.0863207\pi\)
\(32\) −2.61995 + 5.01357i −0.463147 + 0.886282i
\(33\) 0.513382 + 0.296401i 0.0893683 + 0.0515968i
\(34\) 0.191684 + 0.136818i 0.0328736 + 0.0234641i
\(35\) −1.96224 1.13290i −0.331680 0.191495i
\(36\) −1.31307 + 1.50859i −0.218845 + 0.251432i
\(37\) 0.561354 + 0.972293i 0.0922860 + 0.159844i 0.908473 0.417944i \(-0.137249\pi\)
−0.816187 + 0.577788i \(0.803916\pi\)
\(38\) 5.64032 + 4.02588i 0.914981 + 0.653085i
\(39\) 2.66945 + 2.42364i 0.427454 + 0.388093i
\(40\) −2.28586 + 7.69022i −0.361426 + 1.21593i
\(41\) −6.29600 + 3.63500i −0.983269 + 0.567691i −0.903256 0.429103i \(-0.858830\pi\)
−0.0800139 + 0.996794i \(0.525496\pi\)
\(42\) 0.108630 1.12445i 0.0167620 0.173507i
\(43\) 0.928831 + 0.536261i 0.141645 + 0.0817790i 0.569148 0.822235i \(-0.307273\pi\)
−0.427503 + 0.904014i \(0.640607\pi\)
\(44\) 0.385288 + 1.12125i 0.0580844 + 0.169035i
\(45\) −1.41824 + 2.45646i −0.211418 + 0.366187i
\(46\) 8.92500 4.06396i 1.31592 0.599198i
\(47\) 2.38164i 0.347398i −0.984799 0.173699i \(-0.944428\pi\)
0.984799 0.173699i \(-0.0555720\pi\)
\(48\) −3.96177 + 0.551696i −0.571832 + 0.0796304i
\(49\) −3.18095 5.50957i −0.454422 0.787081i
\(50\) −0.414168 + 4.28713i −0.0585722 + 0.606292i
\(51\) 0.166526i 0.0233184i
\(52\) 0.844697 + 7.16146i 0.117138 + 0.993116i
\(53\) 2.56107i 0.351791i 0.984409 + 0.175895i \(0.0562820\pi\)
−0.984409 + 0.175895i \(0.943718\pi\)
\(54\) −1.40766 0.135990i −0.191558 0.0185059i
\(55\) 0.840734 + 1.45619i 0.113364 + 0.196353i
\(56\) 1.64036 1.55370i 0.219203 0.207622i
\(57\) 4.90005i 0.649027i
\(58\) −5.92808 13.0189i −0.778395 1.70946i
\(59\) 5.47256 9.47875i 0.712466 1.23403i −0.251462 0.967867i \(-0.580911\pi\)
0.963929 0.266161i \(-0.0857553\pi\)
\(60\) −5.36504 + 1.84355i −0.692623 + 0.238001i
\(61\) −11.6003 6.69744i −1.48527 0.857519i −0.485407 0.874288i \(-0.661329\pi\)
−0.999859 + 0.0167691i \(0.994662\pi\)
\(62\) 4.19892 + 0.405646i 0.533263 + 0.0515171i
\(63\) 0.691790 0.399405i 0.0871573 0.0503203i
\(64\) −6.70111 4.36980i −0.837639 0.546225i
\(65\) 3.12009 + 9.73948i 0.387000 + 1.20803i
\(66\) −0.487047 + 0.682360i −0.0599513 + 0.0839926i
\(67\) 3.39369 + 5.87804i 0.414605 + 0.718117i 0.995387 0.0959425i \(-0.0305865\pi\)
−0.580782 + 0.814059i \(0.697253\pi\)
\(68\) −0.218661 + 0.251220i −0.0265165 + 0.0304649i
\(69\) 6.00535 + 3.46719i 0.722959 + 0.417401i
\(70\) 1.86159 2.60811i 0.222502 0.311728i
\(71\) −3.04531 1.75821i −0.361411 0.208661i 0.308288 0.951293i \(-0.400244\pi\)
−0.669700 + 0.742632i \(0.733577\pi\)
\(72\) −1.94502 2.05351i −0.229223 0.242008i
\(73\) 2.97283i 0.347944i 0.984751 + 0.173972i \(0.0556602\pi\)
−0.984751 + 0.173972i \(0.944340\pi\)
\(74\) −1.44500 + 0.657973i −0.167977 + 0.0764878i
\(75\) −2.63754 + 1.52279i −0.304557 + 0.175836i
\(76\) −6.43410 + 7.39217i −0.738042 + 0.847940i
\(77\) 0.473537i 0.0539645i
\(78\) −3.77468 + 3.42809i −0.427399 + 0.388154i
\(79\) −6.54925 −0.736848 −0.368424 0.929658i \(-0.620103\pi\)
−0.368424 + 0.929658i \(0.620103\pi\)
\(80\) −10.5144 4.26351i −1.17554 0.476675i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −4.26064 9.35695i −0.470509 1.03330i
\(83\) 14.0561 1.54286 0.771428 0.636316i \(-0.219543\pi\)
0.771428 + 0.636316i \(0.219543\pi\)
\(84\) 1.56808 + 0.305829i 0.171091 + 0.0333687i
\(85\) −0.236174 + 0.409065i −0.0256166 + 0.0443693i
\(86\) −0.881184 + 1.23455i −0.0950206 + 0.133125i
\(87\) 5.05758 8.75998i 0.542229 0.939168i
\(88\) −1.63074 + 0.389875i −0.173838 + 0.0415608i
\(89\) −11.1252 + 6.42312i −1.17927 + 0.680849i −0.955845 0.293873i \(-0.905056\pi\)
−0.223421 + 0.974722i \(0.571723\pi\)
\(90\) −3.26499 2.33045i −0.344160 0.245651i
\(91\) 0.610460 2.81471i 0.0639935 0.295062i
\(92\) 4.50696 + 13.1160i 0.469883 + 1.36744i
\(93\) 1.49145 + 2.58327i 0.154656 + 0.267873i
\(94\) 3.35254 + 0.323880i 0.345788 + 0.0334057i
\(95\) −6.94942 + 12.0368i −0.712996 + 1.23495i
\(96\) −0.237838 5.65185i −0.0242742 0.576840i
\(97\) 11.5252 + 6.65406i 1.17020 + 0.675617i 0.953728 0.300671i \(-0.0972106\pi\)
0.216475 + 0.976288i \(0.430544\pi\)
\(98\) 8.18818 3.72845i 0.827131 0.376630i
\(99\) −0.592802 −0.0595789
\(100\) −5.97850 1.16602i −0.597850 0.116602i
\(101\) 13.6064 7.85564i 1.35388 0.781666i 0.365093 0.930971i \(-0.381037\pi\)
0.988791 + 0.149305i \(0.0477037\pi\)
\(102\) −0.234413 0.0226460i −0.0232103 0.00224229i
\(103\) −7.80561 −0.769110 −0.384555 0.923102i \(-0.625645\pi\)
−0.384555 + 0.923102i \(0.625645\pi\)
\(104\) −10.1958 + 0.215158i −0.999777 + 0.0210980i
\(105\) 2.26580 0.221120
\(106\) −3.60512 0.348281i −0.350160 0.0338281i
\(107\) −13.5667 + 7.83275i −1.31154 + 0.757220i −0.982352 0.187042i \(-0.940110\pi\)
−0.329192 + 0.944263i \(0.606776\pi\)
\(108\) 0.382856 1.96301i 0.0368403 0.188891i
\(109\) −5.91665 −0.566713 −0.283356 0.959015i \(-0.591448\pi\)
−0.283356 + 0.959015i \(0.591448\pi\)
\(110\) −2.16416 + 0.985439i −0.206344 + 0.0939579i
\(111\) −0.972293 0.561354i −0.0922860 0.0532813i
\(112\) 1.96401 + 2.52036i 0.185581 + 0.238152i
\(113\) 0.578921 1.00272i 0.0544603 0.0943280i −0.837510 0.546422i \(-0.815990\pi\)
0.891970 + 0.452094i \(0.149323\pi\)
\(114\) −6.89760 0.666359i −0.646020 0.0624102i
\(115\) 9.83459 + 17.0340i 0.917080 + 1.58843i
\(116\) 19.1323 6.57428i 1.77639 0.610406i
\(117\) −3.52363 0.764211i −0.325760 0.0706513i
\(118\) 12.5986 + 8.99252i 1.15980 + 0.827828i
\(119\) 0.115201 0.0665115i 0.0105605 0.00609710i
\(120\) −1.86549 7.80285i −0.170296 0.712300i
\(121\) 5.32429 9.22195i 0.484027 0.838359i
\(122\) 11.0052 15.4185i 0.996368 1.39593i
\(123\) 3.63500 6.29600i 0.327756 0.567691i
\(124\) −1.14202 + 5.85548i −0.102557 + 0.525838i
\(125\) 5.54368 0.495842
\(126\) 0.468150 + 1.02812i 0.0417061 + 0.0915922i
\(127\) 0.604776 + 1.04750i 0.0536652 + 0.0929508i 0.891610 0.452804i \(-0.149576\pi\)
−0.837945 + 0.545755i \(0.816243\pi\)
\(128\) 7.06248 8.83863i 0.624241 0.781232i
\(129\) −1.07252 −0.0944302
\(130\) −14.1342 + 3.06755i −1.23965 + 0.269042i
\(131\) 8.67176i 0.757655i −0.925467 0.378828i \(-0.876327\pi\)
0.925467 0.378828i \(-0.123673\pi\)
\(132\) −0.894297 0.778391i −0.0778385 0.0677502i
\(133\) 3.38980 1.95710i 0.293933 0.169702i
\(134\) −8.73579 + 3.97780i −0.754657 + 0.343630i
\(135\) 2.83647i 0.244125i
\(136\) −0.323897 0.341964i −0.0277739 0.0293231i
\(137\) −4.14351 2.39225i −0.354004 0.204384i 0.312444 0.949936i \(-0.398852\pi\)
−0.666447 + 0.745552i \(0.732186\pi\)
\(138\) −5.69730 + 7.98199i −0.484986 + 0.679472i
\(139\) 6.10309 + 3.52362i 0.517658 + 0.298870i 0.735976 0.677008i \(-0.236724\pi\)
−0.218318 + 0.975878i \(0.570057\pi\)
\(140\) 3.41817 + 2.97516i 0.288888 + 0.251447i
\(141\) 1.19082 + 2.06256i 0.100285 + 0.173699i
\(142\) 2.88909 4.04766i 0.242447 0.339672i
\(143\) −1.43674 + 1.58246i −0.120146 + 0.132332i
\(144\) 3.15515 2.45867i 0.262929 0.204889i
\(145\) 24.8474 14.3457i 2.06347 1.19134i
\(146\) −4.18474 0.404276i −0.346331 0.0334581i
\(147\) 5.50957 + 3.18095i 0.454422 + 0.262360i
\(148\) −0.729697 2.12354i −0.0599807 0.174554i
