Properties

Label 312.4.m.a.181.61
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.61
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.62

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.98174 - 2.01809i) q^{2} +3.00000i q^{3} +(-0.145397 - 7.99868i) q^{4} -19.4332 q^{5} +(6.05428 + 5.94523i) q^{6} +8.53532i q^{7} +(-16.4302 - 15.5579i) q^{8} -9.00000 q^{9} +(-38.5117 + 39.2181i) q^{10} +49.3074 q^{11} +(23.9960 - 0.436190i) q^{12} +(30.7594 + 35.3675i) q^{13} +(17.2251 + 16.9148i) q^{14} -58.2997i q^{15} +(-63.9577 + 2.32596i) q^{16} +117.742 q^{17} +(-17.8357 + 18.1628i) q^{18} -26.5911 q^{19} +(2.82553 + 155.440i) q^{20} -25.6060 q^{21} +(97.7145 - 99.5069i) q^{22} +117.626 q^{23} +(46.6737 - 49.2906i) q^{24} +252.651 q^{25} +(132.332 + 8.01399i) q^{26} -27.0000i q^{27} +(68.2713 - 1.24101i) q^{28} +222.374i q^{29} +(-117.654 - 115.535i) q^{30} -240.158i q^{31} +(-122.054 + 133.682i) q^{32} +147.922i q^{33} +(233.334 - 237.614i) q^{34} -165.869i q^{35} +(1.30857 + 71.9881i) q^{36} -192.722 q^{37} +(-52.6968 + 53.6634i) q^{38} +(-106.103 + 92.2781i) q^{39} +(319.292 + 302.340i) q^{40} +4.97450i q^{41} +(-50.7444 + 51.6752i) q^{42} +184.130i q^{43} +(-7.16913 - 394.394i) q^{44} +174.899 q^{45} +(233.104 - 237.379i) q^{46} +410.488i q^{47} +(-6.97789 - 191.873i) q^{48} +270.148 q^{49} +(500.689 - 509.873i) q^{50} +353.226i q^{51} +(278.421 - 251.177i) q^{52} +501.688i q^{53} +(-54.4885 - 53.5070i) q^{54} -958.203 q^{55} +(132.792 - 140.237i) q^{56} -79.7734i q^{57} +(448.771 + 440.688i) q^{58} +353.661 q^{59} +(-466.321 + 8.47659i) q^{60} -268.231i q^{61} +(-484.661 - 475.931i) q^{62} -76.8179i q^{63} +(27.9039 + 511.239i) q^{64} +(-597.754 - 687.305i) q^{65} +(298.521 + 293.144i) q^{66} -623.874 q^{67} +(-17.1193 - 941.780i) q^{68} +352.877i q^{69} +(-334.739 - 328.709i) q^{70} +313.912i q^{71} +(147.872 + 140.021i) q^{72} -254.390i q^{73} +(-381.926 + 388.932i) q^{74} +757.953i q^{75} +(3.86626 + 212.694i) q^{76} +420.854i q^{77} +(-24.0420 + 396.996i) q^{78} +866.042 q^{79} +(1242.91 - 45.2010i) q^{80} +81.0000 q^{81} +(10.0390 + 9.85817i) q^{82} +901.650 q^{83} +(3.72302 + 204.814i) q^{84} -2288.11 q^{85} +(371.592 + 364.899i) q^{86} -667.122 q^{87} +(-810.131 - 767.119i) q^{88} -701.679i q^{89} +(346.605 - 352.963i) q^{90} +(-301.873 + 262.541i) q^{91} +(-17.1024 - 940.849i) q^{92} +720.473 q^{93} +(828.403 + 813.482i) q^{94} +516.752 q^{95} +(-401.046 - 366.161i) q^{96} -531.587i q^{97} +(535.364 - 545.184i) q^{98} -443.767 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.98174 2.01809i 0.700652 0.713504i
\(3\) 3.00000i 0.577350i
\(4\) −0.145397 7.99868i −0.0181746 0.999835i
\(5\) −19.4332 −1.73816 −0.869081 0.494670i \(-0.835289\pi\)
−0.869081 + 0.494670i \(0.835289\pi\)
\(6\) 6.05428 + 5.94523i 0.411941 + 0.404521i
\(7\) 8.53532i 0.460864i 0.973088 + 0.230432i \(0.0740139\pi\)
−0.973088 + 0.230432i \(0.925986\pi\)
\(8\) −16.4302 15.5579i −0.726120 0.687568i
\(9\) −9.00000 −0.333333
\(10\) −38.5117 + 39.2181i −1.21785 + 1.24018i
\(11\) 49.3074 1.35152 0.675761 0.737121i \(-0.263815\pi\)
0.675761 + 0.737121i \(0.263815\pi\)
\(12\) 23.9960 0.436190i 0.577255 0.0104931i
\(13\) 30.7594 + 35.3675i 0.656240 + 0.754552i
\(14\) 17.2251 + 16.9148i 0.328828 + 0.322905i
\(15\) 58.2997i 1.00353i
\(16\) −63.9577 + 2.32596i −0.999339 + 0.0363432i
\(17\) 117.742 1.67980 0.839901 0.542740i \(-0.182613\pi\)
0.839901 + 0.542740i \(0.182613\pi\)
\(18\) −17.8357 + 18.1628i −0.233551 + 0.237835i
\(19\) −26.5911 −0.321075 −0.160538 0.987030i \(-0.551323\pi\)
−0.160538 + 0.987030i \(0.551323\pi\)
\(20\) 2.82553 + 155.440i 0.0315904 + 1.73787i
\(21\) −25.6060 −0.266080
\(22\) 97.7145 99.5069i 0.946946 0.964316i
\(23\) 117.626 1.06638 0.533188 0.845997i \(-0.320994\pi\)
0.533188 + 0.845997i \(0.320994\pi\)
\(24\) 46.6737 49.2906i 0.396968 0.419225i
\(25\) 252.651 2.02121
\(26\) 132.332 + 8.01399i 0.998171 + 0.0604490i
\(27\) 27.0000i 0.192450i
\(28\) 68.2713 1.24101i 0.460788 0.00837601i
\(29\) 222.374i 1.42392i 0.702218 + 0.711962i \(0.252193\pi\)
−0.702218 + 0.711962i \(0.747807\pi\)
\(30\) −117.654 115.535i −0.716021 0.703124i
\(31\) 240.158i 1.39141i −0.718329 0.695703i \(-0.755093\pi\)
0.718329 0.695703i \(-0.244907\pi\)
\(32\) −122.054 + 133.682i −0.674258 + 0.738496i
\(33\) 147.922i 0.780301i
\(34\) 233.334 237.614i 1.17696 1.19854i
\(35\) 165.869i 0.801056i
\(36\) 1.30857 + 71.9881i 0.00605820 + 0.333278i
\(37\) −192.722 −0.856307 −0.428154 0.903706i \(-0.640836\pi\)
−0.428154 + 0.903706i \(0.640836\pi\)
\(38\) −52.6968 + 53.6634i −0.224962 + 0.229088i
\(39\) −106.103 + 92.2781i −0.435641 + 0.378880i
\(40\) 319.292 + 302.340i 1.26211 + 1.19510i
\(41\) 4.97450i 0.0189484i 0.999955 + 0.00947422i \(0.00301578\pi\)
−0.999955 + 0.00947422i \(0.996984\pi\)
\(42\) −50.7444 + 51.6752i −0.186429 + 0.189849i
\(43\) 184.130i 0.653014i 0.945195 + 0.326507i \(0.105872\pi\)
−0.945195 + 0.326507i \(0.894128\pi\)
\(44\) −7.16913 394.394i −0.0245634 1.35130i
\(45\) 174.899 0.579387
\(46\) 233.104 237.379i 0.747157 0.760862i
\(47\) 410.488i 1.27395i 0.770883 + 0.636977i \(0.219815\pi\)
−0.770883 + 0.636977i \(0.780185\pi\)
\(48\) −6.97789 191.873i −0.0209827 0.576969i
\(49\) 270.148 0.787605
\(50\) 500.689 509.873i 1.41616 1.44214i
\(51\) 353.226i 0.969834i
\(52\) 278.421 251.177i 0.742501 0.669845i
\(53\) 501.688i 1.30023i 0.759836 + 0.650115i \(0.225279\pi\)
−0.759836 + 0.650115i \(0.774721\pi\)
\(54\) −54.4885 53.5070i −0.137314 0.134840i
\(55\) −958.203 −2.34916
\(56\) 132.792 140.237i 0.316875 0.334642i
\(57\) 79.7734i 0.185373i
\(58\) 448.771 + 440.688i 1.01598 + 0.997675i
\(59\) 353.661 0.780386 0.390193 0.920733i \(-0.372408\pi\)
0.390193 + 0.920733i \(0.372408\pi\)
\(60\) −466.321 + 8.47659i −1.00336 + 0.0182387i
\(61\) 268.231i 0.563008i −0.959560 0.281504i \(-0.909167\pi\)
0.959560 0.281504i \(-0.0908332\pi\)
\(62\) −484.661 475.931i −0.992773 0.974891i
\(63\) 76.8179i 0.153621i
\(64\) 27.9039 + 511.239i 0.0544998 + 0.998514i
\(65\) −597.754 687.305i −1.14065 1.31153i
\(66\) 298.521 + 293.144i 0.556748 + 0.546720i
\(67\) −623.874 −1.13759 −0.568794 0.822480i \(-0.692590\pi\)
−0.568794 + 0.822480i \(0.692590\pi\)
\(68\) −17.1193 941.780i −0.0305297 1.67952i
\(69\) 352.877i 0.615672i
\(70\) −334.739 328.709i −0.571556 0.561261i
\(71\) 313.912i 0.524710i 0.964971 + 0.262355i \(0.0844992\pi\)
−0.964971 + 0.262355i \(0.915501\pi\)
\(72\) 147.872 + 140.021i 0.242040 + 0.229189i
\(73\) 254.390i 0.407865i −0.978985 0.203932i \(-0.934628\pi\)
0.978985 0.203932i \(-0.0653722\pi\)
\(74\) −381.926 + 388.932i −0.599973 + 0.610978i
\(75\) 757.953i 1.16694i
\(76\) 3.86626 + 212.694i 0.00583541 + 0.321022i
