Properties

Label 312.4.m.a.181.6
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.6
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.80130 + 0.390824i) q^{2} +3.00000i q^{3} +(7.69451 - 2.18963i) q^{4} +14.7907 q^{5} +(-1.17247 - 8.40389i) q^{6} +0.217747i q^{7} +(-20.6988 + 9.14099i) q^{8} -9.00000 q^{9} +(-41.4331 + 5.78056i) q^{10} +43.4416 q^{11} +(6.56888 + 23.0835i) q^{12} +(23.9363 + 40.2995i) q^{13} +(-0.0851006 - 0.609973i) q^{14} +44.3721i q^{15} +(54.4111 - 33.6962i) q^{16} -16.1502 q^{17} +(25.2117 - 3.51742i) q^{18} +72.7567 q^{19} +(113.807 - 32.3861i) q^{20} -0.653240 q^{21} +(-121.693 + 16.9780i) q^{22} -83.4483 q^{23} +(-27.4230 - 62.0965i) q^{24} +93.7650 q^{25} +(-82.8028 - 103.536i) q^{26} -27.0000i q^{27} +(0.476784 + 1.67545i) q^{28} -128.661i q^{29} +(-17.3417 - 124.299i) q^{30} -306.050i q^{31} +(-139.252 + 115.658i) q^{32} +130.325i q^{33} +(45.2414 - 6.31187i) q^{34} +3.22063i q^{35} +(-69.2506 + 19.7066i) q^{36} +340.290 q^{37} +(-203.813 + 28.4351i) q^{38} +(-120.899 + 71.8090i) q^{39} +(-306.151 + 135.202i) q^{40} +401.502i q^{41} +(1.82992 - 0.255302i) q^{42} +32.3051i q^{43} +(334.262 - 95.1210i) q^{44} -133.116 q^{45} +(233.763 - 32.6136i) q^{46} +118.996i q^{47} +(101.089 + 163.233i) q^{48} +342.953 q^{49} +(-262.664 + 36.6456i) q^{50} -48.4505i q^{51} +(272.419 + 257.674i) q^{52} +486.003i q^{53} +(10.5522 + 75.6350i) q^{54} +642.533 q^{55} +(-1.99042 - 4.50711i) q^{56} +218.270i q^{57} +(50.2839 + 360.418i) q^{58} -241.321 q^{59} +(97.1584 + 341.422i) q^{60} +457.486i q^{61} +(119.612 + 857.338i) q^{62} -1.95972i q^{63} +(344.885 - 378.416i) q^{64} +(354.036 + 596.058i) q^{65} +(-50.9341 - 365.079i) q^{66} -121.806 q^{67} +(-124.268 + 35.3628i) q^{68} -250.345i q^{69} +(-1.25870 - 9.02193i) q^{70} +251.950i q^{71} +(186.290 - 82.2689i) q^{72} +66.4276i q^{73} +(-953.252 + 132.993i) q^{74} +281.295i q^{75} +(559.828 - 159.310i) q^{76} +9.45927i q^{77} +(310.608 - 248.408i) q^{78} -164.272 q^{79} +(804.778 - 498.391i) q^{80} +81.0000 q^{81} +(-156.917 - 1124.73i) q^{82} -311.484 q^{83} +(-5.02636 + 1.43035i) q^{84} -238.872 q^{85} +(-12.6256 - 90.4962i) q^{86} +385.984 q^{87} +(-899.192 + 397.100i) q^{88} -1009.04i q^{89} +(372.898 - 52.0251i) q^{90} +(-8.77509 + 5.21206i) q^{91} +(-642.094 + 182.721i) q^{92} +918.151 q^{93} +(-46.5064 - 333.342i) q^{94} +1076.12 q^{95} +(-346.975 - 417.757i) q^{96} +433.098i q^{97} +(-960.712 + 134.034i) q^{98} -390.975 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.80130 + 0.390824i −0.990408 + 0.138177i
\(3\) 3.00000i 0.577350i
\(4\) 7.69451 2.18963i 0.961814 0.273703i
\(5\) 14.7907 1.32292 0.661461 0.749980i \(-0.269937\pi\)
0.661461 + 0.749980i \(0.269937\pi\)
\(6\) −1.17247 8.40389i −0.0797766 0.571812i
\(7\) 0.217747i 0.0117572i 0.999983 + 0.00587861i \(0.00187123\pi\)
−0.999983 + 0.00587861i \(0.998129\pi\)
\(8\) −20.6988 + 9.14099i −0.914768 + 0.403979i
\(9\) −9.00000 −0.333333
\(10\) −41.4331 + 5.78056i −1.31023 + 0.182797i
\(11\) 43.4416 1.19074 0.595370 0.803451i \(-0.297005\pi\)
0.595370 + 0.803451i \(0.297005\pi\)
\(12\) 6.56888 + 23.0835i 0.158023 + 0.555304i
\(13\) 23.9363 + 40.2995i 0.510673 + 0.859775i
\(14\) −0.0851006 0.609973i −0.00162458 0.0116444i
\(15\) 44.3721i 0.763789i
\(16\) 54.4111 33.6962i 0.850173 0.526504i
\(17\) −16.1502 −0.230411 −0.115206 0.993342i \(-0.536753\pi\)
−0.115206 + 0.993342i \(0.536753\pi\)
\(18\) 25.2117 3.51742i 0.330136 0.0460590i
\(19\) 72.7567 0.878502 0.439251 0.898364i \(-0.355244\pi\)
0.439251 + 0.898364i \(0.355244\pi\)
\(20\) 113.807 32.3861i 1.27240 0.362088i
\(21\) −0.653240 −0.00678803
\(22\) −121.693 + 16.9780i −1.17932 + 0.164533i
\(23\) −83.4483 −0.756529 −0.378265 0.925698i \(-0.623479\pi\)
−0.378265 + 0.925698i \(0.623479\pi\)
\(24\) −27.4230 62.0965i −0.233237 0.528142i
\(25\) 93.7650 0.750120
\(26\) −82.8028 103.536i −0.624576 0.780964i
\(27\) 27.0000i 0.192450i
\(28\) 0.476784 + 1.67545i 0.00321799 + 0.0113083i
\(29\) 128.661i 0.823855i −0.911217 0.411928i \(-0.864856\pi\)
0.911217 0.411928i \(-0.135144\pi\)
\(30\) −17.3417 124.299i −0.105538 0.756462i
\(31\) 306.050i 1.77317i −0.462566 0.886585i \(-0.653071\pi\)
0.462566 0.886585i \(-0.346929\pi\)
\(32\) −139.252 + 115.658i −0.769267 + 0.638928i
\(33\) 130.325i 0.687474i
\(34\) 45.2414 6.31187i 0.228201 0.0318376i
\(35\) 3.22063i 0.0155539i
\(36\) −69.2506 + 19.7066i −0.320605 + 0.0912345i
\(37\) 340.290 1.51198 0.755990 0.654583i \(-0.227156\pi\)
0.755990 + 0.654583i \(0.227156\pi\)
\(38\) −203.813 + 28.4351i −0.870075 + 0.121389i
\(39\) −120.899 + 71.8090i −0.496391 + 0.294837i
\(40\) −306.151 + 135.202i −1.21017 + 0.534432i
\(41\) 401.502i 1.52937i 0.644405 + 0.764685i \(0.277105\pi\)
−0.644405 + 0.764685i \(0.722895\pi\)
\(42\) 1.82992 0.255302i 0.00672292 0.000937951i
\(43\) 32.3051i 0.114569i 0.998358 + 0.0572847i \(0.0182443\pi\)
−0.998358 + 0.0572847i \(0.981756\pi\)
\(44\) 334.262 95.1210i 1.14527 0.325910i
\(45\) −133.116 −0.440974
\(46\) 233.763 32.6136i 0.749272 0.104535i
\(47\) 118.996i 0.369305i 0.982804 + 0.184652i \(0.0591159\pi\)
−0.982804 + 0.184652i \(0.940884\pi\)
\(48\) 101.089 + 163.233i 0.303977 + 0.490848i
\(49\) 342.953 0.999862
\(50\) −262.664 + 36.6456i −0.742925 + 0.103649i
\(51\) 48.4505i 0.133028i
\(52\) 272.419 + 257.674i 0.726496 + 0.687171i
\(53\) 486.003i 1.25958i 0.776766 + 0.629789i \(0.216859\pi\)
−0.776766 + 0.629789i \(0.783141\pi\)
\(54\) 10.5522 + 75.6350i 0.0265922 + 0.190604i
\(55\) 642.533 1.57526
\(56\) −1.99042 4.50711i −0.00474966 0.0107551i
\(57\) 218.270i 0.507203i
\(58\) 50.2839 + 360.418i 0.113838 + 0.815952i
\(59\) −241.321 −0.532498 −0.266249 0.963904i \(-0.585784\pi\)
−0.266249 + 0.963904i \(0.585784\pi\)
\(60\) 97.1584 + 341.422i 0.209052 + 0.734623i
\(61\) 457.486i 0.960247i 0.877201 + 0.480124i \(0.159408\pi\)
−0.877201 + 0.480124i \(0.840592\pi\)
\(62\) 119.612 + 857.338i 0.245012 + 1.75616i
\(63\) 1.95972i 0.00391907i
\(64\) 344.885 378.416i 0.673603 0.739094i
\(65\) 354.036 + 596.058i 0.675580 + 1.13741i
\(66\) −50.9341 365.079i −0.0949932 0.680880i
\(67\) −121.806 −0.222104 −0.111052 0.993815i \(-0.535422\pi\)
−0.111052 + 0.993815i \(0.535422\pi\)
\(68\) −124.268 + 35.3628i −0.221613 + 0.0630643i
\(69\) 250.345i 0.436782i
\(70\) −1.25870 9.02193i −0.00214919 0.0154047i
\(71\) 251.950i 0.421140i 0.977579 + 0.210570i \(0.0675319\pi\)
−0.977579 + 0.210570i \(0.932468\pi\)
\(72\) 186.290 82.2689i 0.304923 0.134660i
\(73\) 66.4276i 0.106504i 0.998581 + 0.0532518i \(0.0169586\pi\)
−0.998581 + 0.0532518i \(0.983041\pi\)
\(74\) −953.252 + 132.993i −1.49748 + 0.208921i
\(75\) 281.295i 0.433082i
\(76\) 559.828 159.310i 0.844956 0.240449i
\(77\) 9.45927i 0.0139998i