\(149\) 4.32937 7.49869i 0.354676 0.614317i −0.632386 0.774653i \(-0.717924\pi\)
0.987062 + 0.160336i \(0.0512578\pi\)
\(150\) −1.78488 3.91985i −0.145735 0.320054i
\(151\) 13.6960i 1.11456i 0.830324 + 0.557281i \(0.188155\pi\)
−0.830324 + 0.557281i \(0.811845\pi\)
\(152\) −9.53069 10.0623i −0.773041 0.816160i
\(153\) −0.0832632 0.144216i −0.00673143 0.0116592i
\(154\) 0.666579 + 0.0643964i 0.0537144 + 0.00518921i
\(155\) 8.46093i 0.679598i
\(156\) −4.31226 5.77966i −0.345257 0.462743i
\(157\) 20.3214i 1.62182i 0.585168 + 0.810912i \(0.301029\pi\)
−0.585168 + 0.810912i \(0.698971\pi\)
\(158\) 0.890634 9.21911i 0.0708550 0.733433i
\(159\) −1.28054 2.21796i −0.101553 0.175895i
\(160\) 7.43142 14.2208i 0.587505 1.12426i
\(161\) 5.53926i 0.436555i
\(162\) 1.28706 0.586059i 0.101121 0.0460451i
\(163\) 4.53859 7.86107i 0.355490 0.615726i −0.631712 0.775203i \(-0.717647\pi\)
0.987202 + 0.159477i \(0.0509807\pi\)
\(164\) 13.7508 4.72508i 1.07376 0.368967i
\(165\) −1.45619 0.840734i −0.113364 0.0654510i
\(166\) −1.91149 + 19.7862i −0.148360 + 1.53571i
\(167\) 17.0856 9.86436i 1.32212 0.763327i 0.338055 0.941127i \(-0.390231\pi\)
0.984067 + 0.177799i \(0.0568978\pi\)
\(168\) −0.643747 + 2.16573i −0.0496661 + 0.167089i
\(169\) −10.5800 + 7.55398i −0.813850 + 0.581076i
\(170\) −0.543707 0.388081i −0.0417004 0.0297645i
\(171\) −2.45002 4.24357i −0.187358 0.324514i
\(172\) −1.61800 1.40830i −0.123371 0.107381i
\(173\) 3.90902 + 2.25687i 0.297197 + 0.171587i 0.641183 0.767388i \(-0.278444\pi\)
−0.343986 + 0.938975i \(0.611777\pi\)
\(174\) 11.6433 + 8.31062i 0.882676 + 0.630026i
\(175\) 2.10690 + 1.21642i 0.159266 + 0.0919525i
\(176\) −0.327047 2.34855i −0.0246521 0.177028i
\(177\) 10.9451i 0.822685i
\(178\) −7.52866 16.5339i −0.564297 1.23927i
\(179\) −5.63214 + 3.25171i −0.420966 + 0.243045i −0.695490 0.718535i \(-0.744813\pi\)
0.274525 + 0.961580i \(0.411479\pi\)
\(180\) 3.72449 4.27908i 0.277607 0.318944i
\(181\) 2.12509i 0.157957i −0.996876 0.0789783i \(-0.974834\pi\)
0.996876 0.0789783i \(-0.0251658\pi\)
\(182\) 3.87914 + 1.24209i 0.287541 + 0.0920701i
\(183\) 13.3949 0.990178
\(184\) −19.0758 + 4.56061i −1.40629 + 0.336213i
\(185\) −1.59226 2.75788i −0.117066 0.202764i
\(186\) −3.83919 + 1.74816i −0.281503 + 0.128181i
\(187\) −0.0987173 −0.00721892
\(188\) −0.911826 + 4.67519i −0.0665017 + 0.340974i
\(189\) −0.399405 + 0.691790i −0.0290524 + 0.0503203i
\(190\) −15.9986 11.4193i −1.16066 0.828444i
\(191\) 7.88826 13.6629i 0.570775 0.988611i −0.425712 0.904859i \(-0.639976\pi\)
0.996487 0.0837519i \(-0.0266903\pi\)
\(192\) 7.98823 + 0.433802i 0.576501 + 0.0313069i
\(193\) 6.11644 3.53133i 0.440271 0.254190i −0.263442 0.964675i \(-0.584858\pi\)
0.703712 + 0.710485i \(0.251524\pi\)
\(194\) −10.9340 + 15.3186i −0.785012 + 1.09981i
\(195\) −7.57182 6.87459i −0.542229 0.492300i
\(196\) 4.13488 + 12.0332i 0.295348 + 0.859515i
\(197\) −2.63096 4.55696i −0.187448 0.324670i 0.756950 0.653472i \(-0.226688\pi\)
−0.944399 + 0.328802i \(0.893355\pi\)
\(198\) 0.0806153 0.834464i 0.00572908 0.0593028i
\(199\) −11.5333 + 19.9763i −0.817577 + 1.41608i 0.0898859 + 0.995952i \(0.471350\pi\)
−0.907463 + 0.420133i \(0.861984\pi\)
\(200\) 2.45437 8.25713i 0.173550 0.583867i
\(201\) −5.87804 3.39369i −0.414605 0.239372i
\(202\) 9.20774 + 20.2214i 0.647854 + 1.42278i
\(203\) −8.08009 −0.567111
\(204\) 0.0637556 0.326894i 0.00446379 0.0228871i
\(205\) 17.8584 10.3106i 1.24729 0.720121i
\(206\) 1.06149 10.9877i 0.0739573 0.765546i
\(207\) −6.93438 −0.481973
\(208\) 1.08366 14.3814i 0.0751380 0.997173i
\(209\) −2.90476 −0.200926
\(210\) −0.308127 + 3.18948i −0.0212628 + 0.220095i
\(211\) −10.6725 + 6.16178i −0.734726 + 0.424194i −0.820149 0.572151i \(-0.806109\pi\)
0.0854227 + 0.996345i \(0.472776\pi\)
\(212\) 0.980523 5.02742i 0.0673426 0.345285i
\(213\) 3.51642 0.240941
\(214\) −9.18091 20.1625i −0.627594 1.37828i
\(215\) −2.63460 1.52109i −0.179678 0.103737i
\(216\) 2.71119 + 0.805882i 0.184473 + 0.0548333i
\(217\) 1.19139 2.06354i 0.0808767 0.140083i
\(218\) 0.804607 8.32864i 0.0544949 0.564086i
\(219\) −1.48642 2.57455i −0.100443 0.173972i
\(220\) −1.09286 3.18041i −0.0736805 0.214423i
\(221\) −0.586778 0.127261i −0.0394709 0.00856052i
\(222\) 0.922418 1.29232i 0.0619086 0.0867348i
\(223\) 23.4983 13.5667i 1.57356 0.908496i 0.577833 0.816155i \(-0.303898\pi\)
0.995727 0.0923409i \(-0.0294350\pi\)
\(224\) −3.81490 + 2.42191i −0.254894 + 0.161821i
\(225\) 1.52279 2.63754i 0.101519 0.175836i
\(226\) 1.33276 + 0.951284i 0.0886540 + 0.0632785i
\(227\) 5.15989 8.93719i 0.342474 0.593182i −0.642418 0.766355i \(-0.722069\pi\)
0.984891 + 0.173173i \(0.0554019\pi\)
\(228\) 1.87601 9.61886i 0.124242 0.637025i
\(229\) 2.98325 0.197139 0.0985694 0.995130i \(-0.468573\pi\)
0.0985694 + 0.995130i \(0.468573\pi\)
\(230\) −25.3155 + 11.5273i −1.66926 + 0.760088i
\(231\) 0.236768 + 0.410095i 0.0155782 + 0.0269823i
\(232\) 6.65255 + 27.8258i 0.436761 + 1.82685i
\(233\) −21.5543 −1.41207 −0.706034 0.708178i \(-0.749517\pi\)
−0.706034 + 0.708178i \(0.749517\pi\)
\(234\) 1.55493 4.85615i 0.101649 0.317456i
\(235\) 6.75546i 0.440677i
\(236\) −14.3717 + 16.5117i −0.935518 + 1.07482i
\(237\) 5.67181 3.27462i 0.368424 0.212710i
\(238\) 0.0779593 + 0.171209i 0.00505335 + 0.0110978i
\(239\) 23.4545i 1.51714i 0.651589 + 0.758572i \(0.274103\pi\)
−0.651589 + 0.758572i \(0.725897\pi\)
\(240\) 11.2375 1.56487i 0.725374 0.101012i
\(241\) −23.2876 13.4451i −1.50008 0.866073i −1.00000 9.58436e-5i \(-0.999969\pi\)
−0.500083 0.865977i \(-0.666697\pi\)
\(242\) 12.2573 + 8.74889i 0.787930 + 0.562400i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 20.2074 + 17.5884i 1.29365 + 1.12598i
\(245\) 9.02268 + 15.6277i 0.576438 + 0.998419i
\(246\) 8.36830 + 5.97303i 0.533543 + 0.380827i
\(247\) −17.2660 3.74467i −1.09861 0.238268i
\(248\) −8.08723 2.40387i −0.513539 0.152646i
\(249\) −12.1729 + 7.02805i −0.771428 + 0.445384i
\(250\) −0.753886 + 7.80362i −0.0476800 + 0.493544i
\(251\) −25.1888 14.5427i −1.58990 0.917930i −0.993322 0.115376i \(-0.963193\pi\)
−0.596579 0.802554i \(-0.703474\pi\)
\(252\) −1.51091 + 0.519182i −0.0951782 + 0.0327054i
\(253\) −2.05536 + 3.55999i −0.129219 + 0.223814i
\(254\) −1.55677 + 0.708869i −0.0976805 + 0.0444784i
\(255\) 0.472348i 0.0295795i
\(256\) 11.4814 + 11.1435i 0.717585 + 0.696471i
\(257\) −10.4996 18.1858i −0.654944 1.13440i −0.981908 0.189360i \(-0.939359\pi\)
0.326964 0.945037i \(-0.393975\pi\)
\(258\) 0.145852 1.50975i 0.00908037 0.0939926i
\(259\) 0.896830i 0.0557263i
\(260\) −2.39596 20.3133i −0.148591 1.25978i
\(261\) 10.1152i 0.626112i
\(262\) 12.2069 + 1.17927i 0.754144 + 0.0728558i
\(263\) 8.91302 + 15.4378i 0.549601 + 0.951936i 0.998302 + 0.0582544i \(0.0185534\pi\)
−0.448701 + 0.893682i \(0.648113\pi\)
\(264\) 1.21733 1.15301i 0.0749212 0.0709630i
\(265\) 7.26442i 0.446250i
\(266\) 2.29396 + 5.03784i 0.140652 + 0.308890i
\(267\) 6.42312 11.1252i 0.393089 0.680849i
\(268\) −4.41141 12.8380i −0.269470 0.784203i