\(77\) 420.854i 0.622868i
\(78\) −24.0420 + 396.996i −0.0349002 + 0.576294i
\(79\) 866.042 1.23338 0.616692 0.787205i \(-0.288472\pi\)
0.616692 + 0.787205i \(0.288472\pi\)
\(80\) 1242.91 45.2010i 1.73701 0.0631703i
\(81\) 81.0000 0.111111
\(82\) 10.0390 + 9.85817i 0.0135198 + 0.0132763i
\(83\) 901.650 1.19240 0.596198 0.802837i \(-0.296677\pi\)
0.596198 + 0.802837i \(0.296677\pi\)
\(84\) 3.72302 + 204.814i 0.00483589 + 0.266036i
\(85\) −2288.11 −2.91977
\(86\) 371.592 + 364.899i 0.465928 + 0.457535i
\(87\) −667.122 −0.822103
\(88\) −810.131 767.119i −0.981367 0.929264i
\(89\) 701.679i 0.835705i −0.908515 0.417853i \(-0.862783\pi\)
0.908515 0.417853i \(-0.137217\pi\)
\(90\) 346.605 352.963i 0.405949 0.413395i
\(91\) −301.873 + 262.541i −0.347746 + 0.302437i
\(92\) −17.1024 940.849i −0.0193809 1.06620i
\(93\) 720.473 0.803329
\(94\) 828.403 + 813.482i 0.908971 + 0.892598i
\(95\) 516.752 0.558080
\(96\) −401.046 366.161i −0.426371 0.389283i
\(97\) 531.587i 0.556438i −0.960518 0.278219i \(-0.910256\pi\)
0.960518 0.278219i \(-0.0897441\pi\)
\(98\) 535.364 545.184i 0.551836 0.561959i
\(99\) −443.767 −0.450507
\(100\) −36.7346 2020.87i −0.0367346 2.02087i
\(101\) 1194.23i 1.17654i −0.808665 0.588269i \(-0.799809\pi\)
0.808665 0.588269i \(-0.200191\pi\)
\(102\) 712.843 + 700.003i 0.691980 + 0.679516i
\(103\) 334.800 0.320280 0.160140 0.987094i \(-0.448805\pi\)
0.160140 + 0.987094i \(0.448805\pi\)
\(104\) 44.8607 1059.65i 0.0422976 0.999105i
\(105\) 497.607 0.462490
\(106\) 1012.45 + 994.216i 0.927718 + 0.911008i
\(107\) 652.991i 0.589973i 0.955501 + 0.294986i \(0.0953151\pi\)
−0.955501 + 0.294986i \(0.904685\pi\)
\(108\) −215.964 + 3.92571i −0.192418 + 0.00349770i
\(109\) 1710.98 1.50351 0.751754 0.659443i \(-0.229208\pi\)
0.751754 + 0.659443i \(0.229208\pi\)
\(110\) −1898.91 + 1933.74i −1.64595 + 1.67614i
\(111\) 578.167i 0.494389i
\(112\) −19.8528 545.899i −0.0167493 0.460559i
\(113\) −40.3996 −0.0336325 −0.0168162 0.999859i \(-0.505353\pi\)
−0.0168162 + 0.999859i \(0.505353\pi\)
\(114\) −160.990 158.090i −0.132264 0.129882i
\(115\) −2285.85 −1.85353
\(116\) 1778.70 32.3325i 1.42369 0.0258793i
\(117\) −276.834 318.308i −0.218747 0.251517i
\(118\) 700.866 713.721i 0.546779 0.556808i
\(119\) 1004.97i 0.774160i
\(120\) −907.021 + 957.877i −0.689994 + 0.728682i
\(121\) 1100.22 0.826611
\(122\) −541.315 531.565i −0.401708 0.394472i
\(123\) −14.9235 −0.0109399
\(124\) −1920.94 + 34.9181i −1.39118 + 0.0252882i
\(125\) −2480.67 −1.77502
\(126\) −155.026 152.233i −0.109609 0.107635i
\(127\) −2128.45 −1.48716 −0.743579 0.668648i \(-0.766873\pi\)
−0.743579 + 0.668648i \(0.766873\pi\)
\(128\) 1087.03 + 956.831i 0.750628 + 0.660725i
\(129\) −552.391 −0.377018
\(130\) −2571.64 155.738i −1.73498 0.105070i
\(131\) 94.2390i 0.0628527i 0.999506 + 0.0314263i \(0.0100050\pi\)
−0.999506 + 0.0314263i \(0.989995\pi\)
\(132\) 1183.18 21.5074i 0.780173 0.0141817i
\(133\) 226.964i 0.147972i
\(134\) −1236.36 + 1259.04i −0.797053 + 0.811673i
\(135\) 524.698i 0.334509i
\(136\) −1934.53 1831.82i −1.21974 1.15498i
\(137\) 2147.19i 1.33903i 0.742801 + 0.669513i \(0.233497\pi\)
−0.742801 + 0.669513i \(0.766503\pi\)
\(138\) 712.138 + 699.311i 0.439284 + 0.431372i
\(139\) 451.555i 0.275542i 0.990464 + 0.137771i \(0.0439938\pi\)
−0.990464 + 0.137771i \(0.956006\pi\)
\(140\) −1326.73 + 24.1168i −0.800924 + 0.0145589i
\(141\) −1231.46 −0.735518
\(142\) 633.503 + 622.092i 0.374383 + 0.367639i
\(143\) 1516.67 + 1743.88i 0.886922 + 1.01979i
\(144\) 575.619 20.9337i 0.333113 0.0121144i
\(145\) 4321.45i 2.47501i
\(146\) −513.383 504.136i −0.291013 0.285771i
\(147\) 810.445i 0.454724i
\(148\) 28.0212 + 1541.52i 0.0155630 + 0.856166i
\(149\) −626.419 −0.344418 −0.172209 0.985060i \(-0.555090\pi\)
−0.172209 + 0.985060i \(0.555090\pi\)
\(150\) 1529.62 + 1502.07i 0.832619 + 0.817621i
\(151\) 199.097i 0.107300i 0.998560 + 0.0536499i \(0.0170855\pi\)
−0.998560 + 0.0536499i \(0.982915\pi\)
\(152\) 436.898 + 413.702i 0.233139 + 0.220761i
\(153\) −1059.68 −0.559934
\(154\) 849.323 + 834.025i 0.444418 + 0.436413i
\(155\) 4667.04i 2.41849i
\(156\) 753.530 + 835.263i 0.386735 + 0.428683i
\(157\) 1381.01i 0.702017i 0.936372 + 0.351008i \(0.114161\pi\)
−0.936372 + 0.351008i \(0.885839\pi\)
\(158\) 1716.27 1747.75i 0.864172 0.880024i
\(159\) −1505.06 −0.750688
\(160\) 2371.90 2597.88i 1.17197 1.28363i
\(161\) 1003.97i 0.491454i
\(162\) 160.521 163.466i 0.0778502 0.0792782i
\(163\) 1581.77 0.760082 0.380041 0.924970i \(-0.375910\pi\)
0.380041 + 0.924970i \(0.375910\pi\)
\(164\) 39.7894 0.723276i 0.0189453 0.000344380i
\(165\) 2874.61i 1.35629i
\(166\) 1786.84 1819.61i 0.835455 0.850779i
\(167\) 3549.13i 1.64455i 0.569091 + 0.822275i \(0.307295\pi\)
−0.569091 + 0.822275i \(0.692705\pi\)
\(168\) 420.711 + 398.375i 0.193206 + 0.182948i
\(169\) −304.721 + 2175.77i −0.138699 + 0.990335i
\(170\) −4534.44 + 4617.61i −2.04574 + 2.08326i
\(171\) 239.320 0.107025
\(172\) 1472.80 26.7719i 0.652906 0.0118683i
\(173\) 1461.00i 0.642066i −0.947068 0.321033i \(-0.895970\pi\)
0.947068 0.321033i \(-0.104030\pi\)
\(174\) −1322.06 + 1346.31i −0.576008 + 0.586574i
\(175\) 2156.46i 0.931501i
\(176\) −3153.59 + 114.687i −1.35063 + 0.0491186i
\(177\) 1060.98i 0.450556i
\(178\) −1416.05 1390.55i −0.596279 0.585538i
\(179\) 4222.63i 1.76321i −0.471988 0.881605i \(-0.656463\pi\)
0.471988 0.881605i \(-0.343537\pi\)
\(180\) −25.4298 1398.96i −0.0105301 0.579292i
\(181\) 3351.24i 1.37622i −0.725606 0.688110i \(-0.758440\pi\)
0.725606 0.688110i \(-0.241560\pi\)
\(182\) −68.4020 + 1129.50i −0.0278587 + 0.460021i
\(183\) 804.693 0.325053
\(184\) −1932.61 1830.01i −0.774316 0.733206i
\(185\) 3745.22 1.48840
\(186\) 1427.79 1453.98i 0.562854 0.573178i
\(187\) 5805.55 2.27029
\(188\) 3283.36 59.6836i 1.27374 0.0231536i
\(189\) 230.454 0.0886933
\(190\) 1024.07 1042.85i 0.391020 0.398192i
\(191\) −2384.90 −0.903482 −0.451741 0.892149i \(-0.649197\pi\)
−0.451741 + 0.892149i \(0.649197\pi\)
\(192\) −1533.72 + 83.7116i −0.576492 + 0.0314655i
\(193\) 1797.53i 0.670411i 0.942145 + 0.335205i \(0.108806\pi\)
−0.942145 + 0.335205i \(0.891194\pi\)
\(194\) −1072.79 1053.47i −0.397021 0.389869i
\(195\) 2061.92 1793.26i 0.757215 0.658555i
\(196\) −39.2787 2160.83i −0.0143144 0.787474i
\(197\) −3708.67 −1.34128 −0.670638 0.741785i \(-0.733980\pi\)
−0.670638 + 0.741785i \(0.733980\pi\)
\(198\) −879.431 + 895.562i −0.315649 + 0.321439i
\(199\) −1420.65 −0.506068 −0.253034 0.967457i \(-0.581428\pi\)
−0.253034 + 0.967457i \(0.581428\pi\)
\(200\) −4151.11 3930.72i −1.46764 1.38972i
\(201\) 1871.62i 0.656787i
\(202\) −2410.07 2366.66i −0.839465 0.824344i
\(203\) −1898.03 −0.656236