\(78\) 310.608 248.408i 0.450890 0.360599i
\(79\) −164.272 −0.233950 −0.116975 0.993135i \(-0.537320\pi\)
−0.116975 + 0.993135i \(0.537320\pi\)
\(80\) 804.778 498.391i 1.12471 0.696523i
\(81\) 81.0000 0.111111
\(82\) −156.917 1124.73i −0.211324 1.51470i
\(83\) −311.484 −0.411925 −0.205962 0.978560i \(-0.566032\pi\)
−0.205962 + 0.978560i \(0.566032\pi\)
\(84\) −5.02636 + 1.43035i −0.00652883 + 0.00185791i
\(85\) −238.872 −0.304816
\(86\) −12.6256 90.4962i −0.0158309 0.113470i
\(87\) 385.984 0.475653
\(88\) −899.192 + 397.100i −1.08925 + 0.481034i
\(89\) 1009.04i 1.20178i −0.799333 0.600889i \(-0.794813\pi\)
0.799333 0.600889i \(-0.205187\pi\)
\(90\) 372.898 52.0251i 0.436744 0.0609325i
\(91\) −8.77509 + 5.21206i −0.0101086 + 0.00600409i
\(92\) −642.094 + 182.721i −0.727640 + 0.207065i
\(93\) 918.151 1.02374
\(94\) −46.5064 333.342i −0.0510295 0.365762i
\(95\) 1076.12 1.16219
\(96\) −346.975 417.757i −0.368885 0.444136i
\(97\) 433.098i 0.453345i 0.973971 + 0.226673i \(0.0727847\pi\)
−0.973971 + 0.226673i \(0.927215\pi\)
\(98\) −960.712 + 134.034i −0.990271 + 0.138158i
\(99\) −390.975 −0.396913
\(100\) 721.476 205.310i 0.721476 0.205310i
\(101\) 1615.63i 1.59169i 0.605499 + 0.795846i \(0.292974\pi\)
−0.605499 + 0.795846i \(0.707026\pi\)
\(102\) 18.9356 + 135.724i 0.0183814 + 0.131752i
\(103\) 1484.34 1.41996 0.709981 0.704221i \(-0.248703\pi\)
0.709981 + 0.704221i \(0.248703\pi\)
\(104\) −863.832 615.352i −0.814478 0.580194i
\(105\) −9.66188 −0.00898003
\(106\) −189.942 1361.44i −0.174045 1.24750i
\(107\) 88.6747i 0.0801169i 0.999197 + 0.0400585i \(0.0127544\pi\)
−0.999197 + 0.0400585i \(0.987246\pi\)
\(108\) −59.1199 207.752i −0.0526742 0.185101i
\(109\) 1348.39 1.18489 0.592444 0.805612i \(-0.298163\pi\)
0.592444 + 0.805612i \(0.298163\pi\)
\(110\) −1799.92 + 251.117i −1.56015 + 0.217664i
\(111\) 1020.87i 0.872942i
\(112\) 7.33724 + 11.8478i 0.00619022 + 0.00999567i
\(113\) −1348.96 −1.12300 −0.561501 0.827476i \(-0.689776\pi\)
−0.561501 + 0.827476i \(0.689776\pi\)
\(114\) −85.3052 611.439i −0.0700839 0.502338i
\(115\) −1234.26 −1.00083
\(116\) −281.720 989.986i −0.225492 0.792396i
\(117\) −215.427 362.696i −0.170224 0.286592i
\(118\) 676.012 94.3142i 0.527390 0.0735790i
\(119\) 3.51665i 0.00270900i
\(120\) −405.605 918.452i −0.308554 0.698690i
\(121\) 556.175 0.417863
\(122\) −178.797 1281.55i −0.132684 0.951036i
\(123\) −1204.51 −0.882982
\(124\) −670.136 2354.91i −0.485323 1.70546i
\(125\) −461.987 −0.330571
\(126\) 0.765906 + 5.48976i 0.000541526 + 0.00388148i
\(127\) 221.289 0.154616 0.0773080 0.997007i \(-0.475368\pi\)
0.0773080 + 0.997007i \(0.475368\pi\)
\(128\) −818.229 + 1194.84i −0.565015 + 0.825080i
\(129\) −96.9153 −0.0661467
\(130\) −1224.71 1531.37i −0.826264 1.03315i
\(131\) 2109.42i 1.40688i −0.710756 0.703439i \(-0.751647\pi\)
0.710756 0.703439i \(-0.248353\pi\)
\(132\) 285.363 + 1002.79i 0.188164 + 0.661223i
\(133\) 15.8425i 0.0103287i
\(134\) 341.215 47.6047i 0.219974 0.0306897i
\(135\) 399.349i 0.254596i
\(136\) 334.290 147.629i 0.210773 0.0930812i
\(137\) 795.708i 0.496219i 0.968732 + 0.248109i \(0.0798092\pi\)
−0.968732 + 0.248109i \(0.920191\pi\)
\(138\) 97.8408 + 701.290i 0.0603533 + 0.432592i
\(139\) 2231.81i 1.36187i 0.732344 + 0.680935i \(0.238426\pi\)
−0.732344 + 0.680935i \(0.761574\pi\)
\(140\) 7.05197 + 24.7812i 0.00425715 + 0.0149599i
\(141\) −356.987 −0.213218
\(142\) −98.4679 705.785i −0.0581919 0.417100i
\(143\) 1039.83 + 1750.68i 0.608079 + 1.02377i
\(144\) −489.700 + 303.266i −0.283391 + 0.175501i
\(145\) 1902.99i 1.08990i
\(146\) −25.9615 186.083i −0.0147164 0.105482i
\(147\) 1028.86i 0.577270i
\(148\) 2618.36 745.107i 1.45424 0.413834i
\(149\) 1185.70 0.651924 0.325962 0.945383i \(-0.394312\pi\)
0.325962 + 0.945383i \(0.394312\pi\)
\(150\) −109.937 787.991i −0.0598421 0.428928i
\(151\) 2242.51i 1.20856i −0.796772 0.604280i \(-0.793461\pi\)
0.796772 0.604280i \(-0.206539\pi\)
\(152\) −1505.98 + 665.069i −0.803626 + 0.354896i
\(153\) 145.352 0.0768038
\(154\) −3.69691 26.4982i −0.00193445 0.0138655i
\(155\) 4526.70i 2.34576i
\(156\) −773.021 + 817.258i −0.396738 + 0.419443i
\(157\) 2516.38i 1.27917i −0.768721 0.639584i \(-0.779107\pi\)
0.768721 0.639584i \(-0.220893\pi\)
\(158\) 460.175 64.2015i 0.231706 0.0323265i
\(159\) −1458.01 −0.727218
\(160\) −2059.64 + 1710.67i −1.01768 + 0.845251i
\(161\) 18.1706i 0.00889468i
\(162\) −226.905 + 31.6567i −0.110045 + 0.0153530i
\(163\) −3173.77 −1.52509 −0.762543 0.646937i \(-0.776049\pi\)
−0.762543 + 0.646937i \(0.776049\pi\)
\(164\) 879.141 + 3089.37i 0.418594 + 1.47097i
\(165\) 1927.60i 0.909474i
\(166\) 872.558 121.735i 0.407974 0.0569186i
\(167\) 353.974i 0.164020i −0.996632 0.0820101i \(-0.973866\pi\)
0.996632 0.0820101i \(-0.0261340\pi\)
\(168\) 13.5213 5.97126i 0.00620948 0.00274222i
\(169\) −1051.10 + 1929.25i −0.478426 + 0.878128i
\(170\) 669.152 93.3571i 0.301892 0.0421186i
\(171\) −654.811 −0.292834
\(172\) 70.7361 + 248.572i 0.0313580 + 0.110194i
\(173\) 1515.74i 0.666126i −0.942905 0.333063i \(-0.891918\pi\)
0.942905 0.333063i \(-0.108082\pi\)
\(174\) −1081.25 + 150.852i −0.471090 + 0.0657244i
\(175\) 20.4170i 0.00881933i
\(176\) 2363.71 1463.82i 1.01234 0.626929i
\(177\) 723.964i 0.307438i
\(178\) 394.358 + 2826.62i 0.166058 + 1.19025i
\(179\) 4704.22i 1.96430i −0.188094 0.982151i \(-0.560231\pi\)
0.188094 0.982151i \(-0.439769\pi\)
\(180\) −1024.27 + 291.475i −0.424135 + 0.120696i
\(181\) 1503.98i 0.617623i 0.951123 + 0.308812i \(0.0999313\pi\)
−0.951123 + 0.308812i \(0.900069\pi\)
\(182\) 22.5446 18.0300i 0.00918197 0.00734327i
\(183\) −1372.46 −0.554399
\(184\) 1727.28 762.800i 0.692049 0.305622i
\(185\) 5033.12 2.00023
\(186\) −2572.01 + 358.835i −1.01392 + 0.141457i
\(187\) −701.590 −0.274360
\(188\) 260.556 + 915.615i 0.101080 + 0.355202i
\(189\) 5.87916 0.00226268
\(190\) −3014.54 + 420.575i −1.15104 + 0.160588i
\(191\) −1874.17 −0.710002 −0.355001 0.934866i \(-0.615519\pi\)
−0.355001 + 0.934866i \(0.615519\pi\)
\(192\) 1135.25 + 1034.65i 0.426716 + 0.388905i
\(193\) 533.681i 0.199043i −0.995035 0.0995213i \(-0.968269\pi\)
0.995035 0.0995213i \(-0.0317311\pi\)
\(194\) −169.265 1213.24i −0.0626419 0.448997i
\(195\) −1788.18 + 1062.11i −0.656687 + 0.390046i
\(196\) 2638.85 750.938i 0.961681 0.273666i
\(197\) 3695.72 1.33659 0.668297 0.743894i \(-0.267023\pi\)
0.668297 + 0.743894i \(0.267023\pi\)
\(198\) 1095.24 152.802i 0.393106 0.0548444i
\(199\) −2806.99 −0.999909 −0.499955 0.866052i \(-0.666650\pi\)
−0.499955 + 0.866052i \(0.666650\pi\)
\(200\) −1940.83 + 857.106i −0.686186 + 0.303033i
\(201\) 365.418i 0.128232i
\(202\) −631.426 4525.85i −0.219935 1.57642i
\(203\) 28.0156 0.00968624
\(204\) −106.089 372.803i −0.0364102 0.127948i