\(269\) 1.69642 + 0.979426i 0.103432 + 0.0597167i 0.550824 0.834622i \(-0.314314\pi\)
−0.447392 + 0.894338i \(0.647647\pi\)
\(270\) 3.99279 + 0.385732i 0.242993 + 0.0234749i
\(271\) 6.21984 3.59102i 0.377828 0.218139i −0.299045 0.954239i \(-0.596668\pi\)
0.676873 + 0.736100i \(0.263335\pi\)
\(272\) 0.525415 0.409433i 0.0318580 0.0248255i
\(273\) 0.878683 + 2.74284i 0.0531803 + 0.166004i
\(274\) 3.93096 5.50732i 0.237478 0.332710i
\(275\) −0.902711 1.56354i −0.0544355 0.0942851i
\(276\) −10.4612 9.10533i −0.629687 0.548076i
\(277\) −18.2247 10.5220i −1.09501 0.632207i −0.160107 0.987100i \(-0.551184\pi\)
−0.934907 + 0.354893i \(0.884517\pi\)
\(278\) −5.79002 + 8.11190i −0.347263 + 0.486520i
\(279\) −2.58327 1.49145i −0.154656 0.0892910i
\(280\) −4.65285 + 4.40703i −0.278061 + 0.263370i
\(281\) 8.46072i 0.504724i −0.967633 0.252362i \(-0.918793\pi\)
0.967633 0.252362i \(-0.0812074\pi\)
\(282\) −3.06533 + 1.39578i −0.182537 + 0.0831176i
\(283\) 8.73696 5.04429i 0.519358 0.299852i −0.217314 0.976102i \(-0.569729\pi\)
0.736672 + 0.676250i \(0.236396\pi\)
\(284\) 5.30484 + 4.61730i 0.314784 + 0.273986i
\(285\) 13.8988i 0.823297i
\(286\) −2.03218 2.23764i −0.120165 0.132314i
\(287\) −5.80734 −0.342797
\(288\) 3.03190 + 4.77573i 0.178656 + 0.281413i
\(289\) 8.48613 + 14.6984i 0.499184 + 0.864613i
\(290\) 16.8148 + 36.9276i 0.987400 + 2.16846i
\(291\) −13.3081 −0.780135
\(292\) 1.13817 5.83571i 0.0666062 0.341509i
\(293\) −1.52266 + 2.63732i −0.0889545 + 0.154074i −0.907069 0.420981i \(-0.861686\pi\)
0.818115 + 0.575055i \(0.195019\pi\)
\(294\) −5.22695 + 7.32302i −0.304842 + 0.427087i
\(295\) −15.5228 + 26.8862i −0.903770 + 1.56538i
\(296\) 3.08846 0.738384i 0.179513 0.0429177i
\(297\) 0.513382 0.296401i 0.0297894 0.0171989i
\(298\) 9.96686 + 7.11403i 0.577365 + 0.412105i
\(299\) −16.8065 + 18.5110i −0.971943 + 1.07052i
\(300\) 5.76054 1.97945i 0.332585 0.114284i
\(301\) 0.428370 + 0.741959i 0.0246909 + 0.0427658i
\(302\) −19.2793 1.86252i −1.10940 0.107176i
\(303\) −7.85564 + 13.6064i −0.451295 + 0.781666i
\(304\) 15.4604 12.0476i 0.886713 0.690977i
\(305\) 32.9039 + 18.9971i 1.88407 + 1.08777i
\(306\) 0.214330 0.0975943i 0.0122524 0.00557910i
\(307\) −31.9416 −1.82300 −0.911502 0.411296i \(-0.865076\pi\)
−0.911502 + 0.411296i \(0.865076\pi\)
\(308\) −0.181296 + 0.929559i −0.0103303 + 0.0529665i
\(309\) 6.75986 3.90281i 0.384555 0.222023i
\(310\) −11.9101 1.15060i −0.676449 0.0653499i
\(311\) 8.48928 0.481383 0.240691 0.970602i \(-0.422626\pi\)
0.240691 + 0.970602i \(0.422626\pi\)
\(312\) 8.72222 5.28422i 0.493798 0.299160i
\(313\) −23.8490 −1.34802 −0.674012 0.738720i \(-0.735431\pi\)
−0.674012 + 0.738720i \(0.735431\pi\)
\(314\) −28.6056 2.76351i −1.61431 0.155954i
\(315\) −1.96224 + 1.13290i −0.110560 + 0.0638318i
\(316\) 12.8563 + 2.50742i 0.723221 + 0.141053i
\(317\) −0.262717 −0.0147556 −0.00737782 0.999973i \(-0.502348\pi\)
−0.00737782 + 0.999973i \(0.502348\pi\)
\(318\) 3.29627 1.50094i 0.184846 0.0841686i
\(319\) 5.19294 + 2.99814i 0.290749 + 0.167864i
\(320\) 19.0075 + 12.3948i 1.06255 + 0.692891i
\(321\) 7.83275 13.5667i 0.437181 0.757220i
\(322\) 7.79739 + 0.753285i 0.434532 + 0.0419789i
\(323\) −0.407994 0.706666i −0.0227014 0.0393199i
\(324\) 0.649944 + 1.89145i 0.0361080 + 0.105080i
\(325\) −3.35010 10.4575i −0.185830 0.580075i
\(326\) 10.4485 + 7.45782i 0.578689 + 0.413050i
\(327\) 5.12397 2.95833i 0.283356 0.163596i
\(328\) 4.78134 + 19.9990i 0.264005 + 1.10426i
\(329\) 0.951240 1.64760i 0.0524435 0.0908349i
\(330\) 1.38150 1.93549i 0.0760488 0.106545i
\(331\) −15.7122 + 27.2144i −0.863622 + 1.49584i 0.00478625 + 0.999989i \(0.498476\pi\)
−0.868409 + 0.495849i \(0.834857\pi\)
\(332\) −27.5923 5.38146i −1.51432 0.295346i
\(333\) 1.12271 0.0615240
\(334\) 11.5622 + 25.3921i 0.632655 + 1.38940i
\(335\) −9.62610 16.6729i −0.525930 0.910937i
\(336\) −2.96106 1.20069i −0.161539 0.0655032i
\(337\) 28.5717 1.55640 0.778201 0.628016i \(-0.216133\pi\)
0.778201 + 0.628016i \(0.216133\pi\)
\(338\) −9.19466 15.9204i −0.500123 0.865954i
\(339\) 1.15784i 0.0628853i
\(340\) 0.620225 0.712579i 0.0336364 0.0386450i
\(341\) −1.53137 + 0.884137i −0.0829283 + 0.0478787i
\(342\) 6.30668 2.87172i 0.341026 0.155285i
\(343\) 10.6736i 0.576322i
\(344\) 2.20243 2.08607i 0.118747 0.112474i
\(345\) −17.0340 9.83459i −0.917080 0.529477i
\(346\) −3.70850 + 5.19566i −0.199370 + 0.279320i
\(347\) 13.8663 + 8.00570i 0.744381 + 0.429769i 0.823660 0.567084i \(-0.191928\pi\)
−0.0792791 + 0.996852i \(0.525262\pi\)
\(348\) −13.2819 + 15.2596i −0.711985 + 0.818002i
\(349\) −6.12306 10.6055i −0.327760 0.567697i 0.654307 0.756229i \(-0.272960\pi\)
−0.982067 + 0.188532i \(0.939627\pi\)
\(350\) −1.99882 + 2.80037i −0.106841 + 0.149686i
\(351\) 3.43366 1.09999i 0.183275 0.0587131i
\(352\) 3.35043 0.140991i 0.178579 0.00751484i
\(353\) 17.1340 9.89229i 0.911948 0.526514i 0.0308909 0.999523i \(-0.490166\pi\)
0.881058 + 0.473009i \(0.156832\pi\)
\(354\) −15.4070 1.48843i −0.818873 0.0791091i
\(355\) 8.63792 + 4.98711i 0.458453 + 0.264688i
\(356\) 24.2980 8.34933i 1.28779 0.442514i
\(357\) −0.0665115 + 0.115201i −0.00352016 + 0.00609710i
\(358\) −3.81139 8.37033i −0.201438 0.442386i
\(359\) 24.2509i 1.27991i −0.768411 0.639957i \(-0.778952\pi\)
0.768411 0.639957i \(-0.221048\pi\)
\(360\) 5.51699 + 5.82472i 0.290771 + 0.306990i
\(361\) −2.50524 4.33920i −0.131855 0.228379i
\(362\) 2.99140 + 0.288991i 0.157225 + 0.0151890i
\(363\) 10.6486i 0.558906i
\(364\) −2.27597 + 5.29160i −0.119293 + 0.277355i
\(365\) 8.43236i 0.441370i
\(366\) −1.82157 + 18.8554i −0.0952151 + 0.985589i
\(367\) 10.3016 + 17.8429i 0.537741 + 0.931394i 0.999025 + 0.0441419i \(0.0140554\pi\)
−0.461285 + 0.887252i \(0.652611\pi\)
\(368\) −3.82567 27.4724i −0.199427 1.43210i
\(369\) 7.26999i 0.378461i
\(370\) 4.09869 1.86632i 0.213081 0.0970254i
\(371\) −1.02291 + 1.77173i −0.0531067 + 0.0919834i
\(372\) −1.93872 5.64201i −0.100518 0.292525i
\(373\) 7.00993 + 4.04718i 0.362960 + 0.209555i 0.670379 0.742019i \(-0.266132\pi\)
−0.307418 + 0.951575i \(0.599465\pi\)
\(374\) 0.0134246 0.138960i 0.000694169 0.00718547i
\(375\) −4.80097 + 2.77184i −0.247921 + 0.143137i
\(376\) −6.45708 1.91932i −0.332999 0.0989814i
\(377\) 27.0019 + 24.5155i 1.39067 + 1.26261i
\(378\) −0.919490 0.656303i −0.0472935 0.0337566i
\(379\) −16.2127 28.0812i −0.832789 1.44243i −0.895818 0.444422i \(-0.853409\pi\)
0.0630282 0.998012i \(-0.479924\pi\)
\(380\) 18.2502 20.9677i 0.936213 1.07562i
\(381\) −1.04750 0.604776i −0.0536652 0.0309836i
\(382\) 18.1599 + 12.9620i 0.929144 + 0.663194i
\(383\) 10.5766 + 6.10641i 0.540439 + 0.312023i 0.745257 0.666777i \(-0.232327\pi\)
−0.204818 + 0.978800i \(0.565660\pi\)
\(384\) −1.69697 + 11.1857i −0.0865980 + 0.570819i
\(385\) 1.34317i 0.0684544i
\(386\) 4.13913 + 9.09009i 0.210676 + 0.462673i
\(387\) 0.928831 0.536261i 0.0472151 0.0272597i
\(388\) −20.0765 17.4745i −1.01923 0.887132i
\(389\) 21.2746i 1.07867i 0.842093 + 0.539333i \(0.181323\pi\)
−0.842093 + 0.539333i \(0.818677\pi\)
\(390\) 10.7068 9.72367i 0.542159 0.492377i