\(204\) 2825.34 51.3579i 0.969674 0.0176263i
\(205\) 96.6706i 0.0329354i
\(206\) 663.487 675.658i 0.224405 0.228521i
\(207\) −1058.63 −0.355458
\(208\) −2049.56 2190.48i −0.683229 0.730204i
\(209\) −1311.14 −0.433940
\(210\) 986.128 1004.22i 0.324044 0.329988i
\(211\) 5818.86i 1.89852i 0.314499 + 0.949258i \(0.398163\pi\)
−0.314499 + 0.949258i \(0.601837\pi\)
\(212\) 4012.84 72.9438i 1.30001 0.0236311i
\(213\) −941.735 −0.302942
\(214\) 1317.80 + 1294.06i 0.420948 + 0.413365i
\(215\) 3578.25i 1.13504i
\(216\) −420.063 + 443.616i −0.132323 + 0.139742i
\(217\) 2049.82 0.641249
\(218\) 3390.73 3452.92i 1.05344 1.07276i
\(219\) 763.170 0.235481
\(220\) 139.320 + 7664.35i 0.0426951 + 2.34878i
\(221\) 3621.67 + 4164.24i 1.10235 + 1.26750i
\(222\) −1166.79 1145.78i −0.352748 0.346395i
\(223\) 5752.76i 1.72751i −0.503916 0.863753i \(-0.668108\pi\)
0.503916 0.863753i \(-0.331892\pi\)
\(224\) −1141.02 1041.77i −0.340346 0.310741i
\(225\) −2273.86 −0.673736
\(226\) −80.0615 + 81.5301i −0.0235647 + 0.0239969i
\(227\) 2000.89 0.585037 0.292519 0.956260i \(-0.405507\pi\)
0.292519 + 0.956260i \(0.405507\pi\)
\(228\) −638.082 + 11.5988i −0.185342 + 0.00336907i
\(229\) −4617.48 −1.33245 −0.666226 0.745750i \(-0.732091\pi\)
−0.666226 + 0.745750i \(0.732091\pi\)
\(230\) −4529.96 + 4613.05i −1.29868 + 1.32250i
\(231\) −1262.56 −0.359613
\(232\) 3459.67 3653.65i 0.979046 1.03394i
\(233\) 1716.45 0.482610 0.241305 0.970449i \(-0.422425\pi\)
0.241305 + 0.970449i \(0.422425\pi\)
\(234\) −1190.99 72.1259i −0.332724 0.0201497i
\(235\) 7977.12i 2.21434i
\(236\) −51.4212 2828.82i −0.0141832 0.780257i
\(237\) 2598.13i 0.712094i
\(238\) 2028.11 + 1991.58i 0.552366 + 0.542416i
\(239\) 931.378i 0.252075i 0.992026 + 0.126037i \(0.0402259\pi\)
−0.992026 + 0.126037i \(0.959774\pi\)
\(240\) 135.603 + 3728.72i 0.0364714 + 1.00287i
\(241\) 4468.94i 1.19448i −0.802062 0.597240i \(-0.796264\pi\)
0.802062 0.597240i \(-0.203736\pi\)
\(242\) 2180.35 2220.35i 0.579167 0.589790i
\(243\) 243.000i 0.0641500i
\(244\) −2145.49 + 38.9999i −0.562915 + 0.0102324i
\(245\) −5249.86 −1.36898
\(246\) −29.5745 + 30.1170i −0.00766505 + 0.00780565i
\(247\) −817.927 940.462i −0.210702 0.242268i
\(248\) −3736.35 + 3945.84i −0.956687 + 1.01033i
\(249\) 2704.95i 0.688431i
\(250\) −4916.05 + 5006.22i −1.24367 + 1.26649i
\(251\) 680.070i 0.171018i 0.996337 + 0.0855092i \(0.0272517\pi\)
−0.996337 + 0.0855092i \(0.972748\pi\)
\(252\) −614.441 + 11.1691i −0.153596 + 0.00279200i
\(253\) 5799.81 1.44123
\(254\) −4218.03 + 4295.40i −1.04198 + 1.06109i
\(255\) 6864.32i 1.68573i
\(256\) 4085.18 297.527i 0.997358 0.0726383i
\(257\) 7670.60 1.86179 0.930893 0.365293i \(-0.119031\pi\)
0.930893 + 0.365293i \(0.119031\pi\)
\(258\) −1094.70 + 1114.78i −0.264158 + 0.269004i
\(259\) 1644.95i 0.394641i
\(260\) −5410.62 + 4881.18i −1.29059 + 1.16430i
\(261\) 2001.37i 0.474642i
\(262\) 190.183 + 186.757i 0.0448456 + 0.0440378i
\(263\) 2160.00 0.506431 0.253216 0.967410i \(-0.418512\pi\)
0.253216 + 0.967410i \(0.418512\pi\)
\(264\) 2301.36 2430.39i 0.536511 0.566592i
\(265\) 9749.42i 2.26001i
\(266\) −458.034 449.784i −0.105578 0.103677i
\(267\) 2105.04 0.482495
\(268\) 90.7093 + 4990.17i 0.0206752 + 1.13740i
\(269\) 6377.13i 1.44543i −0.691147 0.722714i \(-0.742894\pi\)
0.691147 0.722714i \(-0.257106\pi\)
\(270\) 1058.89 + 1039.82i 0.238674 + 0.234375i
\(271\) 4253.92i 0.953532i 0.879030 + 0.476766i \(0.158191\pi\)
−0.879030 + 0.476766i \(0.841809\pi\)
\(272\) −7530.51 + 273.864i −1.67869 + 0.0610493i
\(273\) −787.623 905.619i −0.174612 0.200771i
\(274\) 4333.22 + 4255.17i 0.955399 + 0.938190i
\(275\) 12457.6 2.73171
\(276\) 2822.55 51.3071i 0.615570 0.0111896i
\(277\) 4986.70i 1.08167i −0.841130 0.540833i \(-0.818109\pi\)
0.841130 0.540833i \(-0.181891\pi\)
\(278\) 911.279 + 894.865i 0.196600 + 0.193059i
\(279\) 2161.42i 0.463802i
\(280\) −2580.57 + 2725.26i −0.550781 + 0.581663i
\(281\) 2215.50i 0.470340i −0.971954 0.235170i \(-0.924435\pi\)
0.971954 0.235170i \(-0.0755647\pi\)
\(282\) −2440.44 + 2485.21i −0.515342 + 0.524795i
\(283\) 1039.14i 0.218271i −0.994027 0.109135i \(-0.965192\pi\)
0.994027 0.109135i \(-0.0348082\pi\)
\(284\) 2510.88 45.6417i 0.524624 0.00953640i
\(285\) 1550.26i 0.322208i
\(286\) 6524.95 + 395.149i 1.34905 + 0.0816981i
\(287\) −42.4589 −0.00873265
\(288\) 1098.48 1203.14i 0.224753 0.246165i
\(289\) 8950.17 1.82173
\(290\) −8721.08 8564.00i −1.76593 1.73412i
\(291\) 1594.76 0.321260
\(292\) −2034.78 + 36.9875i −0.407797 + 0.00741277i
\(293\) 7130.48 1.42173 0.710866 0.703328i \(-0.248303\pi\)
0.710866 + 0.703328i \(0.248303\pi\)
\(294\) 1635.55 + 1606.09i 0.324447 + 0.318603i
\(295\) −6872.79 −1.35644
\(296\) 3166.47 + 2998.35i 0.621782 + 0.588770i
\(297\) 1331.30i 0.260100i
\(298\) −1241.40 + 1264.17i −0.241317 + 0.245743i
\(299\) 3618.09 + 4160.12i 0.699798 + 0.804636i
\(300\) 6062.62 110.204i 1.16675 0.0212087i
\(301\) −1571.61 −0.300951
\(302\) 401.796 + 394.558i 0.0765587 + 0.0751797i
\(303\) 3582.69 0.679275
\(304\) 1700.71 61.8500i 0.320863 0.0116689i
\(305\) 5212.60i 0.978598i
\(306\) −2100.01 + 2138.53i −0.392319 + 0.399515i
\(307\) −5102.81 −0.948641 −0.474320 0.880352i \(-0.657306\pi\)
−0.474320 + 0.880352i \(0.657306\pi\)
\(308\) 3366.28 61.1908i 0.622765 0.0113204i
\(309\) 1004.40i 0.184914i
\(310\) 9418.52 + 9248.87i 1.72560 + 1.69452i
\(311\) 1696.60 0.309342 0.154671 0.987966i \(-0.450568\pi\)
0.154671 + 0.987966i \(0.450568\pi\)
\(312\) 3178.94 + 134.582i 0.576834 + 0.0244205i
\(313\) −5575.22 −1.00680 −0.503402 0.864052i \(-0.667919\pi\)
−0.503402 + 0.864052i \(0.667919\pi\)
\(314\) 2787.01 + 2736.81i 0.500891 + 0.491869i
\(315\) 1492.82i 0.267019i
\(316\) −125.920 6927.19i −0.0224162 1.23318i
\(317\) 5150.28 0.912519 0.456259 0.889847i \(-0.349189\pi\)
0.456259 + 0.889847i \(0.349189\pi\)
\(318\) −2982.65 + 3037.36i −0.525971 + 0.535618i
\(319\) 10964.7i 1.92447i
\(320\) −542.263 9935.03i −0.0947294 1.73558i
\(321\) −1958.97 −0.340621
\(322\) 2026.11 + 1989.61i 0.350654 + 0.344338i
\(323\) −3130.89 −0.539342
\(324\) −11.7771 647.893i −0.00201940 0.111093i
\(325\) 7771.38 + 8935.63i 1.32640 + 1.52511i
\(326\) 3134.65 3192.15i 0.532553 0.542321i
\(327\) 5132.95i 0.868051i
\(328\) 77.3927 81.7320i 0.0130283 0.0137588i
\(329\) −3503.65 −0.587119
\(330\) −5801.23 5696.73i −0.967718 0.950287i
\(331\) −5006.92 −0.831436 −0.415718 0.909493i \(-0.636470\pi\)
−0.415718 + 0.909493i \(0.636470\pi\)
\(332\) −131.097 7212.01i −0.0216713 1.19220i
\(333\) 1734.50 0.285436
\(334\) 7162.47 + 7033.46i 1.17339 + 1.15226i
\(335\) 12123.9 1.97731
\(336\) 1637.70 59.5585i 0.265904 0.00967019i
\(337\) −5029.86 −0.813038 −0.406519 0.913642i \(-0.633258\pi\)
