Properties

Label 3136.1.ce.a.1293.1
Level 31363136
Weight 11
Character 3136.1293
Analytic conductor 1.5651.565
Analytic rank 00
Dimension 1616
Projective image D16D_{16}
CM discriminant -7
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3136,1,Mod(117,3136)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3136, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([0, 15, 40])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3136.117"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 3136=2672 3136 = 2^{6} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3136.ce (of order 4848, degree 1616, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.565067879621.56506787962
Analytic rank: 00
Dimension: 1616
Coefficient field: Q(ζ48)\Q(\zeta_{48})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x16x8+1 x^{16} - x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 448)
Projective image: D16D_{16}
Projective field: Galois closure of Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)

Embedding invariants

Embedding label 1293.1
Root 0.991445+0.130526i-0.991445 + 0.130526i of defining polynomial
Character χ\chi == 3136.1293
Dual form 3136.1.ce.a.325.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.1305260.991445i)q2+(0.9659260.258819i)q4+(0.382683+0.923880i)q8+(0.608761+0.793353i)q9+(0.3893450.0255190i)q11+(0.866025+0.500000i)q16+(0.8660250.500000i)q18+(0.0761205+0.382683i)q22+(0.6072060.465926i)q23+(0.7933530.608761i)q25+(1.08979+1.63099i)q29+(0.6087610.793353i)q32+(0.3826830.923880i)q36+(1.05217+0.357164i)q37+(0.923880+0.617317i)q43+(0.369474+0.125419i)q44+(0.3826830.662827i)q46+(0.707107+0.707107i)q50+(1.65938+0.108761i)q53+(1.759280.867580i)q58+(0.7071070.707107i)q64+(1.49144+0.735499i)q67+(0.5411961.30656i)q71+(0.965926+0.258819i)q72+(0.4914450.996552i)q74+(0.4782351.78480i)q79+(0.258819+0.965926i)q81+(0.7326260.835400i)q86+(0.1725720.349942i)q88+(0.707107+0.292893i)q92+(0.2167730.324423i)q99+O(q100)q+(0.130526 - 0.991445i) q^{2} +(-0.965926 - 0.258819i) q^{4} +(-0.382683 + 0.923880i) q^{8} +(0.608761 + 0.793353i) q^{9} +(-0.389345 - 0.0255190i) q^{11} +(0.866025 + 0.500000i) q^{16} +(0.866025 - 0.500000i) q^{18} +(-0.0761205 + 0.382683i) q^{22} +(0.607206 - 0.465926i) q^{23} +(-0.793353 - 0.608761i) q^{25} +(1.08979 + 1.63099i) q^{29} +(0.608761 - 0.793353i) q^{32} +(-0.382683 - 0.923880i) q^{36} +(1.05217 + 0.357164i) q^{37} +(0.923880 + 0.617317i) q^{43} +(0.369474 + 0.125419i) q^{44} +(-0.382683 - 0.662827i) q^{46} +(-0.707107 + 0.707107i) q^{50} +(1.65938 + 0.108761i) q^{53} +(1.75928 - 0.867580i) q^{58} +(-0.707107 - 0.707107i) q^{64} +(1.49144 + 0.735499i) q^{67} +(-0.541196 - 1.30656i) q^{71} +(-0.965926 + 0.258819i) q^{72} +(0.491445 - 0.996552i) q^{74} +(-0.478235 - 1.78480i) q^{79} +(-0.258819 + 0.965926i) q^{81} +(0.732626 - 0.835400i) q^{86} +(0.172572 - 0.349942i) q^{88} +(-0.707107 + 0.292893i) q^{92} +(-0.216773 - 0.324423i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q22+8q44+8q678q74+O(q100) 16 q - 16 q^{22} + 8 q^{44} + 8 q^{67} - 8 q^{74}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3136Z)×\left(\mathbb{Z}/3136\mathbb{Z}\right)^\times.