\(391\) −1.15476 −0.0583986
\(392\) −17.5010 + 4.18410i −0.883932 + 0.211329i
\(393\) 4.33588 + 7.50996i 0.218716 + 0.378828i
\(394\) 6.77244 3.08380i 0.341191 0.155360i
\(395\) 18.5768 0.934698
\(396\) 1.16368 + 0.226958i 0.0584771 + 0.0114051i
\(397\) 2.19056 3.79416i 0.109941 0.190423i −0.805805 0.592181i \(-0.798267\pi\)
0.915746 + 0.401757i \(0.131600\pi\)
\(398\) −26.5515 18.9516i −1.33090 0.949958i
\(399\) −1.95710 + 3.38980i −0.0979778 + 0.169702i
\(400\) 11.2895 + 4.57781i 0.564473 + 0.228890i
\(401\) 17.8119 10.2837i 0.889482 0.513542i 0.0157087 0.999877i \(-0.495000\pi\)
0.873773 + 0.486334i \(0.161666\pi\)
\(402\) 5.57651 7.81277i 0.278131 0.389666i
\(403\) −10.2423 + 3.28117i −0.510205 + 0.163447i
\(404\) −29.7171 + 10.2114i −1.47848 + 0.508039i
\(405\) 1.41824 + 2.45646i 0.0704727 + 0.122062i
\(406\) 1.09881 11.3740i 0.0545332 0.564483i
\(407\) 0.332772 0.576378i 0.0164949 0.0285700i
\(408\) 0.451485 + 0.134201i 0.0223518 + 0.00664392i
\(409\) −17.3890 10.0395i −0.859830 0.496423i 0.00412536 0.999991i \(-0.498687\pi\)
−0.863955 + 0.503568i \(0.832020\pi\)
\(410\) 12.0852 + 26.5407i 0.596845 + 1.31075i
\(411\) 4.78451 0.236002
\(412\) 15.3225 + 2.98843i 0.754887 + 0.147229i
\(413\) 7.57172 4.37154i 0.372580 0.215109i
\(414\) 0.943008 9.76125i 0.0463463 0.479739i
\(415\) −39.8697 −1.95713
\(416\) 20.0968 + 3.48115i 0.985327 + 0.170678i
\(417\) −7.04725 −0.345105
\(418\) 0.395019 4.08891i 0.0193210 0.199995i
\(419\) 13.4526 7.76687i 0.657203 0.379436i −0.134008 0.990980i \(-0.542785\pi\)
0.791210 + 0.611544i \(0.209451\pi\)
\(420\) −4.44780 0.867476i −0.217030 0.0423285i
\(421\) −14.6028 −0.711697 −0.355848 0.934544i \(-0.615808\pi\)
−0.355848 + 0.934544i \(0.615808\pi\)
\(422\) −7.22233 15.8612i −0.351577 0.772111i
\(423\) −2.06256 1.19082i −0.100285 0.0578997i
\(424\) 6.94356 + 2.06392i 0.337209 + 0.100233i
\(425\) 0.253584 0.439221i 0.0123006 0.0213053i
\(426\) −0.478198 + 4.94992i −0.0231688 + 0.239824i
\(427\) −5.34998 9.26644i −0.258904 0.448434i
\(428\) 29.6305 10.1817i 1.43224 0.492151i
\(429\) 0.453026 2.08882i 0.0218723 0.100849i
\(430\) 2.49945 3.50177i 0.120534 0.168870i
\(431\) 10.8188 6.24624i 0.521123 0.300871i −0.216271 0.976333i \(-0.569389\pi\)
0.737394 + 0.675463i \(0.236056\pi\)
\(432\) −1.50310 + 3.70684i −0.0723181 + 0.178346i
\(433\) 15.1594 26.2568i 0.728513 1.26182i −0.228999 0.973427i \(-0.573545\pi\)
0.957512 0.288395i \(-0.0931215\pi\)
\(434\) 2.74275 + 1.95769i 0.131656 + 0.0939722i
\(435\) −14.3457 + 24.8474i −0.687822 + 1.19134i
\(436\) 11.6145 + 2.26523i 0.556232 + 0.108485i
\(437\) −33.9788 −1.62543
\(438\) 3.82623 1.74226i 0.182824 0.0832482i
\(439\) −10.6810 18.5000i −0.509774 0.882955i −0.999936 0.0113236i \(-0.996396\pi\)
0.490161 0.871632i \(-0.336938\pi\)
\(440\) 4.62555 1.10587i 0.220514 0.0527203i
\(441\) −6.36190 −0.302948
\(442\) 0.258937 0.808677i 0.0123164 0.0384649i
\(443\) 0.675587i 0.0320981i −0.999871 0.0160491i \(-0.994891\pi\)
0.999871 0.0160491i \(-0.00510880\pi\)
\(444\) 1.69371 + 1.47419i 0.0803798 + 0.0699621i
\(445\) 31.5562 18.2190i 1.49591 0.863663i
\(446\) 15.9018 + 34.9225i 0.752973 + 1.65363i
\(447\) 8.65875i 0.409545i
\(448\) −2.89044 5.69944i −0.136560 0.269273i
\(449\) −5.72392 3.30471i −0.270129 0.155959i 0.358817 0.933408i \(-0.383180\pi\)
−0.628946 + 0.777449i \(0.716513\pi\)
\(450\) 3.50568 + 2.50224i 0.165259 + 0.117957i
\(451\) 3.73228 + 2.15483i 0.175746 + 0.101467i
\(452\) −1.52033 + 1.74671i −0.0715102 + 0.0821583i
\(453\) −6.84798 11.8610i −0.321746 0.557281i
\(454\) 11.8788 + 8.47874i 0.557501 + 0.397927i
\(455\) −1.73155 + 7.98385i −0.0811764 + 0.374289i
\(456\) 13.2850 + 3.94886i 0.622125 + 0.184922i
\(457\) −3.39098 + 1.95778i −0.158623 + 0.0915812i −0.577210 0.816595i \(-0.695859\pi\)
0.418587 + 0.908177i \(0.362525\pi\)
\(458\) −0.405693 + 4.19940i −0.0189568 + 0.196225i
\(459\) 0.144216 + 0.0832632i 0.00673143 + 0.00388639i
\(460\) −12.7839 37.2032i −0.596051 1.73461i
\(461\) 11.2282 19.4479i 0.522951 0.905777i −0.476693 0.879070i \(-0.658165\pi\)
0.999643 0.0267070i \(-0.00850212\pi\)
\(462\) −0.609472 + 0.277520i −0.0283552 + 0.0129114i
\(463\) 11.1931i 0.520189i −0.965583 0.260095i \(-0.916246\pi\)
0.965583 0.260095i \(-0.0837538\pi\)
\(464\) −40.0739 + 5.58049i −1.86038 + 0.259068i
\(465\) −4.23046 7.32738i −0.196183 0.339799i
\(466\) 2.93117 30.3411i 0.135784 1.40552i
\(467\) 16.1230i 0.746083i −0.927815 0.373041i \(-0.878315\pi\)
0.927815 0.373041i \(-0.121685\pi\)
\(468\) 6.62435 + 2.84920i 0.306211 + 0.131704i
\(469\) 5.42182i 0.250357i
\(470\) −9.50939 0.918676i −0.438635 0.0423754i
\(471\) −10.1607 17.5988i −0.468180 0.810912i
\(472\) −21.2885 22.4759i −0.979881 1.03454i
\(473\) 0.635793i 0.0292338i
\(474\) 3.83825 + 8.42930i 0.176296 + 0.387171i
\(475\) 7.46172 12.9241i 0.342367 0.592998i
\(476\) −0.251606 + 0.0864575i −0.0115323 + 0.00396277i
\(477\) 2.21796 + 1.28054i 0.101553 + 0.0586318i
\(478\) −33.0159 3.18958i −1.51011 0.145888i
\(479\) 15.7769 9.10881i 0.720866 0.416192i −0.0942053 0.995553i \(-0.530031\pi\)
0.815071 + 0.579361i \(0.196698\pi\)
\(480\) 0.674621 + 16.0313i 0.0307921 + 0.731726i
\(481\) 2.72104 2.99701i 0.124069 0.136652i
\(482\) 22.0930 30.9526i 1.00631 1.40985i
\(483\) 2.76963 + 4.79714i 0.126022 + 0.218277i
\(484\) −13.9823 + 16.0644i −0.635561 + 0.730198i
\(485\) −32.6908 18.8740i −1.48441 0.857026i
\(486\) −0.821601 + 1.15107i −0.0372686 + 0.0522138i
\(487\) 1.63767 + 0.945507i 0.0742097 + 0.0428450i 0.536646 0.843808i \(-0.319691\pi\)
−0.462436 + 0.886653i \(0.653025\pi\)
\(488\) −27.5065 + 26.0533i −1.24516 + 1.17938i
\(489\) 9.07718i 0.410484i
\(490\) −23.2255 + 10.5756i −1.04922 + 0.477759i
\(491\) −17.8621 + 10.3127i −0.806106 + 0.465406i −0.845602 0.533814i \(-0.820758\pi\)
0.0394956 + 0.999220i \(0.487425\pi\)
\(492\) −9.54600 + 10.9674i −0.430367 + 0.494451i
\(493\) 1.68444i 0.0758634i
\(494\) 7.61923 23.7954i 0.342805 1.07060i
\(495\) 1.68147 0.0755763
\(496\) 4.48362 11.0572i 0.201320 0.496481i
\(497\) −1.40447 2.43262i −0.0629993 0.109118i
\(498\) −8.23770 18.0911i −0.369140 0.810681i
\(499\) 24.6797 1.10481 0.552407 0.833575i \(-0.313709\pi\)
0.552407 + 0.833575i \(0.313709\pi\)
\(500\) −10.8823 2.12243i −0.486672 0.0949180i
\(501\) −9.86436 + 17.0856i −0.440707 + 0.763327i
\(502\) 23.8967 33.4796i 1.06656 1.49427i
\(503\) 4.27176 7.39890i 0.190468 0.329901i −0.754937 0.655797i \(-0.772333\pi\)
0.945405 + 0.325896i \(0.105666\pi\)
\(504\) −0.525362 2.19745i −0.0234015 0.0978821i
\(505\) −38.5941 + 22.2823i −1.71741 + 0.991550i
\(506\) −4.73174 3.37737i −0.210352 0.150142i
\(507\) 5.38560 11.8320i 0.239183 0.525476i
\(508\) −0.786141 2.28780i −0.0348793 0.101505i
\(509\) 13.2450 + 22.9411i 0.587076 + 1.01685i 0.994613 + 0.103657i \(0.0330543\pi\)
−0.407537 + 0.913189i \(0.633612\pi\)
\(510\) 0.664905 + 0.0642346i 0.0294425 + 0.00284436i
\(511\) −1.18736 + 2.05658i −0.0525259 + 0.0909776i
\(512\) −17.2477 + 14.6464i −0.762246 + 0.647287i
\(513\) 4.24357 + 2.45002i 0.187358 + 0.108171i