−0.406519 + 0.913642i \(0.633258\pi\)
\(338\) 3787.02 + 4926.76i 0.609428 + 0.792842i
\(339\) 121.199i 0.0194177i
\(340\) 332.683 + 18301.8i 0.0530656 + 2.91928i
\(341\) 11841.6i 1.88052i
\(342\) 474.271 482.970i 0.0749873 0.0763627i
\(343\) 5233.42i 0.823842i
\(344\) 2864.68 3025.30i 0.448992 0.474166i
\(345\) 6857.54i 1.07014i
\(346\) −2948.43 2895.32i −0.458117 0.449865i
\(347\) 2220.47i 0.343519i 0.985139 + 0.171760i \(0.0549452\pi\)
−0.985139 + 0.171760i \(0.945055\pi\)
\(348\) 96.9974 + 5336.10i 0.0149414 + 0.821968i
\(349\) 3444.40 0.528294 0.264147 0.964482i \(-0.414910\pi\)
0.264147 + 0.964482i \(0.414910\pi\)
\(350\) 4351.93 + 4273.54i 0.664629 + 0.652658i
\(351\) 954.923 830.503i 0.145214 0.126293i
\(352\) −6018.15 + 6591.52i −0.911274 + 0.998094i
\(353\) 7467.79i 1.12598i 0.826464 + 0.562989i \(0.190349\pi\)
−0.826464 + 0.562989i \(0.809651\pi\)
\(354\) 2141.16 + 2102.60i 0.321473 + 0.315683i
\(355\) 6100.32i 0.912032i
\(356\) −5612.50 + 102.022i −0.835567 + 0.0151886i
\(357\) −3014.90 −0.446961
\(358\) −8521.67 8368.17i −1.25806 1.23540i
\(359\) 2103.92i 0.309306i −0.987969 0.154653i \(-0.950574\pi\)
0.987969 0.154653i \(-0.0494260\pi\)
\(360\) −2873.63 2721.06i −0.420705 0.398368i
\(361\) −6151.91 −0.896911
\(362\) −6763.12 6641.30i −0.981938 0.964251i
\(363\) 3300.66i 0.477244i
\(364\) 2143.87 + 2376.41i 0.308707 + 0.342192i
\(365\) 4943.62i 0.708935i
\(366\) 1594.69 1623.95i 0.227749 0.231926i
\(367\) −8045.36 −1.14432 −0.572159 0.820143i \(-0.693894\pi\)
−0.572159 + 0.820143i \(0.693894\pi\)
\(368\) −7523.06 + 273.593i −1.06567 + 0.0387555i
\(369\) 44.7705i 0.00631615i
\(370\) 7422.06 7558.20i 1.04285 1.06198i
\(371\) −4282.07 −0.599229
\(372\) −104.754 5762.83i −0.0146002 0.803196i
\(373\) 320.782i 0.0445293i −0.999752 0.0222647i \(-0.992912\pi\)
0.999752 0.0222647i \(-0.00708765\pi\)
\(374\) 11505.1 11716.1i 1.59068 1.61986i
\(375\) 7442.01i 1.02481i
\(376\) 6386.33 6744.41i 0.875931 0.925043i
\(377\) −7864.82 + 6840.09i −1.07443 + 0.934436i
\(378\) 456.700 465.077i 0.0621431 0.0632830i
\(379\) −7990.79 −1.08301 −0.541503 0.840699i \(-0.682145\pi\)
−0.541503 + 0.840699i \(0.682145\pi\)
\(380\) −75.1341 4133.33i −0.0101429 0.557988i
\(381\) 6385.34i 0.858611i
\(382\) −4726.25 + 4812.94i −0.633026 + 0.644637i
\(383\) 1147.52i 0.153095i −0.997066 0.0765477i \(-0.975610\pi\)
0.997066 0.0765477i \(-0.0243897\pi\)
\(384\) −2870.49 + 3261.08i −0.381469 + 0.433376i
\(385\) 8178.56i 1.08264i
\(386\) 3627.59 + 3562.25i 0.478340 + 0.469724i
\(387\) 1657.17i 0.217671i
\(388\) −4251.99 + 77.2910i −0.556346 + 0.0101130i
\(389\) 12710.1i 1.65663i −0.560263 0.828315i \(-0.689300\pi\)
0.560263 0.828315i \(-0.310700\pi\)
\(390\) 467.213 7714.92i 0.0606622 1.00169i
\(391\) 13849.5 1.79130
\(392\) −4438.60 4202.94i −0.571895 0.541532i
\(393\) −282.717 −0.0362880
\(394\) −7349.62 + 7484.43i −0.939768 + 0.957006i
\(395\) −16830.0 −2.14382
\(396\) 64.5222 + 3549.55i 0.00818779 + 0.450433i
\(397\) 2210.83 0.279493 0.139746 0.990187i \(-0.455371\pi\)
0.139746 + 0.990187i \(0.455371\pi\)
\(398\) −2815.37 + 2867.01i −0.354577 + 0.361081i
\(399\) 680.892 0.0854316
\(400\) −16159.0 + 587.657i −2.01987 + 0.0734571i
\(401\) 4593.30i 0.572016i −0.958227 0.286008i \(-0.907672\pi\)
0.958227 0.286008i \(-0.0923284\pi\)
\(402\) −3777.11 3709.07i −0.468620 0.460179i
\(403\) 8493.78 7387.10i 1.04989 0.913096i
\(404\) −9552.27 + 173.637i −1.17634 + 0.0213831i
\(405\) −1574.09 −0.193129
\(406\) −3761.41 + 3830.41i −0.459792 + 0.468226i
\(407\) −9502.64 −1.15732
\(408\) 5495.45 5803.58i 0.666827 0.704215i
\(409\) 13029.9i 1.57528i 0.616138 + 0.787638i \(0.288696\pi\)
−0.616138 + 0.787638i \(0.711304\pi\)
\(410\) −195.090 191.576i −0.0234996 0.0230763i
\(411\) −6441.56 −0.773087
\(412\) −48.6788 2677.96i −0.00582096 0.320227i
\(413\) 3018.61i 0.359652i
\(414\) −2097.93 + 2136.41i −0.249052 + 0.253621i
\(415\) −17522.0 −2.07258
\(416\) −8482.30 204.757i −0.999709 0.0241323i
\(417\) −1354.66 −0.159084
\(418\) −2598.34 + 2646.00i −0.304041 + 0.309618i
\(419\) 16210.3i 1.89003i 0.327025 + 0.945016i \(0.393954\pi\)
−0.327025 + 0.945016i \(0.606046\pi\)
\(420\) −72.3504 3980.20i −0.00840556 0.462414i
\(421\) −997.361 −0.115459 −0.0577297 0.998332i \(-0.518386\pi\)
−0.0577297 + 0.998332i \(0.518386\pi\)
\(422\) 11743.0 + 11531.5i 1.35460 + 1.33020i
\(423\) 3694.39i 0.424651i
\(424\) 7805.21 8242.84i 0.893996 0.944122i
\(425\) 29747.6 3.39523
\(426\) −1866.27 + 1900.51i −0.212257 + 0.216150i
\(427\) 2289.44 0.259470
\(428\) 5223.07 94.9428i 0.589875 0.0107225i
\(429\) −5231.64 + 4550.00i −0.588778 + 0.512065i
\(430\) −7221.24 7091.17i −0.809858 0.795271i
\(431\) 12985.6i 1.45127i 0.688082 + 0.725633i \(0.258453\pi\)
−0.688082 + 0.725633i \(0.741547\pi\)
\(432\) 62.8010 + 1726.86i 0.00699425 + 0.192323i
\(433\) 3083.02 0.342172 0.171086 0.985256i \(-0.445272\pi\)
0.171086 + 0.985256i \(0.445272\pi\)
\(434\) 4062.22 4136.73i 0.449292 0.457533i
\(435\) 12964.3 1.42895
\(436\) −248.771 13685.6i −0.0273257 1.50326i
\(437\) −3127.80 −0.342386
\(438\) 1512.41 1540.15i 0.164990 0.168016i
\(439\) 6249.22 0.679406 0.339703 0.940533i \(-0.389673\pi\)
0.339703 + 0.940533i \(0.389673\pi\)
\(440\) 15743.5 + 14907.6i 1.70577 + 1.61521i
\(441\) −2431.34 −0.262535
\(442\) 15581.0 + 943.583i 1.67673 + 0.101542i
\(443\) 6954.31i 0.745845i −0.927863 0.372922i \(-0.878356\pi\)
0.927863 0.372922i \(-0.121644\pi\)
\(444\) −4624.57 + 84.0636i −0.494307 + 0.00898532i
\(445\) 13635.9i 1.45259i
\(446\) −11609.6 11400.5i −1.23258 1.21038i
\(447\) 1879.26i 0.198850i
\(448\) −4363.59 + 238.168i −0.460179 + 0.0251170i
\(449\) 3461.92i 0.363871i 0.983310 + 0.181936i \(0.0582362\pi\)
−0.983310 + 0.181936i \(0.941764\pi\)
\(450\) −4506.20 + 4588.86i −0.472054 + 0.480713i
\(451\) 245.279i 0.0256092i
\(452\) 5.87396 + 323.143i 0.000611257 + 0.0336269i
\(453\) −597.290 −0.0619495
\(454\) 3965.24 4037.97i 0.409907 0.417426i
\(455\) 5866.37 5102.02i 0.604439 0.525685i
\(456\) −1241.11 + 1310.69i −0.127456 + 0.134603i
\(457\) 10185.4i 1.04256i −0.853385 0.521282i \(-0.825454\pi\)
0.853385 0.521282i \(-0.174546\pi\)
\(458\) −9150.65 + 9318.49i −0.933584 + 0.950709i
\(459\) 3179.03i 0.323278i
\(460\) 332.355 + 18283.7i 0.0336872 + 1.85323i
\(461\) 1661.54 0.167865 0.0839324 0.996471i \(-0.473252\pi\)
0.0839324 + 0.996471i \(0.473252\pi\)
\(462\) −2502.07 + 2547.97i −0.251963 + 0.256585i
\(463\) 1164.53i 0.116890i 0.998291 + 0.0584452i \(0.0186143\pi\)
−0.998291 + 0.0584452i \(0.981386\pi\)
\(464\) −517.234 14222.5i −0.0517500 1.42298i
\(465\) −14001.1 −1.39632
\(466\) 3401.55 3463.95i 0.338141 0.344344i
\(467\) 17297.7i 1.71401i −0.515305 0.857007i \(-0.672321\pi\)