nn 197197 14711471 14731473
χ(n)\chi(n) e(1516)e\left(\frac{15}{16}\right) 11 e(56)e\left(\frac{5}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.130526 0.991445i 0.130526 0.991445i
33 0 0 −0.896873 0.442289i 0.854167π-0.854167\pi
0.896873 + 0.442289i 0.145833π0.145833\pi
44 −0.965926 0.258819i −0.965926 0.258819i
55 0 0 0.321439 0.946930i 0.395833π-0.395833\pi
−0.321439 + 0.946930i 0.604167π0.604167\pi
66 0 0
77 0 0
88 −0.382683 + 0.923880i −0.382683 + 0.923880i
99 0.608761 + 0.793353i 0.608761 + 0.793353i
1010 0 0
1111 −0.389345 0.0255190i −0.389345 0.0255190i −0.130526 0.991445i 0.541667π-0.541667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
1212 0 0
1313 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
1414 0 0
1515 0 0
1616 0.866025 + 0.500000i 0.866025 + 0.500000i
1717 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
1818 0.866025 0.500000i 0.866025 0.500000i
1919 0 0 −0.751840 0.659346i 0.770833π-0.770833\pi
0.751840 + 0.659346i 0.229167π0.229167\pi
2020 0 0
2121 0 0
2222 −0.0761205 + 0.382683i −0.0761205 + 0.382683i
2323 0.607206 0.465926i 0.607206 0.465926i −0.258819 0.965926i 0.583333π-0.583333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
2424 0 0
2525 −0.793353 0.608761i −0.793353 0.608761i
2626 0 0
2727 0 0
2828 0 0
2929 1.08979 + 1.63099i 1.08979 + 1.63099i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
3030 0 0
3131 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
3232 0.608761 0.793353i 0.608761 0.793353i
3333 0 0
3434 0 0
3535 0 0
3636 −0.382683 0.923880i −0.382683 0.923880i
3737 1.05217 + 0.357164i 1.05217 + 0.357164i 0.793353 0.608761i 0.208333π-0.208333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
4242 0 0
4343 0.923880 + 0.617317i 0.923880 + 0.617317i 0.923880 0.382683i 0.125000π-0.125000\pi
1.00000i 0.5π0.5\pi
4444 0.369474 + 0.125419i 0.369474 + 0.125419i
4545 0 0
4646 −0.382683 0.662827i −0.382683 0.662827i
4747 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
4848 0 0
4949 0 0
5050 −0.707107 + 0.707107i −0.707107 + 0.707107i
5151 0 0
5252 0 0
5353 1.65938 + 0.108761i 1.65938 + 0.108761i 0.866025 0.500000i 0.166667π-0.166667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 1.75928 0.867580i 1.75928 0.867580i
5959 0 0 −0.659346 0.751840i 0.729167π-0.729167\pi
0.659346 + 0.751840i 0.270833π0.270833\pi
6060 0 0
6161 0 0 −0.0654031 0.997859i 0.520833π-0.520833\pi
0.0654031 + 0.997859i 0.479167π0.479167\pi
6262 0 0
6363 0 0
6464 −0.707107 0.707107i −0.707107 0.707107i
6565 0 0
6666 0 0
6767 1.49144 + 0.735499i 1.49144 + 0.735499i 0.991445 0.130526i 0.0416667π-0.0416667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 0 0
6969 0 0
7070 0 0
7171 −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i 0.875000π-0.875000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
7272 −0.965926 + 0.258819i −0.965926 + 0.258819i
7373 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
7474 0.491445 0.996552i 0.491445 0.996552i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −0.478235 1.78480i −0.478235 1.78480i −0.608761 0.793353i 0.708333π-0.708333\pi
0.130526 0.991445i 0.458333π-0.458333\pi
8080 0 0
8181 −0.258819 + 0.965926i −0.258819 + 0.965926i
8282 0 0
8383 0 0 0.195090 0.980785i 0.437500π-0.437500\pi
−0.195090 + 0.980785i 0.562500π0.562500\pi
8484 0 0
8585 0 0
8686 0.732626 0.835400i 0.732626 0.835400i
8787 0 0
8888 0.172572 0.349942i 0.172572 0.349942i
8989 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
9090 0 0
9191 0 0
9292 −0.707107 + 0.292893i −0.707107 + 0.292893i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9898 0 0
9999 −0.216773 0.324423i −0.216773 0.324423i
100100 0.608761 + 0.793353i 0.608761 + 0.793353i
101101 0 0 0.751840 0.659346i 0.229167π-0.229167\pi
−0.751840 + 0.659346i 0.770833π0.770833\pi
102102 0 0
103103 0 0 0.130526 0.991445i 0.458333π-0.458333\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
104104 0 0
105105 0 0
106106 0.324423 1.63099i 0.324423 1.63099i
107107 −1.49144 + 0.735499i −1.49144 + 0.735499i −0.991445 0.130526i 0.958333π-0.958333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
108108 0 0
109109 0.369474 0.125419i 0.369474 0.125419i −0.130526 0.991445i 0.541667π-0.541667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.541196 + 0.541196i −0.541196 + 0.541196i −0.923880 0.382683i 0.875000π-0.875000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
114114 0 0
115115 0 0