\(514\) 27.0272 12.3067i 1.19212 0.542826i
\(515\) 22.1404 0.975623
\(516\) 2.10537 + 0.410621i 0.0926839 + 0.0180766i
\(517\) −1.22269 + 0.705921i −0.0537739 + 0.0310464i
\(518\) −1.26243 0.121960i −0.0554681 0.00535862i
\(519\) −4.51375 −0.198131
\(520\) 28.9200 0.610289i 1.26823 0.0267630i
\(521\) −12.0965 −0.529958 −0.264979 0.964254i \(-0.585365\pi\)
−0.264979 + 0.964254i \(0.585365\pi\)
\(522\) −14.2387 1.37556i −0.623211 0.0602067i
\(523\) 31.0173 17.9079i 1.35629 0.783057i 0.367172 0.930153i \(-0.380326\pi\)
0.989122 + 0.147097i \(0.0469928\pi\)
\(524\) −3.32004 + 17.0228i −0.145036 + 0.743644i
\(525\) −2.43283 −0.106178
\(526\) −22.9433 + 10.4471i −1.00037 + 0.455516i
\(527\) −0.430183 0.248366i −0.0187391 0.0108190i
\(528\) 1.45750 + 1.87038i 0.0634297 + 0.0813978i
\(529\) −12.5428 + 21.7248i −0.545341 + 0.944558i
\(530\) 10.2258 + 0.987890i 0.444182 + 0.0429112i
\(531\) −5.47256 9.47875i −0.237489 0.411343i
\(532\) −7.40352 + 2.54401i −0.320983 + 0.110297i
\(533\) 19.4069 + 17.6199i 0.840605 + 0.763201i
\(534\) 14.7870 + 10.5545i 0.639895 + 0.456737i
\(535\) 38.4816 22.2174i 1.66371 0.960541i
\(536\) 18.6714 4.46393i 0.806481 0.192812i
\(537\) 3.25171 5.63214i 0.140322 0.243045i
\(538\) −1.60940 + 2.25478i −0.0693860 + 0.0972107i
\(539\) −1.88568 + 3.26609i −0.0812218 + 0.140680i
\(540\) −1.08596 + 5.56803i −0.0467323 + 0.239610i
\(541\) 14.5464 0.625398 0.312699 0.949852i \(-0.398767\pi\)
0.312699 + 0.949852i \(0.398767\pi\)
\(542\) 4.20910 + 9.24376i 0.180797 + 0.397053i
\(543\) 1.06254 + 1.84038i 0.0455981 + 0.0789783i
\(544\) 0.504891 + 0.795285i 0.0216470 + 0.0340976i
\(545\) 16.7824 0.718880
\(546\) −3.98048 + 0.863887i −0.170349 + 0.0369710i
\(547\) 19.0401i 0.814094i −0.913407 0.407047i \(-0.866559\pi\)
0.913407 0.407047i \(-0.133441\pi\)
\(548\) 7.21787 + 6.28239i 0.308332 + 0.268371i
\(549\) −11.6003 + 6.69744i −0.495089 + 0.285840i
\(550\) 2.32369 1.05808i 0.0990827 0.0451168i
\(551\) 49.5647i 2.11153i
\(552\) 14.2398 13.4875i 0.606087 0.574066i
\(553\) −4.53070 2.61580i −0.192665 0.111235i
\(554\) 17.2898 24.2232i 0.734573 1.02915i
\(555\) 2.75788 + 1.59226i 0.117066 + 0.0675879i
\(556\) −10.6314 9.25352i −0.450872 0.392437i
\(557\) 10.8055 + 18.7157i 0.457843 + 0.793008i 0.998847 0.0480126i \(-0.0152888\pi\)
−0.541004 + 0.841020i \(0.681955\pi\)
\(558\) 2.45076 3.43355i 0.103749 0.145354i
\(559\) 0.819632 3.77917i 0.0346668 0.159842i
\(560\) −5.57086 7.14894i −0.235412 0.302098i
\(561\) 0.0854917 0.0493586i 0.00360946 0.00208392i
\(562\) 11.9098 + 1.15058i 0.502385 + 0.0485341i
\(563\) 16.6780 + 9.62908i 0.702896 + 0.405817i 0.808425 0.588599i \(-0.200320\pi\)
−0.105529 + 0.994416i \(0.533654\pi\)
\(564\) −1.54793 4.50475i −0.0651797 0.189684i
\(565\) −1.64209 + 2.84419i −0.0690833 + 0.119656i
\(566\) 5.91250 + 12.9846i 0.248521 + 0.545785i
\(567\) 0.798810i 0.0335469i
\(568\) −7.22099 + 6.83950i −0.302986 + 0.286979i
\(569\) 1.84337 + 3.19281i 0.0772781 + 0.133850i 0.902075 0.431580i \(-0.142044\pi\)
−0.824797 + 0.565430i \(0.808710\pi\)
\(570\) 19.5649 + 1.89011i 0.819481 + 0.0791679i
\(571\) 17.9486i 0.751124i −0.926797 0.375562i \(-0.877450\pi\)
0.926797 0.375562i \(-0.122550\pi\)
\(572\) 3.42619 2.55632i 0.143256 0.106885i
\(573\) 15.7765i 0.659074i
\(574\) 0.789742 8.17476i 0.0329632 0.341208i
\(575\) −10.5596 18.2897i −0.440365 0.762735i
\(576\) −7.13491 + 3.61843i −0.297288 + 0.150768i
\(577\) 13.2639i 0.552182i 0.961132 + 0.276091i \(0.0890391\pi\)
−0.961132 + 0.276091i \(0.910961\pi\)
\(578\) −21.8444 + 9.94675i −0.908607 + 0.413730i
\(579\) −3.53133 + 6.11644i −0.146757 + 0.254190i
\(580\) −54.2682 + 18.6478i −2.25336 + 0.774306i
\(581\) 9.72386 + 5.61407i 0.403414 + 0.232911i
\(582\) 1.80977 18.7333i 0.0750175 0.776520i
\(583\) 1.31481 0.759106i 0.0544538 0.0314389i
\(584\) 8.05992 + 2.39575i 0.333522 + 0.0991369i
\(585\) 9.99468 + 2.16766i 0.413229 + 0.0896218i
\(586\) −3.50538 2.50203i −0.144806 0.103358i
\(587\) 18.4456 + 31.9486i 0.761330 + 1.31866i 0.942165 + 0.335148i \(0.108786\pi\)
−0.180836 + 0.983513i \(0.557880\pi\)
\(588\) −9.59751 8.35362i −0.395795 0.344498i
\(589\) −12.6582 7.30819i −0.521570 0.301129i
\(590\) −35.7357 25.5070i −1.47122 1.05011i
\(591\) 4.55696 + 2.63096i 0.187448 + 0.108223i
\(592\) 0.619393 + 4.44791i 0.0254569 + 0.182808i
\(593\) 27.8239i 1.14259i 0.820745 + 0.571295i \(0.193559\pi\)
−0.820745 + 0.571295i \(0.806441\pi\)
\(594\) 0.347417 + 0.762975i 0.0142547 + 0.0313052i
\(595\) −0.326765 + 0.188658i −0.0133961 + 0.00773422i
\(596\) −11.3695 + 13.0625i −0.465714 + 0.535061i
\(597\) 23.0667i 0.944056i
\(598\) −23.7717 26.1751i −0.972095 1.07038i
\(599\) 31.0169 1.26732 0.633658 0.773613i \(-0.281553\pi\)
0.633658 + 0.773613i \(0.281553\pi\)
\(600\) 2.00302 + 8.37807i 0.0817728 + 0.342033i
\(601\) 18.1543 + 31.4441i 0.740528 + 1.28263i 0.952255 + 0.305303i \(0.0987577\pi\)
−0.211728 + 0.977329i \(0.567909\pi\)
\(602\) −1.10268 + 0.502101i −0.0449419 + 0.0204641i
\(603\) 6.78737 0.276403
\(604\) 5.24358 26.8854i 0.213358 1.09395i
\(605\) −15.1022 + 26.1578i −0.613992 + 1.06347i
\(606\) −18.0849 12.9084i −0.734647 0.524368i
\(607\) 15.7207 27.2290i 0.638082 1.10519i −0.347771 0.937580i \(-0.613061\pi\)
0.985853 0.167612i \(-0.0536054\pi\)
\(608\) 14.8565 + 23.4013i 0.602509 + 0.949048i
\(609\) 6.99756 4.04004i 0.283555 0.163711i
\(610\) −31.2161 + 43.7341i −1.26390 + 1.77074i
\(611\) −8.17775 + 2.61978i −0.330836 + 0.105985i
\(612\) 0.108233 + 0.314976i 0.00437505 + 0.0127321i
\(613\) 21.8144 + 37.7837i 0.881077 + 1.52607i 0.850145 + 0.526549i \(0.176514\pi\)
0.0309319 + 0.999521i \(0.490152\pi\)
\(614\) 4.34375 44.9629i 0.175299 1.81456i
\(615\) −10.3106 + 17.8584i −0.415762 + 0.720121i
\(616\) −1.28385 0.381615i −0.0517277 0.0153757i
\(617\) −2.64284 1.52584i −0.106397 0.0614281i 0.445857 0.895104i \(-0.352899\pi\)
−0.552254 + 0.833676i \(0.686232\pi\)
\(618\) 4.57455 + 10.0463i 0.184015 + 0.404123i
\(619\) 22.2751 0.895311 0.447655 0.894206i \(-0.352259\pi\)
0.447655 + 0.894206i \(0.352259\pi\)
\(620\) 3.23932 16.6089i 0.130094 0.667030i
\(621\) 6.00535 3.46719i 0.240986 0.139134i
\(622\) −1.15446 + 11.9500i −0.0462896 + 0.479152i
\(623\) −10.2617 −0.411127
\(624\) 6.25224 + 12.9965i 0.250290 + 0.520277i
\(625\) −30.9524 −1.23809
\(626\) 3.24323 33.5713i 0.129626 1.34178i
\(627\) 2.51560 1.45238i 0.100463 0.0580025i
\(628\) 7.78017 39.8912i 0.310463 1.59183i
\(629\) 0.186960 0.00745460
\(630\) −1.32789 2.91623i −0.0529046 0.116186i
\(631\) 15.1490 + 8.74629i 0.603073 + 0.348184i 0.770250 0.637743i \(-0.220132\pi\)
−0.167177 + 0.985927i \(0.553465\pi\)
\(632\) −5.27792 + 17.7563i −0.209944 + 0.706306i
\(633\) 6.16178 10.6725i 0.244909 0.424194i
\(634\) 0.0357269 0.369816i 0.00141890 0.0146873i
\(635\) −1.71543 2.97121i −0.0680748 0.117909i
\(636\) 1.66455 + 4.84414i 0.0660039 + 0.192083i
\(637\) −15.4190 + 16.9828i −0.610922 + 0.672882i
\(638\) −4.92655 + 6.90217i −0.195044 + 0.273260i
\(639\) −3.04531 + 1.75821i −0.120470 + 0.0695536i
