Properties

Label 312.2.bt.b
Level 312312
Weight 22
Character orbit 312.bt
Analytic conductor 2.4912.491
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,2,Mod(19,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 6, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 312=23313 312 = 2^{3} \cdot 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 312.bt (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.491332543062.49133254306
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ122ζ12+1)q2ζ122q3+(2ζ1232ζ12)q4+(ζ122+ζ12)q5+(ζ1231)q6+(2ζ123+ζ122++1)q7++(ζ1234ζ122++1)q99+O(q100) q + ( - \zeta_{12}^{2} - \zeta_{12} + 1) q^{2} - \zeta_{12}^{2} q^{3} + (2 \zeta_{12}^{3} - 2 \zeta_{12}) q^{4} + (\zeta_{12}^{2} + \zeta_{12}) q^{5} + (\zeta_{12}^{3} - 1) q^{6} + (2 \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots + 1) q^{7} + \cdots + (\zeta_{12}^{3} - 4 \zeta_{12}^{2} + \cdots + 1) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q3+2q54q6+6q7+8q82q9+2q1010q11+14q13+12q14+2q15+8q166q17+2q186q198q20+8q222q23+4q99+O(q100) 4 q + 2 q^{2} - 2 q^{3} + 2 q^{5} - 4 q^{6} + 6 q^{7} + 8 q^{8} - 2 q^{9} + 2 q^{10} - 10 q^{11} + 14 q^{13} + 12 q^{14} + 2 q^{15} + 8 q^{16} - 6 q^{17} + 2 q^{18} - 6 q^{19} - 8 q^{20} + 8 q^{22} - 2 q^{23}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/312Z)×\left(\mathbb{Z}/312\mathbb{Z}\right)^\times.

nn 7979 145145 157157 209209
χ(n)\chi(n) 1-1 ζ12\zeta_{12} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
1.36603 + 0.366025i −0.500000 + 0.866025i 1.73205 + 1.00000i −0.366025 0.366025i −1.00000 + 1.00000i 2.36603 + 0.633975i 2.00000 + 2.00000i −0.500000 0.866025i −0.366025 0.633975i
67.1 −0.366025 1.36603i −0.500000 0.866025i −1.73205 + 1.00000i 1.36603 + 1.36603i −1.00000 + 1.00000i 0.633975 + 2.36603i 2.00000 + 2.00000i −0.500000 + 0.866025i 1.36603 2.36603i
115.1 1.36603 0.366025i −0.500000 0.866025i 1.73205 1.00000i −0.366025 + 0.366025i −1.00000 1.00000i 2.36603 0.633975i 2.00000 2.00000i −0.500000 + 0.866025i −0.366025 + 0.633975i
163.1 −0.366025 + 1.36603i −0.500000 + 0.866025i −1.73205 1.00000i 1.36603 1.36603i −1.00000 1.00000i 0.633975 2.36603i 2.00000 2.00000i −0.500000 0.866025i 1.36603 + 2.36603i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.u even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.2.bt.b yes 4
3.b odd 2 1 936.2.ed.a 4
8.d odd 2 1 312.2.bt.a 4
13.f odd 12 1 312.2.bt.a 4
24.f even 2 1 936.2.ed.b 4
39.k even 12 1 936.2.ed.b 4
104.u even 12 1 inner 312.2.bt.b yes 4
312.bq odd 12 1 936.2.ed.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.bt.a 4 8.d odd 2 1
312.2.bt.a 4 13.f odd 12 1
312.2.bt.b yes 4 1.a even 1 1 trivial
312.2.bt.b yes 4 104.u even 12 1 inner
936.2.ed.a 4 3.b odd 2 1
936.2.ed.a 4 312.bq odd 12 1
936.2.ed.b 4 24.f even 2 1
936.2.ed.b 4 39.k even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T542T53+2T52+2T5+1 T_{5}^{4} - 2T_{5}^{3} + 2T_{5}^{2} + 2T_{5} + 1 acting on S2new(312,[χ])S_{2}^{\mathrm{new}}(312, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
33 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
55 T42T3++1 T^{4} - 2 T^{3} + \cdots + 1 Copy content Toggle raw display
77 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
1111 T4+10T3++484 T^{4} + 10 T^{3} + \cdots + 484 Copy content Toggle raw display
1313 (T27T+13)2 (T^{2} - 7 T + 13)^{2} Copy content Toggle raw display
1717 T4+6T3++1 T^{4} + 6 T^{3} + \cdots + 1 Copy content Toggle raw display
1919 T4+6T3++324 T^{4} + 6 T^{3} + \cdots + 324 Copy content Toggle raw display
2323 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
2929 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
3131 (T28T+32)2 (T^{2} - 8 T + 32)^{2} Copy content Toggle raw display
3737 T4+4T3++1 T^{4} + 4 T^{3} + \cdots + 1 Copy content Toggle raw display
4141 T4+10T3++625 T^{4} + 10 T^{3} + \cdots + 625 Copy content Toggle raw display
4343 T4+6T3++4 T^{4} + 6 T^{3} + \cdots + 4 Copy content Toggle raw display
4747 T416T3++676 T^{4} - 16 T^{3} + \cdots + 676 Copy content Toggle raw display
5353 (T2+75)2 (T^{2} + 75)^{2} Copy content Toggle raw display
5959 T4+32T3++21904 T^{4} + 32 T^{3} + \cdots + 21904 Copy content Toggle raw display
6161 T424T3++529 T^{4} - 24 T^{3} + \cdots + 529 Copy content Toggle raw display
6767 T418T3++4356 T^{4} - 18 T^{3} + \cdots + 4356 Copy content Toggle raw display
7171 T4+10T3++2500 T^{4} + 10 T^{3} + \cdots + 2500 Copy content Toggle raw display
7373 T414T3++169 T^{4} - 14 T^{3} + \cdots + 169 Copy content Toggle raw display
7979 T4+224T2+256 T^{4} + 224T^{2} + 256 Copy content Toggle raw display
8383 T4+4T3++8836 T^{4} + 4 T^{3} + \cdots + 8836 Copy content Toggle raw display
8989 T4+26T3++484 T^{4} + 26 T^{3} + \cdots + 484 Copy content Toggle raw display
9797 T430T3++324 T^{4} - 30 T^{3} + \cdots + 324 Copy content Toggle raw display
show more
show less