0.515305 0.857007i \(-0.327679\pi\)
\(468\) −2505.79 + 2260.59i −0.247500 + 0.223282i
\(469\) 5324.97i 0.524273i
\(470\) −16098.6 15808.6i −1.57994 1.55148i
\(471\) −4143.03 −0.405310
\(472\) −5810.73 5502.23i −0.566654 0.536569i
\(473\) 9078.99i 0.882563i
\(474\) 5243.26 + 5148.81i 0.508082 + 0.498930i
\(475\) −6718.27 −0.648959
\(476\) 8038.39 146.119i 0.774032 0.0140700i
\(477\) 4515.19i 0.433410i
\(478\) 1879.61 + 1845.75i 0.179856 + 0.176617i
\(479\) 3869.43i 0.369100i −0.982823 0.184550i \(-0.940917\pi\)
0.982823 0.184550i \(-0.0590828\pi\)
\(480\) 7793.63 + 7115.70i 0.741102 + 0.676637i
\(481\) −5928.02 6816.11i −0.561943 0.646129i
\(482\) −9018.74 8856.29i −0.852266 0.836915i
\(483\) −3011.91 −0.283741
\(484\) −159.968 8800.30i −0.0150233 0.826475i
\(485\) 10330.5i 0.967180i
\(486\) 490.397 + 481.563i 0.0457713 + 0.0449468i
\(487\) 6596.18i 0.613761i −0.951748 0.306881i \(-0.900715\pi\)
0.951748 0.306881i \(-0.0992852\pi\)
\(488\) −4173.11 + 4407.09i −0.387106 + 0.408811i
\(489\) 4745.30i 0.438834i
\(490\) −10403.9 + 10594.7i −0.959181 + 0.976775i
\(491\) 13904.9i 1.27804i −0.769188 0.639022i \(-0.779339\pi\)
0.769188 0.639022i \(-0.220661\pi\)
\(492\) 2.16983 + 119.368i 0.000198828 + 0.0109381i
\(493\) 26182.8i 2.39191i
\(494\) −3518.86 213.101i −0.320488 0.0194087i
\(495\) 8623.82 0.783055
\(496\) 558.598 + 15359.9i 0.0505681 + 1.39049i
\(497\) −2679.33 −0.241820
\(498\) 5458.84 + 5360.51i 0.491198 + 0.482350i
\(499\) −6757.51 −0.606228 −0.303114 0.952954i \(-0.598026\pi\)
−0.303114 + 0.952954i \(0.598026\pi\)
\(500\) 360.681 + 19842.1i 0.0322603 + 1.77473i
\(501\) −10647.4 −0.949481
\(502\) 1372.44 + 1347.72i 0.122022 + 0.119824i
\(503\) −9933.11 −0.880508 −0.440254 0.897873i \(-0.645112\pi\)
−0.440254 + 0.897873i \(0.645112\pi\)
\(504\) −1195.12 + 1262.13i −0.105625 + 0.111547i
\(505\) 23207.8i 2.04502i
\(506\) 11493.7 11704.6i 1.00980 1.02832i
\(507\) −6527.30 914.163i −0.571770 0.0800777i
\(508\) 309.469 + 17024.8i 0.0270285 + 1.48691i
\(509\) −6953.24 −0.605495 −0.302747 0.953071i \(-0.597904\pi\)
−0.302747 + 0.953071i \(0.597904\pi\)
\(510\) −13852.8 13603.3i −1.20277 1.18111i
\(511\) 2171.30 0.187970
\(512\) 7495.34 8833.89i 0.646973 0.762513i
\(513\) 717.961i 0.0617909i
\(514\) 15201.1 15480.0i 1.30446 1.32839i
\(515\) −6506.25 −0.556698
\(516\) 80.3158 + 4418.40i 0.00685215 + 0.376956i
\(517\) 20240.1i 1.72178i
\(518\) −3319.66 3259.86i −0.281578 0.276506i
\(519\) 4382.99 0.370697
\(520\) −871.789 + 20592.4i −0.0735201 + 1.73661i
\(521\) −3536.95 −0.297421 −0.148711 0.988881i \(-0.547512\pi\)
−0.148711 + 0.988881i \(0.547512\pi\)
\(522\) −4038.94 3966.19i −0.338658 0.332558i
\(523\) 4675.88i 0.390940i 0.980710 + 0.195470i \(0.0626233\pi\)
−0.980710 + 0.195470i \(0.937377\pi\)
\(524\) 753.787 13.7020i 0.0628423 0.00114232i
\(525\) −6469.37 −0.537802
\(526\) 4280.56 4359.08i 0.354832 0.361340i
\(527\) 28276.6i 2.33729i
\(528\) −344.062 9460.77i −0.0283586 0.779786i
\(529\) 1668.77 0.137156
\(530\) −19675.2 19320.8i −1.61252 1.58348i
\(531\) −3182.95 −0.260129
\(532\) −1815.41 + 32.9998i −0.147947 + 0.00268933i
\(533\) −175.936 + 153.012i −0.0142976 + 0.0124347i
\(534\) 4171.64 4248.16i 0.338061 0.344262i
\(535\) 12689.7i 1.02547i
\(536\) 10250.4 + 9706.17i 0.826025 + 0.782169i
\(537\) 12667.9 1.01799
\(538\) −12869.6 12637.8i −1.03132 1.01274i
\(539\) 13320.3 1.06446
\(540\) 4196.89 76.2893i 0.334454 0.00607957i
\(541\) 16883.9 1.34177 0.670884 0.741563i \(-0.265915\pi\)
0.670884 + 0.741563i \(0.265915\pi\)
\(542\) 8584.80 + 8430.17i 0.680348 + 0.668094i
\(543\) 10053.7 0.794561
\(544\) −14370.8 + 15740.0i −1.13262 + 1.24053i
\(545\) −33249.9 −2.61334
\(546\) −3388.49 205.206i −0.265593 0.0160843i
\(547\) 2833.26i 0.221465i 0.993850 + 0.110733i \(0.0353197\pi\)
−0.993850 + 0.110733i \(0.964680\pi\)
\(548\) 17174.6 312.194i 1.33880 0.0243362i
\(549\) 2414.08i 0.187669i
\(550\) 24687.7 25140.5i 1.91397 1.94908i
\(551\) 5913.18i 0.457187i
\(552\) 5490.02 5797.84i 0.423316 0.447052i
\(553\) 7391.94i 0.568422i
\(554\) −10063.6 9882.35i −0.771773 0.757871i
\(555\) 11235.7i 0.859328i
\(556\) 3611.84 65.6546i 0.275497 0.00500787i
\(557\) 5202.74 0.395776 0.197888 0.980225i \(-0.436592\pi\)
0.197888 + 0.980225i \(0.436592\pi\)
\(558\) 4361.94 + 4283.38i 0.330924 + 0.324964i
\(559\) −6512.23 + 5663.73i −0.492733 + 0.428534i
\(560\) 385.805 + 10608.6i 0.0291129 + 0.800527i
\(561\) 17416.7i 1.31075i
\(562\) −4471.08 4390.54i −0.335589 0.329544i
\(563\) 18851.0i 1.41114i 0.708638 + 0.705572i \(0.249310\pi\)
−0.708638 + 0.705572i \(0.750690\pi\)
\(564\) 179.051 + 9850.09i 0.0133677 + 0.735396i
\(565\) 785.094 0.0584587
\(566\) −2097.09 2059.31i −0.155737 0.152932i
\(567\) 691.361i 0.0512071i
\(568\) 4883.80 5157.63i 0.360774 0.381003i
\(569\) −11997.1 −0.883906 −0.441953 0.897038i \(-0.645714\pi\)
−0.441953 + 0.897038i \(0.645714\pi\)
\(570\) 3128.56 + 3072.21i 0.229896 + 0.225755i
\(571\) 5920.74i 0.433932i 0.976179 + 0.216966i \(0.0696161\pi\)
−0.976179 + 0.216966i \(0.930384\pi\)
\(572\) 13728.2 12384.9i 1.00351 0.905310i
\(573\) 7154.69i 0.521625i
\(574\) −84.1426 + 85.6860i −0.00611854 + 0.00623078i
\(575\) 29718.2 2.15536
\(576\) −251.135 4601.15i −0.0181666 0.332838i
\(577\) 11759.5i 0.848446i −0.905558 0.424223i \(-0.860547\pi\)
0.905558 0.424223i \(-0.139453\pi\)
\(578\) 17736.9 18062.3i 1.27640 1.29981i
\(579\) −5392.60 −0.387062
\(580\) −34565.9 + 628.324i −2.47460 + 0.0449823i
\(581\) 7695.87i 0.549533i
\(582\) 3160.41 3218.38i 0.225091 0.229220i
\(583\) 24736.9i 1.75729i
\(584\) −3957.77 + 4179.68i −0.280435 + 0.296159i
\(585\) 5379.79 + 6185.75i 0.380217 + 0.437178i
\(586\) 14130.8 14390.0i 0.996138 1.01441i
\(587\) −13667.5 −0.961016 −0.480508 0.876990i \(-0.659548\pi\)
−0.480508 + 0.876990i \(0.659548\pi\)
\(588\) 6482.49 117.836i 0.454649 0.00826442i
\(589\) 6386.07i 0.446746i
\(590\) −13620.1 + 13869.9i −0.950390 + 0.967823i
\(591\) 11126.0i 0.774386i
\(592\) 12326.1 448.265i 0.855741 0.0311209i
\(593\) 15113.2i 1.04659i −0.852152 0.523294i \(-0.824703\pi\)
0.852152 0.523294i \(-0.175297\pi\)
\(594\) −2686.69 2638.29i −0.185583 0.182240i
\(595\) 19529.7i 1.34561i
\(596\) 91.0793 + 5010.52i 0.00625965 + 0.344361i
\(597\) 4261.96i 0.292178i
\(598\) 15565.6 + 942.650i 1.06442 + 0.0644613i
\(599\) 5927.32 0.404314 0.202157 0.979353i \(-0.435205\pi\)
0.202157 + 0.979353i \(0.435205\pi\)
\(600\) 11792.1 12453.3i 0.802354 0.847341i
\(601\) 16427.9 1.11499 0.557493 0.830182i \(-0.311764\pi\)
0.557493 + 0.830182i \(0.311764\pi\)
\(602\) −3114.53 + 3171.66i −0.210862 + 0.214729i
\(603\) 5614.87 0.379196
\(604\) 1592.51 28.9480i 0.107282 0.00195013i