\(640\) −20.0325 + 25.0705i −0.791855 + 0.991000i
\(641\) 6.95443 12.0454i 0.274683 0.475766i −0.695372 0.718650i \(-0.744760\pi\)
0.970055 + 0.242885i \(0.0780936\pi\)
\(642\) 18.0322 + 12.8708i 0.711672 + 0.507970i
\(643\) −8.46678 + 14.6649i −0.333897 + 0.578327i −0.983272 0.182141i \(-0.941697\pi\)
0.649375 + 0.760468i \(0.275030\pi\)
\(644\) −2.12074 + 10.8736i −0.0835688 + 0.428481i
\(645\) 3.04218 0.119786
\(646\) 1.05023 0.478217i 0.0413207 0.0188152i
\(647\) −12.3705 21.4264i −0.486335 0.842358i 0.513541 0.858065i \(-0.328333\pi\)
−0.999877 + 0.0157072i \(0.995000\pi\)
\(648\) −2.75090 + 0.657681i −0.108066 + 0.0258362i
\(649\) −6.48829 −0.254688
\(650\) 15.1761 3.29369i 0.595257 0.129189i
\(651\) 2.38278i 0.0933884i
\(652\) −11.9190 + 13.6938i −0.466783 + 0.536289i
\(653\) −14.4460 + 8.34043i −0.565317 + 0.326386i −0.755277 0.655406i \(-0.772498\pi\)
0.189960 + 0.981792i \(0.439164\pi\)
\(654\) 3.46751 + 7.61511i 0.135590 + 0.297775i
\(655\) 24.5972i 0.961092i
\(656\) −28.8020 + 4.01082i −1.12453 + 0.156596i
\(657\) 2.57455 + 1.48642i 0.100443 + 0.0579906i
\(658\) 2.18989 + 1.56308i 0.0853710 + 0.0609352i
\(659\) 2.44389 + 1.41098i 0.0952006 + 0.0549641i 0.546844 0.837234i \(-0.315829\pi\)
−0.451644 + 0.892198i \(0.649162\pi\)
\(660\) 2.53665 + 2.20788i 0.0987388 + 0.0859418i
\(661\) −6.31822 10.9435i −0.245750 0.425652i 0.716592 0.697492i \(-0.245701\pi\)
−0.962342 + 0.271841i \(0.912368\pi\)
\(662\) −36.1719 25.8184i −1.40586 1.00346i
\(663\) 0.571795 0.183177i 0.0222067 0.00711402i
\(664\) 11.3275 38.1087i 0.439594 1.47891i
\(665\) −9.61508 + 5.55127i −0.372857 + 0.215269i
\(666\) −0.152677 + 1.58039i −0.00591612 + 0.0612389i
\(667\) 60.7451 + 35.0712i 2.35206 + 1.35796i
\(668\) −37.3158 + 12.8226i −1.44379 + 0.496120i
\(669\) −13.5667 + 23.4983i −0.524520 + 0.908496i
\(670\) 24.7788 11.2829i 0.957289 0.435897i
\(671\) 7.94051i 0.306540i
\(672\) 2.09284 4.00489i 0.0807332 0.154492i
\(673\) 23.4353 + 40.5912i 0.903365 + 1.56467i 0.823097 + 0.567901i \(0.192244\pi\)
0.0802681 + 0.996773i \(0.474422\pi\)
\(674\) −3.88548 + 40.2193i −0.149663 + 1.54919i
\(675\) 3.04557i 0.117224i
\(676\) 23.6609 10.7779i 0.910033 0.414536i
\(677\) 40.9956i 1.57559i −0.615938 0.787795i \(-0.711223\pi\)
0.615938 0.787795i \(-0.288777\pi\)
\(678\) −1.62985 0.157455i −0.0625939 0.00604703i
\(679\) 5.31533 + 9.20642i 0.203984 + 0.353310i
\(680\) 0.918725 + 0.969970i 0.0352315 + 0.0371967i
\(681\) 10.3198i 0.395455i
\(682\) −1.03631 2.27588i −0.0396825 0.0871480i
\(683\) −0.260068 + 0.450451i −0.00995123 + 0.0172360i −0.870958 0.491357i \(-0.836501\pi\)
0.861007 + 0.508593i \(0.169834\pi\)
\(684\) 3.18476 + 9.26818i 0.121772 + 0.354378i
\(685\) 11.7529 + 6.78556i 0.449057 + 0.259263i
\(686\) 15.0248 + 1.45151i 0.573651 + 0.0554189i
\(687\) −2.58357 + 1.49163i −0.0985694 + 0.0569091i
\(688\) 2.63697 + 3.38396i 0.100534 + 0.129012i
\(689\) 8.79386 2.81716i 0.335019 0.107325i
\(690\) 16.1602 22.6407i 0.615209 0.861916i
\(691\) −14.3980 24.9381i −0.547727 0.948691i −0.998430 0.0560166i \(-0.982160\pi\)
0.450703 0.892674i \(-0.351173\pi\)
\(692\) −6.80940 5.92686i −0.258855 0.225306i
\(693\) −0.410095 0.236768i −0.0155782 0.00899408i
\(694\) −13.1550 + 18.4303i −0.499356 + 0.699605i
\(695\) −17.3113 9.99466i −0.656653 0.379119i
\(696\) −19.6742 20.7716i −0.745747 0.787344i
\(697\) 1.21065i 0.0458565i
\(698\) 15.7615 7.17695i 0.596583 0.271652i
\(699\) 18.6665 10.7771i 0.706034 0.407629i
\(700\) −3.67015 3.19448i −0.138719 0.120740i
\(701\) 31.8042i 1.20123i −0.799539 0.600614i \(-0.794923\pi\)
0.799539 0.600614i \(-0.205077\pi\)
\(702\) 1.08147 + 4.98301i 0.0408174 + 0.188072i
\(703\) 5.50132 0.207486
\(704\) −0.257159 + 4.73544i −0.00969203 + 0.178474i
\(705\) −3.37773 5.85040i −0.127213 0.220339i
\(706\) 11.5949 + 25.4640i 0.436381 + 0.958352i
\(707\) 12.5503 0.472004
\(708\) 4.19040 21.4854i 0.157485 0.807471i
\(709\) −0.0624691 + 0.108200i −0.00234608 + 0.00406352i −0.867196 0.497967i \(-0.834080\pi\)
0.864850 + 0.502030i \(0.167413\pi\)
\(710\) −8.19483 + 11.4811i −0.307546 + 0.430877i
\(711\) −3.27462 + 5.67181i −0.122808 + 0.212710i
\(712\) 8.44873 + 35.3387i 0.316630 + 1.32438i
\(713\) −17.9134 + 10.3423i −0.670862 + 0.387322i
\(714\) −0.153119 0.109292i −0.00573035 0.00409014i
\(715\) 4.07527 4.48859i 0.152407 0.167864i
\(716\) 12.3009 4.22686i 0.459706 0.157965i
\(717\) −11.7272 20.3122i −0.437962 0.758572i
\(718\) 34.1370 + 3.29789i 1.27398 + 0.123076i
\(719\) −4.28487 + 7.42161i −0.159799 + 0.276779i −0.934796 0.355185i \(-0.884418\pi\)
0.774997 + 0.631965i \(0.217751\pi\)
\(720\) −8.94948 + 6.97394i −0.333528 + 0.259904i
\(721\) −5.39985 3.11760i −0.201101 0.116106i
\(722\) 6.44880 2.93643i 0.240000 0.109283i
\(723\) 26.8901 1.00006
\(724\) −0.813603 + 4.17158i −0.0302373 + 0.155035i
\(725\) −26.6791 + 15.4032i −0.990838 + 0.572061i
\(726\) −14.9896 1.44810i −0.556316 0.0537442i
\(727\) −26.0065 −0.964526 −0.482263 0.876026i \(-0.660185\pi\)
−0.482263 + 0.876026i \(0.660185\pi\)
\(728\) −7.13927 3.92340i −0.264599 0.145411i
\(729\) −1.00000 −0.0370370
\(730\) 11.8699 + 1.14672i 0.439324 + 0.0424419i
\(731\) 0.154675 0.0893016i 0.00572086 0.00330294i
\(732\) −26.2943 5.12831i −0.971866 0.189548i
\(733\) −5.53151 −0.204311 −0.102155 0.994768i \(-0.532574\pi\)
−0.102155 + 0.994768i \(0.532574\pi\)
\(734\) −26.5177 + 12.0747i −0.978787 + 0.445686i
\(735\) −15.6277 9.02268i −0.576438 0.332806i
\(736\) 39.1921 1.64926i 1.44464 0.0607925i
\(737\) 2.01179 3.48451i 0.0741051 0.128354i
\(738\) −10.2337 0.988648i −0.376707 0.0363926i
\(739\) −11.3146 19.5975i −0.416215 0.720906i 0.579340 0.815086i \(-0.303310\pi\)
−0.995555 + 0.0941803i \(0.969977\pi\)
\(740\) 2.06976 + 6.02337i 0.0760860 + 0.221423i
\(741\) 16.8251 5.39000i 0.618086 0.198007i
\(742\) −2.35488 1.68084i −0.0864505 0.0617056i
\(743\) −36.8032 + 21.2483i −1.35018 + 0.779526i −0.988274 0.152689i \(-0.951207\pi\)
−0.361904 + 0.932215i \(0.617873\pi\)
\(744\) 8.20568 1.96180i 0.300835 0.0719231i
\(745\) −12.2801 + 21.2698i −0.449910 + 0.779266i
\(746\) −6.65034 + 9.31722i −0.243486 + 0.341128i
\(747\) 7.02805 12.1729i 0.257143 0.445384i
\(748\) 0.193783 + 0.0377945i 0.00708542 + 0.00138190i
\(749\) −12.5138 −0.457243
\(750\) −3.24892 7.13507i −0.118634 0.260536i
\(751\) −20.3828 35.3040i −0.743777 1.28826i −0.950764 0.309916i \(-0.899699\pi\)
0.206987 0.978344i \(-0.433634\pi\)
\(752\) 3.57985 8.82837i 0.130544 0.321937i
\(753\) 29.0855 1.05993
\(754\) −38.1815 + 34.6756i −1.39049 + 1.26281i
\(755\) 38.8482i 1.41383i
\(756\) 1.04889 1.20508i 0.0381479 0.0438283i
\(757\) −17.0025 + 9.81641i −0.617967 + 0.356783i −0.776077 0.630638i \(-0.782793\pi\)
0.158110 + 0.987421i \(0.449460\pi\)
\(758\) 41.7335 19.0032i 1.51583 0.690226i
\(759\) 4.11072i 0.149210i
\(760\) 27.0335 + 28.5414i 0.980609 + 1.03531i
\(761\) −38.0835 21.9875i −1.38053 0.797047i −0.388304 0.921531i \(-0.626939\pi\)
−0.992222 + 0.124484i \(0.960272\pi\)
\(762\) 0.993769 1.39228i 0.0360005 0.0504371i