\(205\) 5938.51i 2.02324i
\(206\) −4158.07 + 580.115i −1.40634 + 0.196206i
\(207\) 751.035 0.252176
\(208\) 2660.34 + 1386.18i 0.886835 + 0.462086i
\(209\) 3160.67 1.04607
\(210\) 27.0658 3.77610i 0.00889389 0.00124084i
\(211\) 2762.68i 0.901377i −0.892681 0.450688i \(-0.851179\pi\)
0.892681 0.450688i \(-0.148821\pi\)
\(212\) 1064.17 + 3739.56i 0.344751 + 1.21148i
\(213\) −755.849 −0.243145
\(214\) −34.6562 248.404i −0.0110703 0.0793484i
\(215\) 477.816i 0.151566i
\(216\) 246.807 + 558.869i 0.0777457 + 0.176047i
\(217\) 66.6415 0.0208475
\(218\) −3777.25 + 526.985i −1.17352 + 0.163724i
\(219\) −199.283 −0.0614899
\(220\) 4943.97 1406.91i 1.51510 0.431153i
\(221\) −386.576 650.844i −0.117665 0.198102i
\(222\) −398.980 2859.76i −0.120621 0.864569i
\(223\) 3098.36i 0.930409i −0.885203 0.465205i \(-0.845981\pi\)
0.885203 0.465205i \(-0.154019\pi\)
\(224\) −25.1842 30.3217i −0.00751201 0.00904444i
\(225\) −843.885 −0.250040
\(226\) 3778.83 527.205i 1.11223 0.155173i
\(227\) −1946.86 −0.569241 −0.284621 0.958640i \(-0.591868\pi\)
−0.284621 + 0.958640i \(0.591868\pi\)
\(228\) 477.930 + 1679.48i 0.138823 + 0.487835i
\(229\) 6878.01 1.98477 0.992384 0.123180i \(-0.0393094\pi\)
0.992384 + 0.123180i \(0.0393094\pi\)
\(230\) 3457.52 482.378i 0.991228 0.138292i
\(231\) −28.3778 −0.00808278
\(232\) 1176.09 + 2663.14i 0.332820 + 0.753637i
\(233\) −1655.20 −0.465388 −0.232694 0.972550i \(-0.574754\pi\)
−0.232694 + 0.972550i \(0.574754\pi\)
\(234\) 745.225 + 931.824i 0.208192 + 0.260321i
\(235\) 1760.03i 0.488561i
\(236\) −1856.85 + 528.404i −0.512164 + 0.145746i
\(237\) 492.816i 0.135071i
\(238\) 1.37439 + 9.85117i 0.000374321 + 0.00268301i
\(239\) 1933.18i 0.523208i 0.965175 + 0.261604i \(0.0842515\pi\)
−0.965175 + 0.261604i \(0.915748\pi\)
\(240\) 1495.17 + 2414.33i 0.402138 + 0.649353i
\(241\) 1476.23i 0.394575i −0.980346 0.197288i \(-0.936787\pi\)
0.980346 0.197288i \(-0.0632133\pi\)
\(242\) −1558.01 + 217.367i −0.413855 + 0.0577391i
\(243\) 243.000i 0.0641500i
\(244\) 1001.72 + 3520.13i 0.262823 + 0.923580i
\(245\) 5072.51 1.32274
\(246\) 3374.18 470.750i 0.874512 0.122008i
\(247\) 1741.53 + 2932.06i 0.448627 + 0.755314i
\(248\) 2797.60 + 6334.89i 0.716323 + 1.62204i
\(249\) 934.451i 0.237825i
\(250\) 1294.16 180.556i 0.327400 0.0456774i
\(251\) 6677.27i 1.67915i 0.543247 + 0.839573i \(0.317195\pi\)
−0.543247 + 0.839573i \(0.682805\pi\)
\(252\) −4.29106 15.0791i −0.00107266 0.00376942i
\(253\) −3625.13 −0.900830
\(254\) −619.896 + 86.4850i −0.153133 + 0.0213644i
\(255\) 716.617i 0.175986i
\(256\) 1825.13 3666.90i 0.445588 0.895238i
\(257\) −6716.94 −1.63032 −0.815158 0.579238i \(-0.803350\pi\)
−0.815158 + 0.579238i \(0.803350\pi\)
\(258\) 271.489 37.8768i 0.0655122 0.00913996i
\(259\) 74.0969i 0.0177767i
\(260\) 4029.28 + 3811.17i 0.961097 + 0.909073i
\(261\) 1157.95i 0.274618i
\(262\) 824.412 + 5909.11i 0.194398 + 1.39338i
\(263\) −1746.72 −0.409534 −0.204767 0.978811i \(-0.565644\pi\)
−0.204767 + 0.978811i \(0.565644\pi\)
\(264\) −1191.30 2697.58i −0.277725 0.628880i
\(265\) 7188.33i 1.66632i
\(266\) −6.19164 44.3796i −0.00142720 0.0102297i
\(267\) 3027.12 0.693846
\(268\) −937.238 + 266.710i −0.213623 + 0.0607906i
\(269\) 6634.71i 1.50381i −0.659270 0.751906i \(-0.729135\pi\)
0.659270 0.751906i \(-0.270865\pi\)
\(270\) 156.075 + 1118.69i 0.0351794 + 0.252154i
\(271\) 7302.89i 1.63697i −0.574527 0.818486i \(-0.694814\pi\)
0.574527 0.818486i \(-0.305186\pi\)
\(272\) −878.748 + 544.200i −0.195889 + 0.121312i
\(273\) −15.6362 26.3253i −0.00346646 0.00583618i
\(274\) −310.982 2229.01i −0.0685661 0.491459i
\(275\) 4073.31 0.893199
\(276\) −548.162 1926.28i −0.119549 0.420103i
\(277\) 6130.45i 1.32976i 0.746951 + 0.664879i \(0.231517\pi\)
−0.746951 + 0.664879i \(0.768483\pi\)
\(278\) −872.246 6251.97i −0.188179 1.34881i
\(279\) 2754.45i 0.591057i
\(280\) −29.4397 66.6633i −0.00628343 0.0142282i
\(281\) 6601.16i 1.40140i −0.713458 0.700698i \(-0.752872\pi\)
0.713458 0.700698i \(-0.247128\pi\)
\(282\) 1000.03 139.519i 0.211173 0.0294619i
\(283\) 4058.19i 0.852417i −0.904625 0.426209i \(-0.859849\pi\)
0.904625 0.426209i \(-0.140151\pi\)
\(284\) 551.675 + 1938.63i 0.115267 + 0.405058i
\(285\) 3228.37i 0.670990i
\(286\) −3597.09 4497.77i −0.743707 0.929926i
\(287\) −87.4258 −0.0179811
\(288\) 1253.27 1040.92i 0.256422 0.212976i
\(289\) −4652.17 −0.946911
\(290\) 743.735 + 5330.84i 0.150599 + 1.07944i
\(291\) −1299.30 −0.261739
\(292\) 145.452 + 511.128i 0.0291504 + 0.102437i
\(293\) 5382.33 1.07317 0.536585 0.843846i \(-0.319714\pi\)
0.536585 + 0.843846i \(0.319714\pi\)
\(294\) −402.102 2882.13i −0.0797656 0.571733i
\(295\) −3569.31 −0.704452
\(296\) −7043.60 + 3110.58i −1.38311 + 0.610808i
\(297\) 1172.92i 0.229158i
\(298\) −3321.51 + 463.402i −0.645670 + 0.0900810i
\(299\) −1997.45 3362.93i −0.386339 0.650445i
\(300\) 615.931 + 2164.43i 0.118536 + 0.416545i
\(301\) −7.03433 −0.00134702
\(302\) 876.426 + 6281.93i 0.166995 + 1.19697i
\(303\) −4846.88 −0.918964
\(304\) 3958.77 2451.63i 0.746879 0.462534i
\(305\) 6766.54i 1.27033i
\(306\) −407.173 + 56.8069i −0.0760670 + 0.0106125i
\(307\) 6340.17 1.17867 0.589336 0.807888i \(-0.299389\pi\)
0.589336 + 0.807888i \(0.299389\pi\)
\(308\) 20.7123 + 72.7845i 0.00383179 + 0.0134652i
\(309\) 4453.01i 0.819816i
\(310\) 1769.14 + 12680.6i 0.324131 + 2.32326i
\(311\) −5140.97 −0.937356 −0.468678 0.883369i \(-0.655270\pi\)
−0.468678 + 0.883369i \(0.655270\pi\)
\(312\) 1846.05 2591.50i 0.334975 0.470239i
\(313\) −10059.6 −1.81662 −0.908309 0.418300i \(-0.862626\pi\)
−0.908309 + 0.418300i \(0.862626\pi\)
\(314\) 983.463 + 7049.14i 0.176752 + 1.26690i
\(315\) 28.9857i 0.00518462i
\(316\) −1263.99 + 359.695i −0.225016 + 0.0640329i
\(317\) 3866.52 0.685064 0.342532 0.939506i \(-0.388716\pi\)
0.342532 + 0.939506i \(0.388716\pi\)
\(318\) 4084.31 569.825i 0.720242 0.100485i
\(319\) 5589.26i 0.980998i
\(320\) 5101.09 5597.04i 0.891123 0.977763i
\(321\) −266.024 −0.0462555
\(322\) 7.10150 + 50.9012i 0.00122904 + 0.00880936i
\(323\) −1175.03 −0.202417
\(324\) 623.256 177.360i 0.106868 0.0304115i
\(325\) 2244.39 + 3778.69i 0.383066 + 0.644935i
\(326\) 8890.67 1240.39i 1.51046 0.210732i
\(327\) 4045.18i 0.684095i
\(328\) −3670.13 8310.64i −0.617833 1.39902i
\(329\) −25.9109 −0.00434199
\(330\) −753.351 5399.77i −0.125669 0.900750i
\(331\) −2632.41 −0.437132 −0.218566 0.975822i \(-0.570138\pi\)
−0.218566 + 0.975822i \(0.570138\pi\)
\(332\) −2396.71 + 682.033i −0.396195 + 0.112745i
\(333\) −3062.61 −0.503993
\(334\) 138.342 + 991.587i 0.0226638 + 0.162447i
\(335\) −1801.60 −0.293826
\(336\) −35.5435 + 22.0117i −0.00577100 + 0.00357392i
\(337\) −2056.36 −0.332394 −0.166197 0.986093i \(-0.553149\pi\)