116116 −0.630526 1.85747i −0.630526 1.85747i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.840506 0.110655i −0.840506 0.110655i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
128128 −0.793353 + 0.608761i −0.793353 + 0.608761i
129129 0 0
130130 0 0
131131 0 0 −0.0654031 0.997859i 0.520833π-0.520833\pi
0.0654031 + 0.997859i 0.479167π0.479167\pi
132132 0 0
133133 0 0
134134 0.923880 1.38268i 0.923880 1.38268i
135135 0 0
136136 0 0
137137 −1.83195 + 0.241181i −1.83195 + 0.241181i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
138138 0 0
139139 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
140140 0 0
141141 0 0
142142 −1.36603 + 0.366025i −1.36603 + 0.366025i
143143 0 0
144144 0.130526 + 0.991445i 0.130526 + 0.991445i
145145 0 0
146146 0 0
147147 0 0
148148 −0.923880 0.617317i −0.923880 0.617317i
149149 1.49144 0.735499i 1.49144 0.735499i 0.500000 0.866025i 0.333333π-0.333333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
150150 0 0
151151 −0.241181 1.83195i −0.241181 1.83195i −0.500000 0.866025i 0.666667π-0.666667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.442289 0.896873i 0.354167π-0.354167\pi
−0.442289 + 0.896873i 0.645833π0.645833\pi
158158 −1.83195 + 0.241181i −1.83195 + 0.241181i
159159 0 0
160160 0 0
161161 0 0
162162 0.923880 + 0.382683i 0.923880 + 0.382683i
163163 −1.95737 + 0.128293i −1.95737 + 0.128293i −0.991445 0.130526i 0.958333π-0.958333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
168168 0 0
169169 0.923880 + 0.382683i 0.923880 + 0.382683i
170170 0 0
171171 0 0
172172 −0.732626 0.835400i −0.732626 0.835400i
173173 0 0 −0.751840 0.659346i 0.770833π-0.770833\pi
0.751840 + 0.659346i 0.229167π0.229167\pi
174174 0 0
175175 0 0
176176 −0.324423 0.216773i −0.324423 0.216773i
177177 0 0
178178 0 0
179179 0.357164 + 1.05217i 0.357164 + 1.05217i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
180180 0 0
181181 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
182182 0 0
183183 0 0
184184 0.198092 + 0.739288i 0.198092 + 0.739288i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −0.923880 + 1.60021i −0.923880 + 1.60021i −0.130526 + 0.991445i 0.541667π0.541667\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
192192 0 0
193193 0.382683 + 0.662827i 0.382683 + 0.662827i 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
194194 0 0
195195 0 0
196196 0 0
197197 −1.08979 + 0.216773i −1.08979 + 0.216773i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
198198 −0.349942 + 0.172572i −0.349942 + 0.172572i
199199 0 0 0.608761 0.793353i 0.291667π-0.291667\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
200200 0.866025 0.500000i 0.866025 0.500000i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0.739288 + 0.198092i 0.739288 + 0.198092i
208208 0 0
209209 0 0
210210 0 0
211211 0.382683 1.92388i 0.382683 1.92388i 1.00000i 0.5π-0.5\pi
0.382683 0.923880i 0.375000π-0.375000\pi
212212 −1.57469 0.534534i −1.57469 0.534534i
213213 0 0
214214 0.534534 + 1.57469i 0.534534 + 1.57469i
215215 0 0
216216 0 0
217217 0 0
218218 −0.0761205 0.382683i −0.0761205 0.382683i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 1.00000i 1.00000i
226226 0.465926 + 0.607206i 0.465926 + 0.607206i
227227 0 0 0.442289 0.896873i 0.354167π-0.354167\pi
−0.442289 + 0.896873i 0.645833π0.645833\pi
228228 0 0
229229 0 0 −0.946930 0.321439i 0.895833π-0.895833\pi
0.946930 + 0.321439i 0.104167π0.104167\pi
230230 0 0
231231 0 0
232232 −1.92388 + 0.382683i −1.92388 + 0.382683i
233233 1.46593 1.12484i 1.46593 1.12484i 0.500000 0.866025i 0.333333π-0.333333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
240240 0 0
241241 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
242242 −0.219416 + 0.818872i −0.219416 + 0.818872i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 0.980785 0.195090i 0.0625000π-0.0625000\pi
−0.980785 + 0.195090i 0.937500π0.937500\pi
252252 0 0
253253 −0.248303 + 0.165911i −0.248303 + 0.165911i
254254 0.184592 1.40211i 0.184592 1.40211i
255255 0 0
256256 0.500000 + 0.866025i 0.500000 + 0.866025i
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0 0
259259 0 0
260260 0 0
261261 −0.630526 + 1.85747i −0.630526 + 1.85747i
262262 0 0
263263 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −1.25026 1.09645i −1.25026 1.09645i
269269 0 0 −0.321439 0.946930i 0.604167π-0.604167\pi
0.321439 + 0.946930i 0.395833π0.395833\pi
270270 0 0
271271 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