\(763\) −4.09308 2.36314i −0.148180 0.0855515i
\(764\) −20.7157 + 23.8003i −0.749467 + 0.861066i
\(765\) 0.236174 + 0.409065i 0.00853888 + 0.0147898i
\(766\) −10.0341 + 14.0579i −0.362545 + 0.507931i
\(767\) −38.5666 8.36438i −1.39256 0.302020i
\(768\) −15.5149 3.90990i −0.559846 0.141086i
\(769\) 13.2959 7.67640i 0.479463 0.276818i −0.240730 0.970592i \(-0.577387\pi\)
0.720193 + 0.693774i \(0.244053\pi\)
\(770\) −1.89073 0.182658i −0.0681372 0.00658255i
\(771\) 18.1858 + 10.4996i 0.654944 + 0.378132i
\(772\) −13.3586 + 4.59033i −0.480788 + 0.165209i
\(773\) 26.0560 45.1303i 0.937169 1.62322i 0.166450 0.986050i \(-0.446770\pi\)
0.770719 0.637175i \(-0.219897\pi\)
\(774\) 0.628561 + 1.38040i 0.0225931 + 0.0496176i
\(775\) 9.08465i 0.326330i
\(776\) 27.3283 25.8845i 0.981030 0.929201i
\(777\) −0.448415 0.776678i −0.0160868 0.0278632i
\(778\) −29.9474 2.89314i −1.07367 0.103724i
\(779\) 35.6233i 1.27634i
\(780\) 12.2316 + 16.3938i 0.437961 + 0.586993i
\(781\) 2.08454i 0.0745907i
\(782\) 0.157036 1.62551i 0.00561559 0.0581280i
\(783\) −5.05758 8.75998i −0.180743 0.313056i
\(784\) −3.50984 25.2044i −0.125351 0.900157i
\(785\) 57.6411i 2.05730i
\(786\) −11.1611 + 5.08216i −0.398104 + 0.181275i
\(787\) −9.95043 + 17.2346i −0.354694 + 0.614349i −0.987066 0.160317i \(-0.948748\pi\)
0.632371 + 0.774666i \(0.282082\pi\)
\(788\) 3.41996 + 9.95266i 0.121831 + 0.354549i
\(789\) −15.4378 8.91302i −0.549601 0.317312i
\(790\) −2.52626 + 26.1498i −0.0898802 + 0.930367i
\(791\) 0.800983 0.462448i 0.0284797 0.0164428i
\(792\) −0.477729 + 1.60720i −0.0169753 + 0.0571094i
\(793\) −10.2365 + 47.1986i −0.363509 + 1.67607i
\(794\) 5.04299 + 3.59953i 0.178969 + 0.127743i
\(795\) 3.63221 + 6.29117i 0.128821 + 0.223125i
\(796\) 30.2882 34.7982i 1.07354 1.23339i
\(797\) −39.5306 22.8230i −1.40025 0.808433i −0.405829 0.913949i \(-0.633017\pi\)
−0.994418 + 0.105516i \(0.966351\pi\)
\(798\) −4.50554 3.21592i −0.159495 0.113842i
\(799\) −0.343471 0.198303i −0.0121511 0.00701546i
\(800\) −7.97925 + 15.2692i −0.282109 + 0.539847i
\(801\) 12.8462i 0.453900i
\(802\) 12.0537 + 26.4715i 0.425630 + 0.934742i
\(803\) 1.52620 0.881151i 0.0538584 0.0310952i
\(804\) 10.2394 + 8.91229i 0.361115 + 0.314312i
\(805\) 15.7119i 0.553773i
\(806\) −3.22592 14.8639i −0.113628 0.523557i
\(807\) −1.95885 −0.0689549
\(808\) −10.3330 43.2202i −0.363514 1.52048i
\(809\) 3.11603 + 5.39713i 0.109554 + 0.189753i 0.915590 0.402114i \(-0.131724\pi\)
−0.806036 + 0.591867i \(0.798391\pi\)
\(810\) −3.65072 + 1.66234i −0.128273 + 0.0584087i
\(811\) −49.5256 −1.73908 −0.869539 0.493865i \(-0.835584\pi\)
−0.869539 + 0.493865i \(0.835584\pi\)
\(812\) 15.8613 + 3.09351i 0.556623 + 0.108561i
\(813\) −3.59102 + 6.21984i −0.125943 + 0.218139i
\(814\) 0.766090 + 0.546811i 0.0268514 + 0.0191657i
\(815\) −12.8736 + 22.2977i −0.450942 + 0.781054i
\(816\) −0.250306 + 0.617287i −0.00876248 + 0.0216094i
\(817\) 4.55131 2.62770i 0.159230 0.0919317i
\(818\) 16.4970 23.1125i 0.576804 0.808110i
\(819\) −2.13238 1.93603i −0.0745115 0.0676504i
\(820\) −39.0038 + 13.4026i −1.36207 + 0.468038i
\(821\) 12.4396 + 21.5460i 0.434145 + 0.751961i 0.997225 0.0744410i \(-0.0237172\pi\)
−0.563081 + 0.826402i \(0.690384\pi\)
\(822\) −0.650646 + 6.73496i −0.0226939 + 0.234909i
\(823\) 20.9071 36.2122i 0.728777 1.26228i −0.228624 0.973515i \(-0.573423\pi\)
0.957401 0.288763i \(-0.0932440\pi\)
\(824\) −6.29040 + 21.1625i −0.219137 + 0.737231i
\(825\) 1.56354 + 0.902711i 0.0544355 + 0.0314284i
\(826\) 5.12396 + 11.2529i 0.178285 + 0.391538i
\(827\) −17.8051 −0.619145 −0.309573 0.950876i \(-0.600186\pi\)
−0.309573 + 0.950876i \(0.600186\pi\)
\(828\) 13.6123 + 2.65487i 0.473060 + 0.0922631i
\(829\) −41.4103 + 23.9082i −1.43824 + 0.830367i −0.997727 0.0673800i \(-0.978536\pi\)
−0.440511 + 0.897747i \(0.645203\pi\)
\(830\) 5.42189 56.1230i 0.188197 1.94806i
\(831\) 21.0440 0.730009
\(832\) −7.63325 + 27.8161i −0.264635 + 0.964349i
\(833\) −1.05942 −0.0367069
\(834\) 0.958357 9.92013i 0.0331852 0.343506i
\(835\) −48.4627 + 27.9800i −1.67712 + 0.968287i
\(836\) 5.70208 + 1.11210i 0.197211 + 0.0384630i
\(837\) 2.98291 0.103104
\(838\) 9.10368 + 19.9929i 0.314482 + 0.690644i
\(839\) 26.5231 + 15.3131i 0.915678 + 0.528667i 0.882254 0.470775i \(-0.156025\pi\)
0.0334240 + 0.999441i \(0.489359\pi\)
\(840\) 1.82597 6.14302i 0.0630019 0.211954i
\(841\) 36.6582 63.4938i 1.26407 2.18944i
\(842\) 1.98584 20.5558i 0.0684365 0.708399i
\(843\) 4.23036 + 7.32720i 0.145701 + 0.252362i
\(844\) 23.3093 8.00961i 0.802341 0.275702i
\(845\) 30.0100 21.4267i 1.03238 0.737099i
\(846\) 1.95676 2.74145i 0.0672747 0.0942528i
\(847\) 7.36658 4.25310i 0.253119 0.146138i
\(848\) −3.84956 + 9.49350i −0.132194 + 0.326008i
\(849\) −5.04429 + 8.73696i −0.173119 + 0.299852i
\(850\) 0.583788 + 0.416690i 0.0200238 + 0.0142923i
\(851\) 3.89264 6.74226i 0.133438 0.231122i
\(852\) −6.90277 1.34628i −0.236485 0.0461228i
\(853\) 44.3484 1.51846 0.759230 0.650823i \(-0.225576\pi\)
0.759230 + 0.650823i \(0.225576\pi\)
\(854\) 13.7715 6.27081i 0.471253 0.214583i
\(855\) 6.94942 + 12.0368i 0.237665 + 0.411648i
\(856\) 10.3029 + 43.0942i 0.352146 + 1.47293i
\(857\) −25.5122 −0.871481 −0.435740 0.900072i \(-0.643513\pi\)
−0.435740 + 0.900072i \(0.643513\pi\)
\(858\) 2.87874 + 0.921765i 0.0982785 + 0.0314686i
\(859\) 39.0387i 1.33198i −0.745959 0.665992i \(-0.768008\pi\)
0.745959 0.665992i \(-0.231992\pi\)
\(860\) 4.58940 + 3.99459i 0.156497 + 0.136214i
\(861\) 5.02931 2.90367i 0.171398 0.0989569i
\(862\) 7.32132 + 16.0786i 0.249365 + 0.547640i
\(863\) 16.7250i 0.569324i 0.958628 + 0.284662i \(0.0918814\pi\)
−0.958628 + 0.284662i \(0.908119\pi\)
\(864\) −5.01357 2.61995i −0.170565 0.0891326i
\(865\) −11.0878 6.40156i −0.376997 0.217659i
\(866\) 34.8991 + 24.9099i 1.18592 + 0.846473i
\(867\) −14.6984 8.48613i −0.499184 0.288204i
\(868\) −3.12875 + 3.59464i −0.106197 + 0.122010i
\(869\) 1.94120 + 3.36227i 0.0658509 + 0.114057i
\(870\) −33.0259 23.5728i −1.11968 0.799194i
\(871\) 16.4502 18.1185i 0.557393 0.613924i
\(872\) −4.76812 + 16.0412i −0.161469 + 0.543223i
\(873\) 11.5252 6.65406i 0.390068 0.225206i
\(874\) 4.62079 47.8306i 0.156300 1.61789i
\(875\) 3.83506 + 2.21417i 0.129649 + 0.0748528i
\(876\) 1.93217 + 5.62296i 0.0652821 + 0.189982i
\(877\) −14.8841 + 25.7800i −0.502601 + 0.870530i 0.497395 + 0.867524i \(0.334290\pi\)
−0.999995 + 0.00300555i \(0.999043\pi\)
\(878\) 27.4942 12.5193i 0.927883 0.422507i
\(879\) 3.04531i 0.102716i
\(880\) 0.927659 + 6.66159i 0.0312714 + 0.224562i
\(881\) 22.0037 + 38.1115i 0.741323 + 1.28401i 0.951893 + 0.306431i \(0.0991349\pi\)
−0.210569 + 0.977579i \(0.567532\pi\)
\(882\) 0.865157 8.95540i 0.0291313 0.301544i
\(883\) 11.8178i 0.397702i −0.980030 0.198851i \(-0.936279\pi\)
0.980030 0.198851i \(-0.0637210\pi\)
\(884\) 1.10313 + 0.474467i 0.0371023 + 0.0159581i
\(885\) 31.0455i 1.04358i
\(886\) 0.950997 + 0.0918733i 0.0319494 + 0.00308654i
\(887\) −22.7394 39.3857i −0.763513 1.32244i −0.941029 0.338325i \(-0.890140\pi\)
0.177516 0.984118i \(-0.443194\pi\)