\(605\) −21380.8 −1.43678
\(606\) 7099.97 7230.21i 0.475935 0.484665i
\(607\) −23279.8 −1.55667 −0.778333 0.627851i \(-0.783935\pi\)
−0.778333 + 0.627851i \(0.783935\pi\)
\(608\) 3245.55 3554.76i 0.216487 0.237113i
\(609\) 5694.10i 0.378878i
\(610\) 10519.5 + 10330.0i 0.698233 + 0.685657i
\(611\) −14517.9 + 12626.4i −0.961265 + 0.836019i
\(612\) 154.074 + 8476.02i 0.0101766 + 0.559841i
\(613\) 4167.72 0.274605 0.137302 0.990529i \(-0.456157\pi\)
0.137302 + 0.990529i \(0.456157\pi\)
\(614\) −10112.5 + 10297.9i −0.664667 + 0.676858i
\(615\) 290.012 0.0190153
\(616\) 6547.61 6914.73i 0.428264 0.452276i
\(617\) 19433.5i 1.26801i 0.773328 + 0.634006i \(0.218591\pi\)
−0.773328 + 0.634006i \(0.781409\pi\)
\(618\) 2026.97 + 1990.46i 0.131937 + 0.129560i
\(619\) −27993.9 −1.81772 −0.908861 0.417098i \(-0.863047\pi\)
−0.908861 + 0.417098i \(0.863047\pi\)
\(620\) 37330.2 678.573i 2.41809 0.0439551i
\(621\) 3175.89i 0.205224i
\(622\) 3362.22 3423.90i 0.216741 0.220717i
\(623\) 5989.05 0.385146
\(624\) 6571.44 6148.69i 0.421584 0.394463i
\(625\) 16626.1 1.06407
\(626\) −11048.6 + 11251.3i −0.705420 + 0.718359i
\(627\) 3933.42i 0.250535i
\(628\) 11046.3 200.794i 0.701901 0.0127589i
\(629\) −22691.5 −1.43843
\(630\) 3012.65 + 2958.38i 0.190519 + 0.187087i
\(631\) 5978.76i 0.377196i −0.982054 0.188598i \(-0.939606\pi\)
0.982054 0.188598i \(-0.0603943\pi\)
\(632\) −14229.3 13473.8i −0.895584 0.848035i
\(633\) −17456.6 −1.09611
\(634\) 10206.5 10393.7i 0.639358 0.651085i
\(635\) 41362.6 2.58492
\(636\) 218.831 + 12038.5i 0.0136434 + 0.750564i
\(637\) 8309.60 + 9554.47i 0.516857 + 0.594289i
\(638\) 22127.8 + 21729.2i 1.37311 + 1.34838i
\(639\) 2825.20i 0.174903i
\(640\) −21124.4 18594.3i −1.30471 1.14845i
\(641\) −10474.7 −0.645437 −0.322719 0.946495i \(-0.604597\pi\)
−0.322719 + 0.946495i \(0.604597\pi\)
\(642\) −3882.18 + 3953.39i −0.238657 + 0.243034i
\(643\) 5234.84 0.321060 0.160530 0.987031i \(-0.448680\pi\)
0.160530 + 0.987031i \(0.448680\pi\)
\(644\) 8030.45 145.974i 0.491373 0.00893197i
\(645\) 10734.7 0.655318
\(646\) −6204.62 + 6318.43i −0.377891 + 0.384823i
\(647\) 18120.4 1.10106 0.550531 0.834814i \(-0.314425\pi\)
0.550531 + 0.834814i \(0.314425\pi\)
\(648\) −1330.85 1260.19i −0.0806800 0.0763965i
\(649\) 17438.1 1.05471
\(650\) 33433.8 + 2024.74i 2.01751 + 0.122180i
\(651\) 6149.47i 0.370225i
\(652\) −229.984 12652.0i −0.0138142 0.759957i
\(653\) 12855.0i 0.770374i −0.922839 0.385187i \(-0.874137\pi\)
0.922839 0.385187i \(-0.125863\pi\)
\(654\) 10358.8 + 10172.2i 0.619358 + 0.608201i
\(655\) 1831.37i 0.109248i
\(656\) −11.5705 318.157i −0.000688646 0.0189359i
\(657\) 2289.51i 0.135955i
\(658\) −6943.32 + 7070.68i −0.411366 + 0.418912i
\(659\) 15459.0i 0.913805i −0.889517 0.456902i \(-0.848959\pi\)
0.889517 0.456902i \(-0.151041\pi\)
\(660\) −22993.1 + 417.959i −1.35607 + 0.0246500i
\(661\) 31286.3 1.84100 0.920498 0.390748i \(-0.127784\pi\)
0.920498 + 0.390748i \(0.127784\pi\)
\(662\) −9922.43 + 10104.4i −0.582547 + 0.593233i
\(663\) −12492.7 + 10865.0i −0.731790 + 0.636443i
\(664\) −14814.3 14027.8i −0.865823 0.819854i
\(665\) 4410.64i 0.257199i
\(666\) 3437.33 3500.38i 0.199991 0.203659i
\(667\) 26156.9i 1.51844i
\(668\) 28388.3 516.032i 1.64428 0.0298890i
\(669\) 17258.3 0.997376
\(670\) 24026.4 24467.2i 1.38541 1.41082i
\(671\) 13225.8i 0.760917i
\(672\) 3125.30 3423.06i 0.179406 0.196499i
\(673\) −18362.9 −1.05176 −0.525881 0.850558i \(-0.676264\pi\)
−0.525881 + 0.850558i \(0.676264\pi\)
\(674\) −9967.88 + 10150.7i −0.569657 + 0.580106i
\(675\) 6821.57i 0.388981i
\(676\) 17447.6 + 2121.02i 0.992692 + 0.120677i
\(677\) 14036.5i 0.796846i 0.917202 + 0.398423i \(0.130442\pi\)
−0.917202 + 0.398423i \(0.869558\pi\)
\(678\) −244.590 240.185i −0.0138546 0.0136051i
\(679\) 4537.27 0.256442
\(680\) 37594.1 + 35598.1i 2.12010 + 2.00754i
\(681\) 6002.66i 0.337771i
\(682\) −23897.4 23466.9i −1.34175 1.31759i
\(683\) −10248.8 −0.574170 −0.287085 0.957905i \(-0.592686\pi\)
−0.287085 + 0.957905i \(0.592686\pi\)
\(684\) −34.7964 1914.25i −0.00194514 0.107007i
\(685\) 41726.8i 2.32744i
\(686\) 10561.5 + 10371.3i 0.587814 + 0.577226i
\(687\) 13852.4i 0.769291i
\(688\) −428.280 11776.6i −0.0237326 0.652583i
\(689\) −17743.5 + 15431.6i −0.981091 + 0.853262i
\(690\) −13839.1 13589.9i −0.763547 0.749794i
\(691\) 11893.3 0.654763 0.327381 0.944892i \(-0.393834\pi\)
0.327381 + 0.944892i \(0.393834\pi\)
\(692\) −11686.0 + 212.424i −0.641960 + 0.0116693i
\(693\) 3787.69i 0.207623i
\(694\) 4481.12 + 4400.40i 0.245102 + 0.240687i
\(695\) 8775.17i 0.478937i
\(696\) 10961.0 + 10379.0i 0.596946 + 0.565252i
\(697\) 585.707i 0.0318296i
\(698\) 6825.91 6951.12i 0.370150 0.376940i
\(699\) 5149.34i 0.278635i
\(700\) 17248.8 313.542i 0.931347 0.0169297i
\(701\) 24679.9i 1.32974i 0.746959 + 0.664870i \(0.231513\pi\)
−0.746959 + 0.664870i \(0.768487\pi\)
\(702\) 216.378 3572.97i 0.0116334 0.192098i
\(703\) 5124.71 0.274939
\(704\) 1375.87 + 25207.9i 0.0736576 + 1.34951i
\(705\) 23931.3 1.27845
\(706\) 15070.7 + 14799.2i 0.803389 + 0.788918i
\(707\) 10193.1 0.542224
\(708\) 8486.47 154.264i 0.450482 0.00818868i
\(709\) −5023.16 −0.266077 −0.133039 0.991111i \(-0.542473\pi\)
−0.133039 + 0.991111i \(0.542473\pi\)
\(710\) −12311.0 12089.3i −0.650738 0.639016i
\(711\) −7794.38 −0.411128
\(712\) −10916.6 + 11528.7i −0.574605 + 0.606822i
\(713\) 28248.7i 1.48376i
\(714\) −5974.75 + 6084.34i −0.313164 + 0.318908i
\(715\) −29473.7 33889.2i −1.54161 1.77257i
\(716\) −33775.5 + 613.957i −1.76292 + 0.0320456i
\(717\) −2794.13 −0.145535
\(718\) −4245.91 4169.43i −0.220691 0.216716i
\(719\) −15982.2 −0.828978 −0.414489 0.910054i \(-0.636040\pi\)
−0.414489 + 0.910054i \(0.636040\pi\)
\(720\) −11186.2 + 406.809i −0.579005 + 0.0210568i
\(721\) 2857.63i 0.147605i
\(722\) −12191.5 + 12415.1i −0.628422 + 0.639949i
\(723\) 13406.8 0.689633
\(724\) −26805.5 + 487.260i −1.37599 + 0.0250122i
\(725\) 56183.0i 2.87805i
\(726\) 6661.04 + 6541.05i 0.340515 + 0.334382i
\(727\) 24046.0 1.22671 0.613353 0.789809i \(-0.289820\pi\)
0.613353 + 0.789809i \(0.289820\pi\)
\(728\) 9044.42 + 382.900i 0.460451 + 0.0194934i
\(729\) −729.000 −0.0370370
\(730\) 9976.69 + 9796.99i 0.505827 + 0.496716i
\(731\) 21679.9i 1.09693i
\(732\) −117.000 6436.48i −0.00590770 0.324999i
\(733\) 605.906 0.0305316 0.0152658 0.999883i \(-0.495141\pi\)
0.0152658 + 0.999883i \(0.495141\pi\)
\(734\) −15943.8 + 16236.3i −0.801768 + 0.816474i
\(735\) 15749.6i 0.790383i
\(736\) −14356.6 + 15724.4i −0.719012 + 0.787514i
\(737\) −30761.6 −1.53747
\(738\) −90.3510 88.7235i −0.00450659 0.00442542i
\(739\) −16237.4 −0.808256 −0.404128 0.914703i \(-0.632425\pi\)
−0.404128 + 0.914703i \(0.632425\pi\)