−0.166197 + 0.986093i \(0.553149\pi\)
\(338\) 2190.45 5815.19i 0.352500 0.935812i
\(339\) 4046.87i 0.648365i
\(340\) −1838.01 + 523.042i −0.293176 + 0.0834291i
\(341\) 13295.3i 2.11139i
\(342\) 1834.32 255.916i 0.290025 0.0404630i
\(343\) 149.364i 0.0235128i
\(344\) −295.301 668.679i −0.0462836 0.104804i
\(345\) 3702.78i 0.577829i
\(346\) 592.389 + 4246.04i 0.0920434 + 0.659736i
\(347\) 3256.42i 0.503787i 0.967755 + 0.251893i \(0.0810532\pi\)
−0.967755 + 0.251893i \(0.918947\pi\)
\(348\) 2969.96 845.161i 0.457490 0.130188i
\(349\) −9918.73 −1.52131 −0.760655 0.649156i \(-0.775122\pi\)
−0.760655 + 0.649156i \(0.775122\pi\)
\(350\) −7.97946 57.1941i −0.00121863 0.00873473i
\(351\) 1088.09 646.281i 0.165464 0.0982791i
\(352\) −6049.34 + 5024.38i −0.915997 + 0.760797i
\(353\) 3799.70i 0.572911i −0.958093 0.286456i \(-0.907523\pi\)
0.958093 0.286456i \(-0.0924771\pi\)
\(354\) 282.943 + 2028.04i 0.0424809 + 0.304489i
\(355\) 3726.51i 0.557134i
\(356\) −2209.42 7764.08i −0.328930 1.15589i
\(357\) 10.5499 0.00156404
\(358\) 1838.52 + 13177.9i 0.271422 + 1.94546i
\(359\) 9293.42i 1.36626i −0.730296 0.683131i \(-0.760618\pi\)
0.730296 0.683131i \(-0.239382\pi\)
\(360\) 2755.36 1216.82i 0.403389 0.178144i
\(361\) −1565.46 −0.228234
\(362\) −587.791 4213.09i −0.0853414 0.611699i
\(363\) 1668.53i 0.241253i
\(364\) −56.1076 + 59.3184i −0.00807922 + 0.00854157i
\(365\) 982.511i 0.140896i
\(366\) 3844.66 536.390i 0.549081 0.0766053i
\(367\) 13669.3 1.94423 0.972116 0.234502i \(-0.0753461\pi\)
0.972116 + 0.234502i \(0.0753461\pi\)
\(368\) −4540.51 + 2811.89i −0.643181 + 0.398315i
\(369\) 3613.52i 0.509790i
\(370\) −14099.3 + 1967.07i −1.98104 + 0.276386i
\(371\) −105.826 −0.0148091
\(372\) 7064.73 2010.41i 0.984648 0.280201i
\(373\) 9533.65i 1.32341i −0.749762 0.661707i \(-0.769832\pi\)
0.749762 0.661707i \(-0.230168\pi\)
\(374\) 1965.36 274.198i 0.271728 0.0379103i
\(375\) 1385.96i 0.190855i
\(376\) −1087.74 2463.08i −0.149191 0.337828i
\(377\) 5184.99 3079.68i 0.708330 0.420721i
\(378\) −16.4693 + 2.29772i −0.00224097 + 0.000312650i
\(379\) −12047.2 −1.63278 −0.816390 0.577501i \(-0.804028\pi\)
−0.816390 + 0.577501i \(0.804028\pi\)
\(380\) 8280.25 2356.31i 1.11781 0.318095i
\(381\) 663.867i 0.0892675i
\(382\) 5250.11 732.471i 0.703191 0.0981060i
\(383\) 6788.79i 0.905721i 0.891581 + 0.452860i \(0.149596\pi\)
−0.891581 + 0.452860i \(0.850404\pi\)
\(384\) −3584.53 2454.69i −0.476360 0.326212i
\(385\) 139.909i 0.0185206i
\(386\) 208.575 + 1495.00i 0.0275031 + 0.197133i
\(387\) 290.746i 0.0381898i
\(388\) 948.324 + 3332.48i 0.124082 + 0.436034i
\(389\) 626.526i 0.0816610i 0.999166 + 0.0408305i \(0.0130004\pi\)
−0.999166 + 0.0408305i \(0.987000\pi\)
\(390\) 4594.11 3674.14i 0.596492 0.477044i
\(391\) 1347.70 0.174313
\(392\) −7098.72 + 3134.93i −0.914642 + 0.403923i
\(393\) 6328.26 0.812261
\(394\) −10352.8 + 1444.38i −1.32377 + 0.184687i
\(395\) −2429.70 −0.309497
\(396\) −3008.36 + 856.089i −0.381757 + 0.108637i
\(397\) −6987.59 −0.883368 −0.441684 0.897171i \(-0.645619\pi\)
−0.441684 + 0.897171i \(0.645619\pi\)
\(398\) 7863.20 1097.04i 0.990318 0.138165i
\(399\) −47.5276 −0.00596330
\(400\) 5101.86 3159.53i 0.637732 0.394941i
\(401\) 1330.10i 0.165641i 0.996564 + 0.0828204i \(0.0263928\pi\)
−0.996564 + 0.0828204i \(0.973607\pi\)
\(402\) 142.814 + 1023.64i 0.0177187 + 0.127002i
\(403\) 12333.7 7325.73i 1.52453 0.905510i
\(404\) 3537.62 + 12431.5i 0.435652 + 1.53091i
\(405\) 1198.05 0.146991
\(406\) −78.4799 + 10.9492i −0.00959333 + 0.00133842i
\(407\) 14782.7 1.80038
\(408\) 442.886 + 1002.87i 0.0537405 + 0.121690i
\(409\) 4071.81i 0.492270i 0.969236 + 0.246135i \(0.0791606\pi\)
−0.969236 + 0.246135i \(0.920839\pi\)
\(410\) −2320.91 16635.5i −0.279565 2.00383i
\(411\) −2387.12 −0.286492
\(412\) 11421.3 3250.14i 1.36574 0.388648i
\(413\) 52.5469i 0.00626069i
\(414\) −2103.87 + 293.522i −0.249757 + 0.0348450i
\(415\) −4607.06 −0.544944
\(416\) −7994.16 2843.36i −0.942178 0.335113i
\(417\) −6695.44 −0.786276
\(418\) −8853.98 + 1235.27i −1.03603 + 0.144543i
\(419\) 6626.33i 0.772596i −0.922374 0.386298i \(-0.873754\pi\)
0.922374 0.386298i \(-0.126246\pi\)
\(420\) −74.3435 + 21.1559i −0.00863712 + 0.00245786i
\(421\) −3778.98 −0.437474 −0.218737 0.975784i \(-0.570194\pi\)
−0.218737 + 0.975784i \(0.570194\pi\)
\(422\) 1079.72 + 7739.07i 0.124550 + 0.892730i
\(423\) 1070.96i 0.123102i
\(424\) −4442.55 10059.7i −0.508843 1.15222i
\(425\) −1514.32 −0.172836
\(426\) 2117.36 295.404i 0.240813 0.0335971i
\(427\) −99.6161 −0.0112898
\(428\) 194.165 + 682.309i 0.0219283 + 0.0770576i
\(429\) −5252.03 + 3119.50i −0.591073 + 0.351075i
\(430\) −186.742 1338.50i −0.0209430 0.150112i
\(431\) 5521.55i 0.617085i 0.951211 + 0.308543i \(0.0998412\pi\)
−0.951211 + 0.308543i \(0.900159\pi\)
\(432\) −909.798 1469.10i −0.101326 0.163616i
\(433\) −2290.27 −0.254188 −0.127094 0.991891i \(-0.540565\pi\)
−0.127094 + 0.991891i \(0.540565\pi\)
\(434\) −186.682 + 26.0451i −0.0206476 + 0.00288065i
\(435\) 5708.97 0.629251
\(436\) 10375.2 2952.48i 1.13964 0.324308i
\(437\) −6071.42 −0.664612
\(438\) 558.250 77.8845i 0.0609000 0.00849649i
\(439\) 3708.61 0.403194 0.201597 0.979469i \(-0.435387\pi\)
0.201597 + 0.979469i \(0.435387\pi\)
\(440\) −13299.7 + 5873.38i −1.44099 + 0.636370i
\(441\) −3086.57 −0.333287
\(442\) 1337.28 + 1672.12i 0.143909 + 0.179943i
\(443\) 1552.41i 0.166495i −0.996529 0.0832476i \(-0.973471\pi\)
0.996529 0.0832476i \(-0.0265292\pi\)
\(444\) 2235.32 + 7855.09i 0.238927 + 0.839608i
\(445\) 14924.4i 1.58986i
\(446\) 1210.91 + 8679.41i 0.128561 + 0.921484i
\(447\) 3557.11i 0.376388i
\(448\) 82.3988 + 75.0975i 0.00868969 + 0.00791969i
\(449\) 13095.1i 1.37638i −0.725531 0.688190i \(-0.758406\pi\)
0.725531 0.688190i \(-0.241594\pi\)
\(450\) 2363.97 329.811i 0.247642 0.0345498i
\(451\) 17441.9i 1.82108i
\(452\) −10379.6 + 2953.71i −1.08012 + 0.307369i
\(453\) 6727.52 0.697763
\(454\) 5453.73 760.880i 0.563781 0.0786561i
\(455\) −129.790 + 77.0901i −0.0133728 + 0.00794294i
\(456\) −1995.21 4517.94i −0.204899 0.463974i
\(457\) 11281.8i 1.15480i 0.816462 + 0.577399i \(0.195932\pi\)
−0.816462 + 0.577399i \(0.804068\pi\)
\(458\) −19267.4 + 2688.09i −1.96573 + 0.274250i
\(459\) 436.055i 0.0443427i
\(460\) −9497.02 + 2702.57i −0.962611 + 0.273930i
\(461\) −1825.45 −0.184425 −0.0922123 0.995739i \(-0.529394\pi\)
−0.0922123 + 0.995739i \(0.529394\pi\)
\(462\) 79.4947 11.0907i 0.00800525 0.00111686i
\(463\) 8151.83i 0.818246i −0.912479 0.409123i \(-0.865835\pi\)
0.912479 0.409123i \(-0.134165\pi\)
\(464\) −4335.40 7000.60i −0.433763 0.700419i
\(465\) 13580.1 1.35433
\(466\) 4636.69 646.890i 0.460924 0.0643060i
\(467\) 12778.0i 1.26616i 0.774088 + 0.633078i \(0.218209\pi\)