\(888\) −2.30549 + 2.18369i −0.0773672 + 0.0732798i
\(889\) 0.966203i 0.0324054i
\(890\) 21.3548 + 46.8981i 0.715815 + 1.57203i
\(891\) −0.296401 + 0.513382i −0.00992981 + 0.0171989i
\(892\) −51.3215 + 17.6352i −1.71837 + 0.590471i
\(893\) −10.1067 5.83508i −0.338206 0.195263i
\(894\) −12.1886 1.17750i −0.407647 0.0393817i
\(895\) 15.9754 9.22340i 0.533998 0.308304i
\(896\) 8.41594 3.29369i 0.281157 0.110034i
\(897\) 5.29933 24.4342i 0.176940 0.815835i
\(898\) 5.43030 7.60793i 0.181212 0.253880i
\(899\) 15.0863 + 26.1302i 0.503155 + 0.871491i
\(900\) −3.99905 + 4.59452i −0.133302 + 0.153151i
\(901\) 0.369348 + 0.213243i 0.0123048 + 0.00710417i
\(902\) −3.54083 + 4.96075i −0.117897 + 0.165175i
\(903\) −0.741959 0.428370i −0.0246909 0.0142553i
\(904\) −2.25202 2.37764i −0.0749012 0.0790791i
\(905\) 6.02775i 0.200369i
\(906\) 17.6276 8.02664i 0.585637 0.266667i
\(907\) 6.77932 3.91404i 0.225104 0.129964i −0.383208 0.923662i \(-0.625181\pi\)
0.608311 + 0.793699i \(0.291847\pi\)
\(908\) −13.5506 + 15.5683i −0.449692 + 0.516653i
\(909\) 15.7113i 0.521110i
\(910\) −11.0031 3.52316i −0.364748 0.116792i
\(911\) 13.0076 0.430963 0.215481 0.976508i \(-0.430868\pi\)
0.215481 + 0.976508i \(0.430868\pi\)
\(912\) −7.36528 + 18.1637i −0.243889 + 0.601460i
\(913\) −4.16624 7.21614i −0.137882 0.238819i
\(914\) −2.29475 5.03958i −0.0759036 0.166695i
\(915\) −37.9942 −1.25605
\(916\) −5.85616 1.14216i −0.193493 0.0377379i
\(917\) 3.46355 5.99904i 0.114376 0.198106i
\(918\) −0.136818 + 0.191684i −0.00451568 + 0.00632652i
\(919\) 18.5684 32.1615i 0.612516 1.06091i −0.378298 0.925684i \(-0.623491\pi\)
0.990815 0.135226i \(-0.0431760\pi\)
\(920\) 54.1080 12.9361i 1.78389 0.426489i
\(921\) 27.6622 15.9708i 0.911502 0.526256i
\(922\) 25.8490 + 18.4502i 0.851293 + 0.607626i
\(923\) −2.68728 + 12.3906i −0.0884530 + 0.407840i
\(924\) −0.307772 0.895670i −0.0101250 0.0294654i
\(925\) 1.70964 + 2.96119i 0.0562127 + 0.0973633i
\(926\) 15.7561 + 1.52216i 0.517779 + 0.0500212i
\(927\) −3.90281 + 6.75986i −0.128185 + 0.222023i
\(928\) −2.40577 57.1693i −0.0789732 1.87668i
\(929\) 38.6967 + 22.3415i 1.26960 + 0.733002i 0.974912 0.222592i \(-0.0714519\pi\)
0.294685 + 0.955594i \(0.404785\pi\)
\(930\) 10.8898 4.95860i 0.357089 0.162599i
\(931\) −31.1736 −1.02167
\(932\) 42.3113 + 8.25218i 1.38595 + 0.270309i
\(933\) −7.35193 + 4.24464i −0.240691 + 0.138963i
\(934\) 22.6957 + 2.19257i 0.742625 + 0.0717430i
\(935\) 0.280009 0.00915726
\(936\) −4.91155 + 8.93737i −0.160539 + 0.292127i
\(937\) 0.432775 0.0141382 0.00706908 0.999975i \(-0.497750\pi\)
0.00706908 + 0.999975i \(0.497750\pi\)
\(938\) −7.63208 0.737315i −0.249196 0.0240742i
\(939\) 20.6538 11.9245i 0.674012 0.389141i
\(940\) 2.58637 13.2611i 0.0843580 0.432528i
\(941\) −9.49891 −0.309656 −0.154828 0.987941i \(-0.549482\pi\)
−0.154828 + 0.987941i \(0.549482\pi\)
\(942\) 26.1549 11.9095i 0.852174 0.388034i
\(943\) 43.6589 + 25.2065i 1.42173 + 0.820835i
\(944\) 34.5334 26.9104i 1.12397 0.875859i
\(945\) 1.13290 1.96224i 0.0368533 0.0638318i
\(946\) 0.894981 + 0.0864617i 0.0290983 + 0.00281111i
\(947\) −26.2258 45.4244i −0.852224 1.47609i −0.879197 0.476458i \(-0.841920\pi\)
0.0269736 0.999636i \(-0.491413\pi\)
\(948\) −12.3876 + 4.25664i −0.402329 + 0.138249i
\(949\) 10.2077 3.27009i 0.331356 0.106151i
\(950\) 17.1780 + 12.2611i 0.557328 + 0.397803i
\(951\) 0.227519 0.131358i 0.00737782 0.00425959i
\(952\) −0.0874867 0.365933i −0.00283546 0.0118600i
\(953\) 17.4435 30.2131i 0.565051 0.978697i −0.431994 0.901877i \(-0.642190\pi\)
0.997045 0.0768206i \(-0.0244769\pi\)
\(954\) −2.10418 + 2.94799i −0.0681254 + 0.0954446i
\(955\) −22.3748 + 38.7543i −0.724032 + 1.25406i
\(956\) 8.97969 46.0415i 0.290424 1.48909i
\(957\) −5.99629 −0.193832
\(958\) 10.6766 + 23.4473i 0.344945 + 0.757546i
\(959\) −1.91096 3.30988i −0.0617080 0.106881i
\(960\) −22.6584 1.23047i −0.731296 0.0397131i
\(961\) 22.1023 0.712976
\(962\) 3.84874 + 4.23787i 0.124088 + 0.136634i
\(963\) 15.6655i 0.504814i
\(964\) 40.5662 + 35.3086i 1.30655 + 1.13721i
\(965\) −17.3491 + 10.0165i −0.558487 + 0.322443i
\(966\) −7.12938 + 3.24633i −0.229384 + 0.104449i
\(967\) 23.1920i 0.745805i −0.927871 0.372902i \(-0.878363\pi\)
0.927871 0.372902i \(-0.121637\pi\)
\(968\) −20.7117 21.8670i −0.665699 0.702831i
\(969\) 0.706666 + 0.407994i 0.0227014 + 0.0131066i
\(970\) 31.0139 43.4508i 0.995795 1.39512i
\(971\) −24.6859 14.2524i −0.792209 0.457382i 0.0485305 0.998822i \(-0.484546\pi\)
−0.840740 + 0.541439i \(0.817880\pi\)
\(972\) −1.50859 1.31307i −0.0483881 0.0421167i
\(973\) 2.81471 + 4.87521i 0.0902353 + 0.156292i
\(974\) −1.55366 + 2.17670i −0.0497824 + 0.0697459i
\(975\) 8.13000 + 7.38138i 0.260368 + 0.236393i
\(976\) −32.9336 42.2628i −1.05418 1.35280i
\(977\) −33.7853 + 19.5060i −1.08089 + 0.624051i −0.931136 0.364673i \(-0.881181\pi\)
−0.149752 + 0.988724i \(0.547848\pi\)
\(978\) −12.7776 1.23441i −0.408582 0.0394720i
\(979\) 6.59503 + 3.80764i 0.210778 + 0.121693i
\(980\) −11.7285 34.1318i −0.374652 1.09030i
\(981\) −2.95833 + 5.12397i −0.0944521 + 0.163596i
\(982\) −12.0877 26.5462i −0.385734 0.847124i
\(983\) 1.48214i 0.0472730i 0.999721 + 0.0236365i \(0.00752443\pi\)
−0.999721 + 0.0236365i \(0.992476\pi\)
\(984\) −14.1403 14.9290i −0.450775 0.475919i
\(985\) 7.46266 + 12.9257i 0.237780 + 0.411847i
\(986\) −2.37112 0.229067i −0.0755118 0.00729499i
\(987\) 1.90248i 0.0605566i
\(988\) 32.4597 + 13.9612i 1.03268 + 0.444166i
\(989\) 7.43727i 0.236492i
\(990\) −0.228663 + 2.36693i −0.00726739 + 0.0752261i
\(991\) 12.0632 + 20.8941i 0.383200 + 0.663722i 0.991518 0.129972i \(-0.0414886\pi\)
−0.608318 + 0.793694i \(0.708155\pi\)
\(992\) 14.9550 + 7.81507i 0.474822 + 0.248129i
\(993\) 31.4245i 0.997225i
\(994\) 3.61530 1.64621i 0.114670 0.0522146i
\(995\) 32.7140 56.6623i 1.03710 1.79632i
\(996\) 26.5864 9.13567i 0.842421 0.289475i
\(997\) −14.7133 8.49471i −0.465974 0.269030i 0.248579 0.968612i \(-0.420036\pi\)
−0.714553 + 0.699581i \(0.753370\pi\)
\(998\) −3.35619 + 34.7406i −0.106238 + 1.09969i
\(999\) −0.972293 + 0.561354i −0.0307620 + 0.0177604i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.bk.b.205.12 yes 48
3.2 odd 2 936.2.dg.e.829.13 48
4.3 odd 2 1248.2.ca.b.49.14 48
8.3 odd 2 1248.2.ca.b.49.11 48
8.5 even 2 inner 312.2.bk.b.205.3 48
13.4 even 6 inner 312.2.bk.b.277.3 yes 48
24.5 odd 2 936.2.dg.e.829.22 48
39.17 odd 6 936.2.dg.e.901.22 48
52.43 odd 6 1248.2.ca.b.433.11 48
104.43 odd 6 1248.2.ca.b.433.14 48
104.69 even 6 inner 312.2.bk.b.277.12 yes 48
312.173 odd 6 936.2.dg.e.901.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.3 48 8.5 even 2 inner
312.2.bk.b.205.12 yes 48 1.1 even 1 trivial
312.2.bk.b.277.3 yes 48 13.4 even 6 inner
312.2.bk.b.277.12 yes 48 104.69 even 6 inner
936.2.dg.e.829.13 48 3.2 odd 2
936.2.dg.e.829.22 48 24.5 odd 2
936.2.dg.e.901.13 48 312.173 odd 6
936.2.dg.e.901.22 48 39.17 odd 6
1248.2.ca.b.49.11 48 8.3 odd 2
1248.2.ca.b.49.14 48 4.3 odd 2
1248.2.ca.b.433.11 48 52.43 odd 6
1248.2.ca.b.433.14 48 104.43 odd 6