\(740\) −544.543 29956.8i −0.0270511 1.48815i
\(741\) 2821.39 2453.78i 0.139873 0.121649i
\(742\) −8485.95 + 8641.61i −0.419850 + 0.427552i
\(743\) 25041.0i 1.23643i 0.786011 + 0.618213i \(0.212143\pi\)
−0.786011 + 0.618213i \(0.787857\pi\)
\(744\) −11837.5 11209.0i −0.583313 0.552343i
\(745\) 12173.4 0.598654
\(746\) −647.367 635.707i −0.0317718 0.0311996i
\(747\) −8114.85 −0.397466
\(748\) −844.108 46436.7i −0.0412616 2.26991i
\(749\) −5573.49 −0.271897
\(750\) −15018.7 14748.1i −0.731205 0.718035i
\(751\) 12977.4 0.630562 0.315281 0.948998i \(-0.397901\pi\)
0.315281 + 0.948998i \(0.397901\pi\)
\(752\) −954.780 26253.9i −0.0462995 1.27311i
\(753\) −2040.21 −0.0987376
\(754\) −1782.10 + 29427.2i −0.0860748 + 1.42132i
\(755\) 3869.09i 0.186504i
\(756\) −33.5072 1843.32i −0.00161196 0.0886786i
\(757\) 21350.2i 1.02508i −0.858663 0.512541i \(-0.828704\pi\)
0.858663 0.512541i \(-0.171296\pi\)
\(758\) −15835.7 + 16126.2i −0.758810 + 0.772729i
\(759\) 17399.4i 0.832094i
\(760\) −8490.35 8039.57i −0.405233 0.383718i
\(761\) 32649.8i 1.55526i −0.628722 0.777630i \(-0.716422\pi\)
0.628722 0.777630i \(-0.283578\pi\)
\(762\) −12886.2 12654.1i −0.612622 0.601587i
\(763\) 14603.8i 0.692913i
\(764\) 346.756 + 19076.0i 0.0164204 + 0.903332i
\(765\) 20593.0 0.973256
\(766\) −2315.80 2274.09i −0.109234 0.107266i
\(767\) 10878.4 + 12508.1i 0.512121 + 0.588842i
\(768\) 892.580 + 12255.5i 0.0419378 + 0.575825i
\(769\) 27941.7i 1.31028i −0.755508 0.655139i \(-0.772610\pi\)
0.755508 0.655139i \(-0.227390\pi\)
\(770\) −16505.1 16207.8i −0.772471 0.758557i
\(771\) 23011.8i 1.07490i
\(772\) 14377.9 261.355i 0.670300 0.0121844i
\(773\) 23070.5 1.07346 0.536732 0.843752i \(-0.319658\pi\)
0.536732 + 0.843752i \(0.319658\pi\)
\(774\) −3344.33 3284.09i −0.155309 0.152512i
\(775\) 60676.1i 2.81232i
\(776\) −8270.38 + 8734.09i −0.382589 + 0.404041i
\(777\) 4934.84 0.227846
\(778\) −25650.2 25188.2i −1.18201 1.16072i
\(779\) 132.278i 0.00608387i
\(780\) −14643.5 16231.9i −0.672208 0.745121i
\(781\) 15478.2i 0.709158i
\(782\) 27446.1 27949.5i 1.25508 1.27810i
\(783\) 6004.10 0.274034
\(784\) −17278.1 + 628.355i −0.787084 + 0.0286241i
\(785\) 26837.5i 1.22022i
\(786\) −560.272 + 570.549i −0.0254252 + 0.0258916i
\(787\) −19690.9 −0.891873 −0.445936 0.895065i \(-0.647129\pi\)
−0.445936 + 0.895065i \(0.647129\pi\)
\(788\) 539.228 + 29664.4i 0.0243772 + 1.34106i
\(789\) 6480.00i 0.292388i
\(790\) −33352.7 + 33964.5i −1.50207 + 1.52962i
\(791\) 344.823i 0.0155000i
\(792\) 7291.18 + 6904.07i 0.327122 + 0.309755i
\(793\) 9486.66 8250.62i 0.424819 0.369468i
\(794\) 4381.30 4461.67i 0.195827 0.199419i
\(795\) 29248.3 1.30482
\(796\) 206.558 + 11363.3i 0.00919757 + 0.505984i
\(797\) 41083.0i 1.82589i −0.408080 0.912946i \(-0.633802\pi\)
0.408080 0.912946i \(-0.366198\pi\)
\(798\) 1349.35 1374.10i 0.0598578 0.0609558i
\(799\) 48331.7i 2.13999i
\(800\) −30837.0 + 33774.9i −1.36281 + 1.49265i
\(801\) 6315.11i 0.278568i
\(802\) −9269.71 9102.74i −0.408136 0.400784i
\(803\) 12543.3i 0.551238i
\(804\) −14970.5 + 272.128i −0.656678 + 0.0119368i
\(805\) 19510.4i 0.854226i
\(806\) 1924.62 31780.6i 0.0841091 1.38886i
\(807\) 19131.4 0.834519
\(808\) −18579.7 + 19621.5i −0.808951 + 0.854308i
\(809\) −1696.39 −0.0737230 −0.0368615 0.999320i \(-0.511736\pi\)
−0.0368615 + 0.999320i \(0.511736\pi\)
\(810\) −3119.45 + 3176.66i −0.135316 + 0.137798i
\(811\) −15395.7 −0.666603 −0.333301 0.942820i \(-0.608163\pi\)
−0.333301 + 0.942820i \(0.608163\pi\)
\(812\) 275.968 + 15181.8i 0.0119268 + 0.656127i
\(813\) −12761.8 −0.550522
\(814\) −18831.8 + 19177.2i −0.810877 + 0.825750i
\(815\) −30738.8 −1.32115
\(816\) −821.591 22591.5i −0.0352468 0.969193i
\(817\) 4896.23i 0.209667i
\(818\) 26295.6 + 25821.9i 1.12397 + 1.10372i
\(819\) 2716.86 2362.87i 0.115915 0.100812i
\(820\) −773.237 + 14.0556i −0.0329300 + 0.000598588i
\(821\) 14236.0 0.605164 0.302582 0.953123i \(-0.402151\pi\)
0.302582 + 0.953123i \(0.402151\pi\)
\(822\) −12765.5 + 12999.7i −0.541664 + 0.551600i
\(823\) 7665.68 0.324677 0.162338 0.986735i \(-0.448096\pi\)
0.162338 + 0.986735i \(0.448096\pi\)
\(824\) −5500.84 5208.78i −0.232562 0.220214i
\(825\) 37372.7i 1.57715i
\(826\) 6091.84 + 5982.11i 0.256613 + 0.251991i
\(827\) 32596.1 1.37059 0.685295 0.728266i \(-0.259673\pi\)
0.685295 + 0.728266i \(0.259673\pi\)
\(828\) 153.921 + 8467.64i 0.00646031 + 0.355400i
\(829\) 39242.2i 1.64407i −0.569434 0.822037i \(-0.692837\pi\)
0.569434 0.822037i \(-0.307163\pi\)
\(830\) −34724.0 + 35361.0i −1.45216 + 1.47879i
\(831\) 14960.1 0.624500
\(832\) −17222.9 + 16712.3i −0.717666 + 0.696387i
\(833\) 31807.8 1.32302
\(834\) −2684.60 + 2733.84i −0.111463 + 0.113507i
\(835\) 68971.1i 2.85849i
\(836\) 190.635 + 10487.4i 0.00788668 + 0.433868i
\(837\) −6484.26 −0.267776
\(838\) 32713.8 + 32124.6i 1.34854 + 1.32425i
\(839\) 10837.1i 0.445935i 0.974826 + 0.222967i \(0.0715744\pi\)
−0.974826 + 0.222967i \(0.928426\pi\)
\(840\) −8175.78 7741.71i −0.335823 0.317993i
\(841\) −25061.2 −1.02756
\(842\) −1976.51 + 2012.77i −0.0808968 + 0.0823807i
\(843\) 6646.49 0.271551
\(844\) 46543.2 846.043i 1.89820 0.0345047i
\(845\) 5921.72 42282.2i 0.241081 1.72136i
\(846\) −7455.63 7321.33i −0.302990 0.297533i
\(847\) 9390.72i 0.380955i
\(848\) −1166.91 32086.8i −0.0472545 1.29937i
\(849\) 3117.43 0.126019
\(850\) 58952.1 60033.4i 2.37887 2.42251i
\(851\) −22669.1 −0.913145
\(852\) 136.925 + 7532.63i 0.00550584 + 0.302892i
\(853\) −1992.41 −0.0799751 −0.0399875 0.999200i \(-0.512732\pi\)
−0.0399875 + 0.999200i \(0.512732\pi\)
\(854\) 4537.07 4620.30i 0.181798 0.185133i
\(855\) −4650.77 −0.186027
\(856\) 10159.2 10728.8i 0.405646 0.428391i
\(857\) −37337.6 −1.48825 −0.744123 0.668042i \(-0.767132\pi\)
−0.744123 + 0.668042i \(0.767132\pi\)
\(858\) −1185.45 + 19574.9i −0.0471684 + 0.778875i
\(859\) 11756.6i 0.466974i −0.972360 0.233487i \(-0.924986\pi\)
0.972360 0.233487i \(-0.0750136\pi\)
\(860\) −28621.3 + 520.266i −1.13486 + 0.0206290i
\(861\) 127.377i 0.00504180i
\(862\) 26206.2 + 25734.2i 1.03548 + 1.01683i
\(863\) 16911.3i 0.667052i −0.942741 0.333526i \(-0.891761\pi\)
0.942741 0.333526i \(-0.108239\pi\)
\(864\) 3609.42 + 3295.45i 0.142124 + 0.129761i
\(865\) 28391.9i 1.11602i
\(866\) 6109.74 6221.81i 0.239743 0.244141i
\(867\) 26850.5i 1.05178i
\(868\) −298.037 16395.9i −0.0116544 0.641143i
\(869\) 42702.3 1.66694
\(870\) 25692.0 26163.3i 1.00120 1.01956i
\(871\) −19190.0 22064.9i −0.746530 0.858369i
\(872\) −28111.8 26619.3i −1.09173 1.03376i
\(873\) 4784.28i 0.185479i
\(874\) −6198.49 + 6312.19i −0.239894 + 0.244294i
\(875\) 21173.3i 0.818044i
\(876\) −110.962 6104.35i −0.00427977 0.235442i