−0.774088 + 0.633078i \(0.781791\pi\)
\(468\) −2451.78 2319.06i −0.242165 0.229057i
\(469\) 26.5229i 0.00261133i
\(470\) −687.863 4930.37i −0.0675079 0.483874i
\(471\) 7549.15 0.738528
\(472\) 4995.07 2205.92i 0.487112 0.215118i
\(473\) 1403.39i 0.136422i
\(474\) 192.604 + 1380.52i 0.0186637 + 0.133775i
\(475\) 6822.04 0.658982
\(476\) −7.70014 27.0589i −0.000741461 0.00260555i
\(477\) 4374.03i 0.419859i
\(478\) −755.532 5415.40i −0.0722954 0.518190i
\(479\) 8119.97i 0.774553i 0.921964 + 0.387277i \(0.126584\pi\)
−0.921964 + 0.387277i \(0.873416\pi\)
\(480\) −5132.00 6178.92i −0.488006 0.587558i
\(481\) 8145.29 + 13713.5i 0.772127 + 1.29996i
\(482\) 576.948 + 4135.37i 0.0545213 + 0.390790i
\(483\) 54.5118 0.00513534
\(484\) 4279.50 1217.82i 0.401906 0.114370i
\(485\) 6405.83i 0.599740i
\(486\) −94.9702 680.715i −0.00886407 0.0635347i
\(487\) 929.534i 0.0864912i 0.999064 + 0.0432456i \(0.0137698\pi\)
−0.999064 + 0.0432456i \(0.986230\pi\)
\(488\) −4181.88 9469.43i −0.387919 0.878404i
\(489\) 9521.32i 0.880509i
\(490\) −14209.6 + 1982.46i −1.31005 + 0.182772i
\(491\) 5954.02i 0.547253i −0.961836 0.273627i \(-0.911777\pi\)
0.961836 0.273627i \(-0.0882232\pi\)
\(492\) −9268.10 + 2637.42i −0.849264 + 0.241675i
\(493\) 2077.90i 0.189825i
\(494\) −6024.46 7532.94i −0.548691 0.686079i
\(495\) −5782.79 −0.525085
\(496\) −10312.7 16652.5i −0.933580 1.50750i
\(497\) −54.8612 −0.00495143
\(498\) 365.206 + 2617.67i 0.0328620 + 0.235544i
\(499\) −997.844 −0.0895183 −0.0447591 0.998998i \(-0.514252\pi\)
−0.0447591 + 0.998998i \(0.514252\pi\)
\(500\) −3554.77 + 1011.58i −0.317948 + 0.0904784i
\(501\) 1061.92 0.0946971
\(502\) −2609.64 18705.0i −0.232020 1.66304i
\(503\) −10659.5 −0.944893 −0.472447 0.881359i \(-0.656629\pi\)
−0.472447 + 0.881359i \(0.656629\pi\)
\(504\) 17.9138 + 40.5640i 0.00158322 + 0.00358504i
\(505\) 23896.3i 2.10568i
\(506\) 10155.1 1416.79i 0.892189 0.124474i
\(507\) −5787.74 3153.31i −0.506987 0.276220i
\(508\) 1702.71 484.540i 0.148712 0.0423189i
\(509\) −9446.08 −0.822574 −0.411287 0.911506i \(-0.634921\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(510\) 280.071 + 2007.46i 0.0243172 + 0.174297i
\(511\) −14.4644 −0.00125219
\(512\) −3679.61 + 10985.4i −0.317612 + 0.948221i
\(513\) 1964.43i 0.169068i
\(514\) 18816.1 2625.14i 1.61468 0.225272i
\(515\) 21954.4 1.87850
\(516\) −745.716 + 212.208i −0.0636208 + 0.0181046i
\(517\) 5169.37i 0.439746i
\(518\) −28.9589 207.567i −0.00245633 0.0176062i
\(519\) 4547.23 0.384588
\(520\) −12776.7 9101.49i −1.07749 0.767551i
\(521\) 22602.3 1.90063 0.950313 0.311296i \(-0.100763\pi\)
0.950313 + 0.311296i \(0.100763\pi\)
\(522\) −452.555 3243.76i −0.0379460 0.271984i
\(523\) 15055.5i 1.25876i 0.777099 + 0.629379i \(0.216691\pi\)
−0.777099 + 0.629379i \(0.783309\pi\)
\(524\) −4618.84 16231.0i −0.385067 1.35315i
\(525\) −61.2511 −0.00509184
\(526\) 4893.09 682.661i 0.405606 0.0565883i
\(527\) 4942.77i 0.408558i
\(528\) 4391.46 + 7091.12i 0.361958 + 0.584472i
\(529\) −5203.38 −0.427664
\(530\) −2809.37 20136.6i −0.230248 1.65034i
\(531\) 2171.89 0.177499
\(532\) 34.6893 + 121.901i 0.00282701 + 0.00993433i
\(533\) −16180.4 + 9610.50i −1.31491 + 0.781008i
\(534\) −8479.87 + 1183.07i −0.687191 + 0.0958737i
\(535\) 1311.56i 0.105988i
\(536\) 2521.24 1113.43i 0.203174 0.0897253i
\(537\) 14112.7 1.13409
\(538\) 2593.00 + 18585.8i 0.207792 + 1.48939i
\(539\) 14898.4 1.19058
\(540\) −874.426 3072.80i −0.0696839 0.244874i
\(541\) −7560.93 −0.600869 −0.300434 0.953802i \(-0.597132\pi\)
−0.300434 + 0.953802i \(0.597132\pi\)
\(542\) 2854.15 + 20457.6i 0.226192 + 1.62127i
\(543\) −4511.93 −0.356585
\(544\) 2248.95 1867.90i 0.177248 0.147216i
\(545\) 19943.7 1.56751
\(546\) 54.0901 + 67.6338i 0.00423964 + 0.00530121i
\(547\) 23434.6i 1.83179i −0.401415 0.915896i \(-0.631481\pi\)
0.401415 0.915896i \(-0.368519\pi\)
\(548\) 1742.30 + 6122.59i 0.135817 + 0.477270i
\(549\) 4117.37i 0.320082i
\(550\) −11410.5 + 1591.95i −0.884631 + 0.123420i
\(551\) 9360.97i 0.723759i
\(552\) 2288.40 + 5181.85i 0.176451 + 0.399555i
\(553\) 35.7697i 0.00275060i
\(554\) −2395.93 17173.2i −0.183742 1.31700i
\(555\) 15099.4i 1.15483i
\(556\) 4886.84 + 17172.7i 0.372748 + 1.30987i
\(557\) −5076.81 −0.386196 −0.193098 0.981179i \(-0.561854\pi\)
−0.193098 + 0.981179i \(0.561854\pi\)
\(558\) −1076.51 7716.04i −0.0816705 0.585387i
\(559\) −1301.88 + 773.266i −0.0985039 + 0.0585075i
\(560\) 108.523 + 175.238i 0.00818917 + 0.0132235i
\(561\) 2104.77i 0.158402i
\(562\) 2579.89 + 18491.8i 0.193641 + 1.38795i
\(563\) 3458.50i 0.258896i 0.991586 + 0.129448i \(0.0413206\pi\)
−0.991586 + 0.129448i \(0.958679\pi\)
\(564\) −2746.84 + 781.669i −0.205076 + 0.0583585i
\(565\) −19952.0 −1.48564
\(566\) 1586.04 + 11368.2i 0.117785 + 0.844241i
\(567\) 17.6375i 0.00130636i
\(568\) −2303.07 5215.06i −0.170131 0.385245i
\(569\) 262.599 0.0193475 0.00967376 0.999953i \(-0.496921\pi\)
0.00967376 + 0.999953i \(0.496921\pi\)
\(570\) −1261.72 9043.62i −0.0927155 0.664554i
\(571\) 6517.21i 0.477647i 0.971063 + 0.238824i \(0.0767618\pi\)
−0.971063 + 0.238824i \(0.923238\pi\)
\(572\) 11834.3 + 11193.8i 0.865068 + 0.818242i
\(573\) 5622.52i 0.409920i
\(574\) 244.906 34.1681i 0.0178086 0.00248458i
\(575\) −7824.53 −0.567488
\(576\) −3103.96 + 3405.74i −0.224534 + 0.246365i
\(577\) 468.070i 0.0337712i −0.999857 0.0168856i \(-0.994625\pi\)
0.999857 0.0168856i \(-0.00537512\pi\)
\(578\) 13032.1 1818.18i 0.937827 0.130841i
\(579\) 1601.04 0.114917
\(580\) −4166.84 14642.6i −0.298308 1.04828i
\(581\) 67.8245i 0.00484309i
\(582\) 3639.71 507.796i 0.259228 0.0361663i
\(583\) 21112.8i 1.49983i
\(584\) −607.214 1374.97i −0.0430252 0.0974261i
\(585\) −3186.32 5364.53i −0.225193 0.379138i
\(586\) −15077.5 + 2103.54i −1.06288 + 0.148288i
\(587\) −18079.3 −1.27123 −0.635614 0.772007i \(-0.719253\pi\)
−0.635614 + 0.772007i \(0.719253\pi\)
\(588\) 2252.81 + 7916.56i 0.158001 + 0.555227i
\(589\) 22267.2i 1.55773i
\(590\) 9998.70 1394.97i 0.697695 0.0973392i
\(591\) 11087.2i 0.771683i
\(592\) 18515.5 11466.5i 1.28544 0.796063i
\(593\) 12109.1i 0.838552i −0.907859 0.419276i \(-0.862284\pi\)
0.907859 0.419276i \(-0.137716\pi\)
\(594\) 458.407 + 3285.71i 0.0316644 + 0.226960i
\(595\) 52.0137i 0.00358379i
\(596\) 9123.41 2596.25i 0.627030 0.178434i
\(597\) 8420.96i 0.577298i
\(598\) 6909.75 + 8639.90i 0.472510 + 0.590822i
\(599\) −3624.13 −0.247209 −0.123604 0.992332i \(-0.539445\pi\)
−0.123604 + 0.992332i \(0.539445\pi\)
\(600\) −2571.32 5822.49i −0.174956 0.396170i
\(601\) 15755.1 1.06933 0.534664 0.845065i \(-0.320438\pi\)
0.534664 + 0.845065i \(0.320438\pi\)
\(602\) 19.7052 2.74919i 0.00133410 0.000186127i
\(603\) 1096.25 0.0740347
\(604\) −4910.26 17255.0i −0.330787 1.16241i
\(605\) 8226.23 0.552800
\(606\) 13577.5 1894.28i 0.910149 0.126980i
\(607\) 9240.47 0.617890 0.308945 0.951080i \(-0.400024\pi\)
0.308945 + 0.951080i \(0.400024\pi\)
\(608\) −10131.5 + 8414.92i −0.675803 + 0.561299i
\(609\) 84.0467i 0.00559236i
\(610\) −2644.53 18955.1i −0.175531 1.25815i
\(611\) −4795.47 + 2848.32i −0.317519 + 0.188594i
\(612\) 1118.41 318.266i 0.0738709 0.0210214i
\(613\) 8042.08 0.529880 0.264940 0.964265i \(-0.414648\pi\)
0.264940 + 0.964265i \(0.414648\pi\)
\(614\) −17760.7 + 2477.89i −1.16737 + 0.162866i
\(615\) −17815.5 −1.16812
\(616\) −86.4671 195.796i −0.00565562 0.0128066i
\(617\) 14180.1i 0.925236i −0.886558 0.462618i \(-0.846910\pi\)
0.886558 0.462618i \(-0.153090\pi\)
\(618\) −1740.34 12474.2i −0.113280 0.811951i
\(619\) 8596.09 0.558168 0.279084 0.960267i \(-0.409969\pi\)
0.279084 + 0.960267i \(0.409969\pi\)
\(620\) −9911.79 34830.8i −0.642044 2.25619i
\(621\) 2253.10i 0.145594i
\(622\) 14401.4 2009.22i 0.928365 0.129521i
\(623\) 219.715 0.0141296
\(624\) −4158.53 + 7981.03i −0.266786 + 0.512014i
\(625\) −18553.7 −1.18744
\(626\) 28179.9 3931.53i 1.79919 0.251015i
\(627\) 9482.01i 0.603948i
\(628\) −5509.94 19362.4i −0.350113 1.23032i
\(629\) −5495.73 −0.348377
\(630\) 11.3283 + 81.1974i 0.000716396 + 0.00513489i
\(631\) 12694.0i 0.800858i −0.916328 0.400429i \(-0.868861\pi\)
0.916328 0.400429i \(-0.131139\pi\)
\(632\) 3400.24 1501.61i 0.214010 0.0945108i
\(633\) 8288.03 0.520410
\(634\) −10831.3 + 1511.13i −0.678492 + 0.0946602i
\(635\) 3273.02 0.204545
\(636\) −11218.7 + 3192.50i −0.699448 + 0.199042i
\(637\) 8209.03 + 13820.8i 0.510602 + 0.859656i
\(638\) 2184.42 + 15657.2i 0.135551 + 0.971587i
\(639\) 2267.55i 0.140380i
\(640\) −12102.2 + 17672.6i −0.747471 + 1.09152i
\(641\) −9877.43 −0.608635 −0.304318 0.952571i \(-0.598428\pi\)
−0.304318 + 0.952571i \(0.598428\pi\)
\(642\) 745.212 103.969i 0.0458118 0.00639146i
\(643\) −1673.36 −0.102630 −0.0513148 0.998683i \(-0.516341\pi\)
−0.0513148 + 0.998683i \(0.516341\pi\)
\(644\) −39.7868 139.814i −0.00243450 0.00855503i
\(645\) −1433.45 −0.0875068
\(646\) 3291.62 459.231i 0.200475 0.0279694i
\(647\) 9339.92 0.567527 0.283764 0.958894i \(-0.408417\pi\)
0.283764 + 0.958894i \(0.408417\pi\)
\(648\) −1676.61 + 740.420i −0.101641 + 0.0448865i
\(649\) −10483.4 −0.634067
\(650\) −7764.01 9708.05i −0.468507 0.585817i
\(651\) 199.924i 0.0120363i
\(652\) −24420.6 + 6949.38i −1.46685 + 0.417421i
\(653\) 7410.32i 0.444086i −0.975037 0.222043i \(-0.928727\pi\)
0.975037 0.222043i \(-0.0712725\pi\)
\(654\) −1580.95 11331.8i −0.0945263 0.677533i
\(655\) 31199.8i 1.86119i
\(656\) 13529.1 + 21846.2i 0.805218 + 1.30023i
\(657\) 597.848i 0.0355012i
\(658\) 72.5842 10.1266i 0.00430034 0.000599964i
\(659\) 13144.9i 0.777013i 0.921446 + 0.388507i \(0.127009\pi\)
−0.921446 + 0.388507i \(0.872991\pi\)
\(660\) 4220.72 + 14831.9i 0.248926 + 0.874745i
\(661\) −8190.36 −0.481949 −0.240974 0.970531i \(-0.577467\pi\)
−0.240974 + 0.970531i \(0.577467\pi\)
\(662\) 7374.17 1028.81i 0.432938 0.0604016i
\(663\) 1952.53 1159.73i 0.114374 0.0679338i
\(664\) 6447.35 2847.27i 0.376816 0.166409i
\(665\) 234.322i 0.0136641i
\(666\) 8579.27 1196.94i 0.499159 0.0696404i
\(667\) 10736.6i 0.623270i
\(668\) −775.072 2723.66i −0.0448929 0.157757i
\(669\) 9295.07 0.537172
\(670\) 5046.81 704.107i 0.291008 0.0406001i
\(671\) 19873.9i 1.14341i
\(672\) 90.9651 75.5526i 0.00522181 0.00433706i
\(673\) −4991.19 −0.285879 −0.142939 0.989731i \(-0.545655\pi\)
−0.142939 + 0.989731i \(0.545655\pi\)
\(674\) 5760.46 803.673i 0.329206 0.0459293i
\(675\) 2531.66i 0.144361i
\(676\) −3863.39 + 17146.1i −0.219811 + 0.975543i
\(677\) 2640.52i 0.149902i 0.997187 + 0.0749508i \(0.0238800\pi\)
−0.997187 + 0.0749508i \(0.976120\pi\)
\(678\) 1581.61 + 11336.5i 0.0895893 + 0.642146i
\(679\) −94.3058 −0.00533008
\(680\) 4944.38 2183.53i 0.278836 0.123139i
\(681\) 5840.58i 0.328651i
\(682\) 5196.13 + 37244.1i 0.291745 + 2.09113i
\(683\) 32008.8 1.79324 0.896621 0.442799i \(-0.146015\pi\)
0.896621 + 0.442799i \(0.146015\pi\)
\(684\) −5038.45 + 1433.79i −0.281652 + 0.0801497i
\(685\) 11769.1i 0.656458i
\(686\) −58.3750 418.412i −0.00324893 0.0232873i
\(687\) 20634.0i 1.14591i
\(688\) 1088.56 + 1757.76i 0.0603212 + 0.0974038i
\(689\) −19585.7 + 11633.1i −1.08295 + 0.643232i
\(690\) 1447.13 + 10372.6i 0.0798427 + 0.572286i
\(691\) 28514.4 1.56981 0.784904 0.619618i \(-0.212712\pi\)
0.784904 + 0.619618i \(0.212712\pi\)
\(692\) −3318.91 11662.9i −0.182321 0.640690i
\(693\) 85.1335i 0.00466660i
\(694\) −1272.69 9122.21i −0.0696118 0.498954i
\(695\) 33010.1i 1.80165i
\(696\) −7989.42 + 3528.27i −0.435112 + 0.192154i
\(697\) 6484.33i 0.352384i
\(698\) 27785.3 3876.48i 1.50672 0.210210i
\(699\) 4965.59i 0.268692i
\(700\) 44.7057 + 157.099i 0.00241388 + 0.00848255i
\(701\) 25877.8i 1.39428i 0.716935 + 0.697140i \(0.245545\pi\)
−0.716935 + 0.697140i \(0.754455\pi\)
\(702\) −2795.47 + 2235.68i −0.150297 + 0.120200i
\(703\) 24758.4 1.32828
\(704\) 14982.3 16439.0i 0.802086 0.880069i
\(705\) −5280.10 −0.282071
\(706\) 1485.01 + 10644.1i 0.0791632 + 0.567416i
\(707\) −351.798 −0.0187139
\(708\) −1585.21 5570.55i −0.0841467 0.295698i
\(709\) −9601.34 −0.508584 −0.254292 0.967127i \(-0.581842\pi\)
−0.254292 + 0.967127i \(0.581842\pi\)
\(710\) −1456.41 10439.1i −0.0769832 0.551790i
\(711\) 1478.45 0.0779833
\(712\) 9223.64 + 20886.0i 0.485492 + 1.09935i
\(713\) 25539.4i 1.34145i
\(714\) −29.5535 + 4.12317i −0.00154904 + 0.000216114i
\(715\) 15379.9 + 25893.8i 0.804441 + 1.35437i
\(716\) −10300.5 36196.7i −0.537636 1.88929i
\(717\) −5799.53 −0.302074
\(718\) 3632.09 + 26033.6i 0.188786 + 1.35316i
\(719\) 24296.8 1.26025 0.630124 0.776494i \(-0.283004\pi\)
0.630124 + 0.776494i \(0.283004\pi\)
\(720\) −7243.00 + 4485.52i −0.374904 + 0.232174i
\(721\) 323.210i 0.0166948i
\(722\) 4385.31 611.818i 0.226045 0.0315367i
\(723\) 4428.70 0.227808
\(724\) 3293.15 + 11572.4i 0.169046 + 0.594039i
\(725\) 12063.9i 0.617991i
\(726\) −652.100 4674.04i −0.0333357 0.238939i
\(727\) −2605.14 −0.132901 −0.0664507 0.997790i \(-0.521168\pi\)
−0.0664507 + 0.997790i \(0.521168\pi\)
\(728\) 133.991 188.097i 0.00682147 0.00957600i
\(729\) −729.000 −0.0370370
\(730\) −383.989 2752.30i −0.0194686 0.139544i
\(731\) 521.733i 0.0263981i
\(732\) −10560.4 + 3005.17i −0.533229 + 0.151741i
\(733\) 38944.7 1.96242 0.981210 0.192943i \(-0.0618032\pi\)
0.981210 + 0.192943i \(0.0618032\pi\)
\(734\) −38291.8 + 5342.30i −1.92558 + 0.268648i
\(735\) 15217.5i 0.763683i
\(736\) 11620.4 9651.48i 0.581973 0.483367i
\(737\) −5291.45 −0.264468
\(738\) 1412.25 + 10122.5i 0.0704413 + 0.504900i
\(739\) −31475.0 −1.56675 −0.783373 0.621551i \(-0.786503\pi\)
−0.783373 + 0.621551i \(0.786503\pi\)