\(877\) −18720.3 −0.720797 −0.360399 0.932798i \(-0.617359\pi\)
−0.360399 + 0.932798i \(0.617359\pi\)
\(878\) 12384.3 12611.5i 0.476027 0.484758i
\(879\) 21391.4i 0.820837i
\(880\) 61284.5 2228.74i 2.34761 0.0853761i
\(881\) 12882.9 0.492664 0.246332 0.969186i \(-0.420775\pi\)
0.246332 + 0.969186i \(0.420775\pi\)
\(882\) −4818.28 + 4906.66i −0.183945 + 0.187320i
\(883\) 15385.2i 0.586359i −0.956057 0.293179i \(-0.905287\pi\)
0.956057 0.293179i \(-0.0947133\pi\)
\(884\) 32781.8 29574.0i 1.24725 1.12521i
\(885\) 20618.4i 0.783140i
\(886\) −14034.4 13781.6i −0.532163 0.522577i
\(887\) 10431.2 0.394866 0.197433 0.980316i \(-0.436740\pi\)
0.197433 + 0.980316i \(0.436740\pi\)
\(888\) −8995.06 + 9499.41i −0.339926 + 0.358986i
\(889\) 18167.0i 0.685377i
\(890\) 27518.5 + 27022.8i 1.03643 + 1.01776i
\(891\) 3993.90 0.150169
\(892\) −46014.5 + 836.433i −1.72722 + 0.0313967i
\(893\) 10915.3i 0.409035i
\(894\) −3792.51 3724.20i −0.141880 0.139324i
\(895\) 82059.5i 3.06474i
\(896\) −8166.86 + 9278.11i −0.304504 + 0.345938i
\(897\) −12480.4 + 10854.3i −0.464557 + 0.404028i
\(898\) 6986.48 + 6860.63i 0.259623 + 0.254947i
\(899\) 53404.8 1.98126
\(900\) 330.611 + 18187.9i 0.0122449 + 0.673624i
\(901\) 59069.7i 2.18413i
\(902\) 494.997 + 486.081i 0.0182723 + 0.0179431i
\(903\) 4714.83i 0.173754i
\(904\) 663.773 + 628.532i 0.0244212 + 0.0231246i
\(905\) 65125.5i 2.39209i
\(906\) −1183.67 + 1205.39i −0.0434050 + 0.0442012i
\(907\) 15331.1i 0.561259i 0.959816 + 0.280630i \(0.0905433\pi\)
−0.959816 + 0.280630i \(0.909457\pi\)
\(908\) −290.922 16004.4i −0.0106328 0.584940i
\(909\) 10748.1i 0.392180i
\(910\) 1329.27 21949.8i 0.0484230 0.799591i
\(911\) −21761.7 −0.791435 −0.395717 0.918372i \(-0.629504\pi\)
−0.395717 + 0.918372i \(0.629504\pi\)
\(912\) 185.550 + 5102.13i 0.00673704 + 0.185250i
\(913\) 44458.0 1.61155
\(914\) −20555.0 20184.8i −0.743873 0.730474i
\(915\) −15637.8 −0.564994
\(916\) 671.366 + 36933.7i 0.0242168 + 1.33223i
\(917\) −804.360 −0.0289665
\(918\) −6415.58 6300.02i −0.230660 0.226505i
\(919\) 1163.74 0.0417716 0.0208858 0.999782i \(-0.493351\pi\)
0.0208858 + 0.999782i \(0.493351\pi\)
\(920\) 37556.9 + 35562.9i 1.34589 + 1.27443i
\(921\) 15308.4i 0.547698i
\(922\) 3292.75 3353.14i 0.117615 0.119772i
\(923\) −11102.3 + 9655.72i −0.395922 + 0.344336i
\(924\) 183.573 + 10098.8i 0.00653581 + 0.359553i
\(925\) −48691.5 −1.73077
\(926\) 2350.13 + 2307.79i 0.0834017 + 0.0818994i
\(927\) −3013.20 −0.106760
\(928\) −29727.4 27141.6i −1.05156 0.960092i
\(929\) 9553.67i 0.337401i 0.985667 + 0.168701i \(0.0539571\pi\)
−0.985667 + 0.168701i \(0.946043\pi\)
\(930\) −27746.6 + 28255.6i −0.978331 + 0.996276i
\(931\) −7183.55 −0.252880
\(932\) −249.566 13729.3i −0.00877124 0.482530i
\(933\) 5089.80i 0.178599i
\(934\) −34908.5 34279.7i −1.22295 1.20093i
\(935\) −112821. −3.94613
\(936\) −403.746 + 9536.82i −0.0140992 + 0.333035i
\(937\) 27671.4 0.964766 0.482383 0.875960i \(-0.339771\pi\)
0.482383 + 0.875960i \(0.339771\pi\)
\(938\) −10746.3 10552.7i −0.374071 0.367333i
\(939\) 16725.7i 0.581279i
\(940\) −63806.4 + 1159.85i −2.21397 + 0.0402447i
\(941\) −34867.0 −1.20790 −0.603948 0.797024i \(-0.706407\pi\)
−0.603948 + 0.797024i \(0.706407\pi\)
\(942\) −8210.42 + 8361.02i −0.283981 + 0.289190i
\(943\) 585.128i 0.0202061i
\(944\) −22619.4 + 822.603i −0.779871 + 0.0283617i
\(945\) −4478.46 −0.154163
\(946\) 18322.2 + 17992.2i 0.629712 + 0.618369i
\(947\) −14400.4 −0.494139 −0.247070 0.968998i \(-0.579468\pi\)
−0.247070 + 0.968998i \(0.579468\pi\)
\(948\) 20781.6 377.759i 0.711977 0.0129420i
\(949\) 8997.14 7824.88i 0.307755 0.267657i
\(950\) −13313.9 + 13558.1i −0.454694 + 0.463035i
\(951\) 15450.8i 0.526843i
\(952\) 15635.1 16511.8i 0.532288 0.562133i
\(953\) 5233.88 0.177903 0.0889517 0.996036i \(-0.471648\pi\)
0.0889517 + 0.996036i \(0.471648\pi\)
\(954\) −9112.08 8947.95i −0.309239 0.303669i
\(955\) 46346.3 1.57040
\(956\) 7449.79 135.419i 0.252033 0.00458135i
\(957\) −32894.1 −1.11109
\(958\) −7808.87 7668.22i −0.263354 0.258610i
\(959\) −18326.9 −0.617108
\(960\) 29805.1 1626.79i 1.00204 0.0546921i
\(961\) −27884.7 −0.936012
\(962\) −25503.4 1544.48i −0.854741 0.0517629i
\(963\) 5876.92i 0.196658i
\(964\) −35745.6 + 649.769i −1.19428 + 0.0217092i
\(965\) 34931.9i 1.16528i
\(966\) −5968.84 + 6078.32i −0.198804 + 0.202450i
\(967\) 9071.26i 0.301667i 0.988559 + 0.150834i \(0.0481958\pi\)
−0.988559 + 0.150834i \(0.951804\pi\)
\(968\) −18076.8 17117.1i −0.600219 0.568352i
\(969\) 9392.68i 0.311389i
\(970\) 20847.8 + 20472.3i 0.690086 + 0.677656i
\(971\) 25453.9i 0.841250i −0.907235 0.420625i \(-0.861811\pi\)
0.907235 0.420625i \(-0.138189\pi\)
\(972\) 1943.68 35.3314i 0.0641394 0.00116590i
\(973\) −3854.16 −0.126987
\(974\) −13311.7 13071.9i −0.437921 0.430033i
\(975\) −26806.9 + 23314.2i −0.880521 + 0.765795i
\(976\) 623.896 + 17155.4i 0.0204615 + 0.562636i
\(977\) 27836.1i 0.911522i −0.890102 0.455761i \(-0.849367\pi\)
0.890102 0.455761i \(-0.150633\pi\)
\(978\) 9576.45 + 9403.95i 0.313109 + 0.307470i
\(979\) 34597.9i 1.12947i
\(980\) 763.312 + 41991.9i 0.0248807 + 1.36876i
\(981\) −15398.8 −0.501170
\(982\) −28061.4 27556.0i −0.911889 0.895464i
\(983\) 16318.3i 0.529475i −0.964321 0.264737i \(-0.914715\pi\)
0.964321 0.264737i \(-0.0852852\pi\)
\(984\) 245.196 + 232.178i 0.00794367 + 0.00752192i
\(985\) 72071.4 2.33136
\(986\) 52839.2 + 51887.5i 1.70664 + 1.67590i
\(987\) 10510.9i 0.338974i
\(988\) −7403.53 + 6679.08i −0.238399 + 0.215071i
\(989\) 21658.4i 0.696358i
\(990\) 17090.2 17403.7i 0.548648 0.558712i
\(991\) −3221.51 −0.103264 −0.0516321 0.998666i \(-0.516442\pi\)
−0.0516321 + 0.998666i \(0.516442\pi\)
\(992\) 32104.8 + 29312.1i 1.02755 + 0.938167i
\(993\) 15020.8i 0.480030i
\(994\) −5309.75 + 5407.15i −0.169432 + 0.172539i
\(995\) 27607.9 0.879627
\(996\) 21636.0 393.291i 0.688317 0.0125119i
\(997\) 43681.6i 1.38757i 0.720180 + 0.693787i \(0.244059\pi\)
−0.720180 + 0.693787i \(0.755941\pi\)
\(998\) −13391.6 + 13637.3i −0.424754 + 0.432546i
\(999\) 5203.50i 0.164796i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.m.a.181.61 yes 84
4.3 odd 2 1248.4.m.a.337.13 84
8.3 odd 2 1248.4.m.a.337.16 84
8.5 even 2 inner 312.4.m.a.181.23 84
13.12 even 2 inner 312.4.m.a.181.24 yes 84
52.51 odd 2 1248.4.m.a.337.14 84
104.51 odd 2 1248.4.m.a.337.15 84
104.77 even 2 inner 312.4.m.a.181.62 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.m.a.181.23 84 8.5 even 2 inner
312.4.m.a.181.24 yes 84 13.12 even 2 inner
312.4.m.a.181.61 yes 84 1.1 even 1 trivial
312.4.m.a.181.62 yes 84 104.77 even 2 inner
1248.4.m.a.337.13 84 4.3 odd 2
1248.4.m.a.337.14 84 52.51 odd 2
1248.4.m.a.337.15 84 104.51 odd 2
1248.4.m.a.337.16 84 8.3 odd 2