\(740\) 38727.4 11020.7i 1.92385 0.547470i
\(741\) −8796.18 + 5224.59i −0.436081 + 0.259015i
\(742\) 296.449 41.3592i 0.0146671 0.00204628i
\(743\) 23967.1i 1.18340i 0.806157 + 0.591701i \(0.201543\pi\)
−0.806157 + 0.591701i \(0.798457\pi\)
\(744\) −19004.7 + 8392.81i −0.936485 + 0.413569i
\(745\) 17537.4 0.862444
\(746\) 3725.98 + 26706.6i 0.182866 + 1.31072i
\(747\) 2803.35 0.137308
\(748\) −5398.39 + 1536.22i −0.263883 + 0.0750933i
\(749\) −19.3086 −0.000941952
\(750\) 541.667 + 3882.49i 0.0263718 + 0.189024i
\(751\) 21751.2 1.05687 0.528436 0.848973i \(-0.322779\pi\)
0.528436 + 0.848973i \(0.322779\pi\)
\(752\) 4009.71 + 6474.69i 0.194440 + 0.313973i
\(753\) −20031.8 −0.969456
\(754\) −13321.1 + 10653.5i −0.643401 + 0.514560i
\(755\) 33168.3i 1.59883i
\(756\) 45.2373 12.8732i 0.00217628 0.000619302i
\(757\) 34563.4i 1.65948i −0.558150 0.829740i \(-0.688489\pi\)
0.558150 0.829740i \(-0.311511\pi\)
\(758\) 33747.8 4708.34i 1.61712 0.225613i
\(759\) 10875.4i 0.520094i
\(760\) −22274.5 + 9836.84i −1.06313 + 0.469500i
\(761\) 1383.22i 0.0658893i −0.999457 0.0329446i \(-0.989511\pi\)
0.999457 0.0329446i \(-0.0104885\pi\)
\(762\) −259.455 1859.69i −0.0123347 0.0884112i
\(763\) 293.608i 0.0139310i
\(764\) −14420.8 + 4103.74i −0.682890 + 0.194330i
\(765\) 2149.85 0.101605
\(766\) −2653.22 19017.4i −0.125150 0.897032i
\(767\) −5776.35 9725.13i −0.271932 0.457828i
\(768\) 11000.7 + 5475.39i 0.516866 + 0.257260i
\(769\) 7417.38i 0.347825i −0.984761 0.173913i \(-0.944359\pi\)
0.984761 0.173913i \(-0.0556411\pi\)
\(770\) −54.6799 391.927i −0.00255913 0.0183430i
\(771\) 20150.8i 0.941264i
\(772\) −1168.56 4106.42i −0.0544786 0.191442i
\(773\) −15282.4 −0.711085 −0.355542 0.934660i \(-0.615704\pi\)
−0.355542 + 0.934660i \(0.615704\pi\)
\(774\) 113.631 + 814.466i 0.00527696 + 0.0378235i
\(775\) 28696.8i 1.33009i
\(776\) −3958.95 8964.64i −0.183142 0.414706i
\(777\) −222.291 −0.0102634
\(778\) −244.861 1755.08i −0.0112837 0.0808776i
\(779\) 29212.0i 1.34355i
\(780\) −11433.5 + 12087.8i −0.524853 + 0.554889i
\(781\) 10945.1i 0.501468i
\(782\) −3775.32 + 526.715i −0.172641 + 0.0240860i
\(783\) −3473.85 −0.158551
\(784\) 18660.4 11556.2i 0.850055 0.526431i
\(785\) 37219.1i 1.69224i
\(786\) −17727.3 + 2473.24i −0.804469 + 0.112236i
\(787\) −8134.80 −0.368455 −0.184228 0.982884i \(-0.558978\pi\)
−0.184228 + 0.982884i \(0.558978\pi\)
\(788\) 28436.8 8092.25i 1.28556 0.365830i
\(789\) 5240.17i 0.236445i
\(790\) 6806.31 949.585i 0.306529 0.0427655i
\(791\) 293.731i 0.0132034i
\(792\) 8092.73 3573.90i 0.363084 0.160345i
\(793\) −18436.5 + 10950.5i −0.825597 + 0.490372i
\(794\) 19574.3 2730.92i 0.874894 0.122061i
\(795\) −21565.0 −0.962052
\(796\) −21598.4 + 6146.25i −0.961727 + 0.273678i
\(797\) 2510.82i 0.111591i −0.998442 0.0557953i \(-0.982231\pi\)
0.998442 0.0557953i \(-0.0177694\pi\)
\(798\) 133.139 18.5749i 0.00590610 0.000823992i
\(799\) 1921.80i 0.0850919i
\(800\) −13057.0 + 10844.7i −0.577043 + 0.479273i
\(801\) 9081.37i 0.400592i
\(802\) −519.835 3726.00i −0.0228878 0.164052i
\(803\) 2885.72i 0.126818i
\(804\) −800.129 2811.71i −0.0350975 0.123335i
\(805\) 268.756i 0.0117670i
\(806\) −31687.2 + 25341.8i −1.38478 + 1.10748i
\(807\) 19904.1 0.868227
\(808\) −14768.4 33441.6i −0.643010 1.45603i
\(809\) −1963.25 −0.0853203 −0.0426601 0.999090i \(-0.513583\pi\)
−0.0426601 + 0.999090i \(0.513583\pi\)
\(810\) −3356.08 + 468.226i −0.145581 + 0.0203108i
\(811\) 34566.9 1.49668 0.748341 0.663314i \(-0.230851\pi\)
0.748341 + 0.663314i \(0.230851\pi\)
\(812\) 215.566 61.3436i 0.00931637 0.00265116i
\(813\) 21908.7 0.945106
\(814\) −41410.8 + 5777.45i −1.78311 + 0.248771i
\(815\) −46942.3 −2.01757
\(816\) −1632.60 2636.24i −0.0700397 0.113097i
\(817\) 2350.41i 0.100649i
\(818\) −1591.36 11406.4i −0.0680204 0.487547i
\(819\) 78.9758 46.9086i 0.00336952 0.00200136i
\(820\) 13003.1 + 45693.9i 0.553766 + 1.94598i
\(821\) 8804.25 0.374264 0.187132 0.982335i \(-0.440081\pi\)
0.187132 + 0.982335i \(0.440081\pi\)
\(822\) 6687.04 932.945i 0.283744 0.0395866i
\(823\) −13852.8 −0.586728 −0.293364 0.956001i \(-0.594775\pi\)
−0.293364 + 0.956001i \(0.594775\pi\)
\(824\) −30724.1 + 13568.3i −1.29894 + 0.573634i
\(825\) 12219.9i 0.515689i
\(826\) 20.5366 + 147.199i 0.000865084 + 0.00620064i
\(827\) −25803.5 −1.08498 −0.542489 0.840063i \(-0.682518\pi\)
−0.542489 + 0.840063i \(0.682518\pi\)
\(828\) 5778.85 1644.49i 0.242547 0.0690215i
\(829\) 31998.7i 1.34060i −0.742089 0.670302i \(-0.766165\pi\)
0.742089 0.670302i \(-0.233835\pi\)
\(830\) 12905.7 1800.55i 0.539717 0.0752988i
\(831\) −18391.4 −0.767737
\(832\) 23505.3 + 4840.78i 0.979445 + 0.201711i
\(833\) −5538.74 −0.230379
\(834\) 18755.9 2616.74i 0.778734 0.108645i
\(835\) 5235.53i 0.216986i
\(836\) 24319.8 6920.69i 1.00612 0.286312i
\(837\) −8263.36 −0.341247
\(838\) 2589.73 + 18562.3i 0.106755 + 0.765185i
\(839\) 33051.9i 1.36005i −0.733191 0.680023i \(-0.761970\pi\)
0.733191 0.680023i \(-0.238030\pi\)
\(840\) 199.990 88.3192i 0.00821465 0.00362774i
\(841\) 7835.28 0.321263
\(842\) 10586.0 1476.92i 0.433277 0.0604488i
\(843\) 19803.5 0.809096
\(844\) −6049.23 21257.4i −0.246710 0.866957i
\(845\) −15546.5 + 28534.9i −0.632920 + 1.16169i
\(846\) 418.558 + 3000.08i 0.0170098 + 0.121921i
\(847\) 121.105i 0.00491290i
\(848\) 16376.5 + 26443.9i 0.663172 + 1.07086i
\(849\) 12174.6 0.492143
\(850\) 4242.06 591.833i 0.171178 0.0238820i
\(851\) −28396.6 −1.14386
\(852\) −5815.89 + 1655.03i −0.233860 + 0.0665496i
\(853\) −18913.6 −0.759191 −0.379596 0.925153i \(-0.623937\pi\)
−0.379596 + 0.925153i \(0.623937\pi\)
\(854\) 279.054 38.9324i 0.0111815 0.00156000i
\(855\) −9685.11 −0.387396
\(856\) −810.575 1835.46i −0.0323655 0.0732884i
\(857\) 29160.7 1.16232 0.581162 0.813788i \(-0.302598\pi\)
0.581162 + 0.813788i \(0.302598\pi\)
\(858\) 13493.3 10791.3i 0.536893 0.429380i
\(859\) 41899.6i 1.66426i −0.554583 0.832128i \(-0.687122\pi\)
0.554583 0.832128i \(-0.312878\pi\)
\(860\) 1046.24 + 3676.56i 0.0414842 + 0.145779i
\(861\) 262.278i 0.0103814i
\(862\) −2157.95 15467.5i −0.0852671 0.611166i
\(863\) 27896.1i 1.10034i −0.835053 0.550170i \(-0.814563\pi\)
0.835053 0.550170i \(-0.185437\pi\)
\(864\) 3122.77 + 3759.81i 0.122962 + 0.148045i
\(865\) 22418.9i 0.881232i
\(866\) 6415.72 895.092i 0.251750 0.0351229i
\(867\) 13956.5i 0.546699i
\(868\) 512.774 145.920i 0.0200515 0.00570604i
\(869\) −7136.25 −0.278574
\(870\) −15992.5 + 2231.20i −0.623215 + 0.0869482i
\(871\) −2915.59 4908.72i −0.113423 0.190960i
\(872\) −27910.2 + 12325.7i −1.08390 + 0.478669i
\(873\) 3897.89i 0.151115i
\(874\) 17007.9 2372.86i 0.658237 0.0918342i
\(875\) 100.596i 0.00388660i
\(876\) −1533.38 + 436.355i −0.0591418 + 0.0168300i
\(877\) 3379.82 0.130135 0.0650676 0.997881i \(-0.479274\pi\)
0.0650676 + 0.997881i \(0.479274\pi\)
\(878\) −10388.9 + 1449.41i −0.399326 + 0.0557122i
\(879\) 16147.0i 0.619595i
\(880\) 34960.9 21650.9i 1.33924 0.829378i
\(881\) −33026.3 −1.26298 −0.631489 0.775385i \(-0.717556\pi\)
−0.631489 + 0.775385i \(0.717556\pi\)
\(882\) 8646.40 1206.31i 0.330090 0.0460527i
\(883\) 12869.3i 0.490471i 0.969464 + 0.245235i \(0.0788652\pi\)
−0.969464 + 0.245235i \(0.921135\pi\)
\(884\) −4399.62 4161.47i −0.167393 0.158332i
\(885\) 10707.9i 0.406716i
\(886\) 606.720 + 4348.77i 0.0230058 + 0.164898i
\(887\) −19272.8 −0.729556 −0.364778 0.931095i \(-0.618855\pi\)
−0.364778 + 0.931095i \(0.618855\pi\)
\(888\) −9331.75 21130.8i −0.352650 0.798540i
\(889\) 48.1849i 0.00181785i
\(890\) 5832.83 + 41807.8i 0.219682 + 1.57461i
\(891\) 3518.77 0.132304
\(892\) −6784.24 23840.3i −0.254656 0.894881i
\(893\) 8657.74i 0.324435i
\(894\) −1390.20 9964.52i −0.0520083 0.372778i
\(895\) 69578.8i 2.59862i
\(896\) −260.173 178.167i −0.00970065 0.00664301i
\(897\) 10088.8 5992.34i 0.375535 0.223053i
\(898\) 5117.87 + 36683.2i 0.190184 + 1.36318i
\(899\) −39376.8 −1.46084
\(900\) −6493.29 + 1847.79i −0.240492 + 0.0684368i
\(901\) 7849.03i 0.290221i
\(902\) −6816.72 48860.0i −0.251632 1.80361i
\(903\) 21.1030i 0.000777701i
\(904\) 27921.9 12330.8i 1.02729 0.453669i
\(905\) 22244.9i 0.817067i
\(906\) −18845.8 + 2629.28i −0.691070 + 0.0964149i
\(907\) 18934.1i 0.693161i −0.938020 0.346581i \(-0.887343\pi\)
0.938020 0.346581i \(-0.112657\pi\)
\(908\) −14980.2 + 4262.90i −0.547504 + 0.155803i
\(909\) 14540.6i 0.530564i
\(910\) 333.451 266.677i 0.0121470 0.00971457i
\(911\) −35785.6 −1.30146 −0.650731 0.759309i \(-0.725537\pi\)
−0.650731 + 0.759309i \(0.725537\pi\)
\(912\) 7354.88 + 11876.3i 0.267044 + 0.431211i
\(913\) −13531.4 −0.490496
\(914\) −4409.21 31603.8i −0.159567 1.14372i
\(915\) −20299.6 −0.733426
\(916\) 52923.0 15060.3i 1.90898 0.543238i
\(917\) 459.319 0.0165410
\(918\) −170.421 1221.52i −0.00612714 0.0439173i
\(919\) 29849.4 1.07143 0.535713 0.844400i \(-0.320043\pi\)
0.535713 + 0.844400i \(0.320043\pi\)
\(920\) 25547.7 11282.4i 0.915526 0.404313i
\(921\) 19020.5i 0.680507i
\(922\) 5113.63 713.430i 0.182655 0.0254833i
\(923\) −10153.4 + 6030.75i −0.362085 + 0.215065i
\(924\) −218.353 + 62.1368i −0.00777414 + 0.00221229i
\(925\) 31907.3 1.13417
\(926\) 3185.93 + 22835.7i 0.113063 + 0.810397i
\(927\) −13359.0 −0.473321
\(928\) 14880.7 + 17916.4i 0.526384 + 0.633765i
\(929\) 18336.2i 0.647568i −0.946131 0.323784i \(-0.895045\pi\)
0.946131 0.323784i \(-0.104955\pi\)
\(930\) −38041.9 + 5307.43i −1.34134 + 0.187137i
\(931\) 24952.1 0.878381
\(932\) −12735.9 + 3624.26i −0.447617 + 0.127378i
\(933\) 15422.9i 0.541183i
\(934\) −4993.95 35794.9i −0.174954 1.25401i
\(935\) −10377.0 −0.362957
\(936\) 7774.49 + 5538.16i 0.271493 + 0.193398i
\(937\) 25276.9 0.881281 0.440641 0.897684i \(-0.354751\pi\)
0.440641 + 0.897684i \(0.354751\pi\)
\(938\) 10.3658 + 74.2984i 0.000360826 + 0.00258628i
\(939\) 30178.8i 1.04882i
\(940\) 3853.81 + 13542.6i 0.133721 + 0.469905i
\(941\) 1836.34 0.0636162 0.0318081 0.999494i \(-0.489873\pi\)
0.0318081 + 0.999494i \(0.489873\pi\)
\(942\) −21147.4 + 2950.39i −0.731444 + 0.102048i
\(943\) 33504.7i 1.15701i
\(944\) −13130.6 + 8131.62i −0.452715 + 0.280362i
\(945\) 86.9570 0.00299334
\(946\) −548.477 3931.30i −0.0188505 0.135114i
\(947\) 28339.5 0.972451 0.486225 0.873833i \(-0.338373\pi\)
0.486225 + 0.873833i \(0.338373\pi\)
\(948\) −1079.08 3791.98i −0.0369694 0.129913i
\(949\) −2677.00 + 1590.03i −0.0915691 + 0.0543885i
\(950\) −19110.5 + 2666.22i −0.652661 + 0.0910563i
\(951\) 11599.6i 0.395522i
\(952\) 32.1456 + 72.7905i 0.00109438 + 0.00247810i
\(953\) −41198.6 −1.40037 −0.700186 0.713960i \(-0.746900\pi\)
−0.700186 + 0.713960i \(0.746900\pi\)
\(954\) 1709.47 + 12252.9i 0.0580150 + 0.415832i
\(955\) −27720.3 −0.939276
\(956\) 4232.94 + 14874.9i 0.143204 + 0.503229i
\(957\) 16767.8 0.566379
\(958\) −3173.48 22746.4i −0.107026 0.767124i
\(959\) −173.263 −0.00583415
\(960\) 16791.1 + 15303.3i 0.564512 + 0.514490i
\(961\) −63875.8 −2.14413
\(962\) −28176.9 35232.2i −0.944346 1.18080i
\(963\) 798.073i 0.0267056i
\(964\) −3232.40 11358.9i −0.107997 0.379508i
\(965\) 7893.52i 0.263318i
\(966\) −152.704 + 21.3045i −0.00508608 + 0.000709587i
\(967\) 18131.0i 0.602951i 0.953474 + 0.301475i \(0.0974791\pi\)
−0.953474 + 0.301475i \(0.902521\pi\)
\(968\) −11512.2 + 5084.00i −0.382248 + 0.168808i
\(969\) 3525.10i 0.116865i
\(970\) −2503.55 17944.6i −0.0828704 0.593987i
\(971\) 13259.5i 0.438225i 0.975700 + 0.219112i \(0.0703161\pi\)
−0.975700 + 0.219112i \(0.929684\pi\)
\(972\) 532.079 + 1869.77i 0.0175581 + 0.0617004i
\(973\) −485.970 −0.0160118
\(974\) −363.284 2603.90i −0.0119511 0.0856615i
\(975\) −11336.1 + 6733.18i −0.372353 + 0.221163i
\(976\) 15415.6 + 24892.3i 0.505574 + 0.816376i
\(977\) 20780.3i 0.680471i −0.940340 0.340236i \(-0.889493\pi\)
0.940340 0.340236i \(-0.110507\pi\)
\(978\) 3721.16 + 26672.0i 0.121666 + 0.872063i
\(979\) 43834.4i 1.43100i
\(980\) 39030.5 11106.9i 1.27223 0.362038i
\(981\) −12135.6 −0.394963
\(982\) 2326.97 + 16679.0i 0.0756179 + 0.542004i
\(983\) 29090.8i 0.943897i −0.881626 0.471949i \(-0.843551\pi\)
0.881626 0.471949i \(-0.156449\pi\)
\(984\) 24931.9 11010.4i 0.807724 0.356706i
\(985\) 54662.3 1.76821
\(986\) −812.094 5820.82i −0.0262295 0.188005i
\(987\) 77.7328i 0.00250685i
\(988\) 19820.4 + 18747.5i 0.638228 + 0.603681i
\(989\) 2695.81i 0.0866751i
\(990\) 16199.3 2260.05i 0.520048 0.0725548i
\(991\) −14302.6 −0.458464 −0.229232 0.973372i \(-0.573621\pi\)
−0.229232 + 0.973372i \(0.573621\pi\)
\(992\) 35397.2 + 42618.2i 1.13293 + 1.36404i
\(993\) 7897.24i 0.252378i
\(994\) 153.682 21.4411i 0.00490393 0.000684174i
\(995\) −41517.3 −1.32280
\(996\) −2046.10 7190.14i −0.0650935 0.228743i
\(997\) 39926.6i 1.26829i 0.773213 + 0.634146i \(0.218648\pi\)
−0.773213 + 0.634146i \(0.781352\pi\)
\(998\) 2795.26 389.981i 0.0886596 0.0123694i
\(999\) 9187.82i 0.290981i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.m.a.181.6 yes 84
4.3 odd 2 1248.4.m.a.337.50 84
8.3 odd 2 1248.4.m.a.337.51 84
8.5 even 2 inner 312.4.m.a.181.80 yes 84
13.12 even 2 inner 312.4.m.a.181.79 yes 84
52.51 odd 2 1248.4.m.a.337.49 84
104.51 odd 2 1248.4.m.a.337.52 84
104.77 even 2 inner 312.4.m.a.181.5 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.m.a.181.5 84 104.77 even 2 inner
312.4.m.a.181.6 yes 84 1.1 even 1 trivial
312.4.m.a.181.79 yes 84 13.12 even 2 inner
312.4.m.a.181.80 yes 84 8.5 even 2 inner
1248.4.m.a.337.49 84 52.51 odd 2
1248.4.m.a.337.50 84 4.3 odd 2
1248.4.m.a.337.51 84 8.3 odd 2
1248.4.m.a.337.52 84 104.51 odd 2