272272 0 0
273273 0 0
274274 1.84776i 1.84776i
275275 0.293353 + 0.257264i 0.293353 + 0.257264i
276276 0 0
277277 −0.0255190 + 0.389345i −0.0255190 + 0.389345i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
278278 0 0
279279 0 0
280280 0 0
281281 −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i 0.750000π0.750000\pi
−1.00000 π\pi
282282 0 0
283283 0 0 0.751840 0.659346i 0.229167π-0.229167\pi
−0.751840 + 0.659346i 0.770833π0.770833\pi
284284 0.184592 + 1.40211i 0.184592 + 1.40211i
285285 0 0
286286 0 0
287287 0 0
288288 1.00000 1.00000
289289 −0.866025 0.500000i −0.866025 0.500000i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.195090 0.980785i 0.562500π-0.562500\pi
0.195090 + 0.980785i 0.437500π0.437500\pi
294294 0 0
295295 0 0
296296 −0.732626 + 0.835400i −0.732626 + 0.835400i
297297 0 0
298298 −0.534534 1.57469i −0.534534 1.57469i
299299 0 0
300300 0 0
301301 0 0
302302 −1.84776 −1.84776
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
312312 0 0
313313 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
314314 0 0
315315 0 0
316316 1.84776i 1.84776i
317317 0.128293 + 1.95737i 0.128293 + 1.95737i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.130526 + 0.991445i 0.541667π0.541667\pi
318318 0 0
319319 −0.382683 0.662827i −0.382683 0.662827i
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0.500000 0.866025i 0.500000 0.866025i
325325 0 0
326326 −0.128293 + 1.95737i −0.128293 + 1.95737i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −0.867580 1.75928i −0.867580 1.75928i −0.608761 0.793353i 0.708333π-0.708333\pi
−0.258819 0.965926i 0.583333π-0.583333\pi
332332 0 0
333333 0.357164 + 1.05217i 0.357164 + 1.05217i
334334 0 0
335335 0 0
336336 0 0
337337 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i 0.125000π-0.125000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
338338 0.500000 0.866025i 0.500000 0.866025i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 −0.923880 + 0.617317i −0.923880 + 0.617317i
345345 0 0
346346 0 0
347347 −1.47479 + 1.29335i −1.47479 + 1.29335i −0.608761 + 0.793353i 0.708333π0.708333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
348348 0 0
349349 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
350350 0 0
351351 0 0
352352 −0.257264 + 0.293353i −0.257264 + 0.293353i
353353 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 1.08979 0.216773i 1.08979 0.216773i
359359 0.0999004 0.758819i 0.0999004 0.758819i −0.866025 0.500000i 0.833333π-0.833333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
360360 0 0
361361 0.130526 + 0.991445i 0.130526 + 0.991445i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
368368 0.758819 0.0999004i 0.758819 0.0999004i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0.172572 + 0.349942i 0.172572 + 0.349942i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 −1.63099 + 0.324423i −1.63099 + 0.324423i −0.923880 0.382683i 0.875000π-0.875000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
380380 0 0
381381 0 0
382382 1.46593 + 1.12484i 1.46593 + 1.12484i
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 0 0
385385 0 0
386386 0.707107 0.292893i 0.707107 0.292893i
387387 0.0726721 + 1.10876i 0.0726721 + 1.10876i
388388 0 0
389389 −0.732626 0.835400i −0.732626 0.835400i 0.258819 0.965926i 0.416667π-0.416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0.0726721 + 1.10876i 0.0726721 + 1.10876i
395395 0 0
396396 0.125419 + 0.369474i 0.125419 + 0.369474i
397397 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
398398 0 0
399399 0 0
400400 −0.382683 0.923880i −0.382683 0.923880i
401401 0.739288 0.198092i 0.739288 0.198092i 0.130526 0.991445i 0.458333π-0.458333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 −0.400544 0.165911i −0.400544 0.165911i
408408 0 0
409409 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0.292893 0.707107i 0.292893 0.707107i
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
420420 0 0
421421 −0.382683 1.92388i −0.382683 1.92388i −0.382683 0.923880i 0.625000π-0.625000\pi
1.00000i 0.5π-0.5\pi
422422 −1.85747 0.630526i −1.85747 0.630526i
423423 0 0
424424 −0.735499 + 1.49144i −0.735499 + 1.49144i
425425 0 0
426426 0 0
427427 0 0
428428 1.63099 0.324423i 1.63099 0.324423i
429429 0 0
430430 0 0
431431 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
432432 0 0
433433 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
434434 0 0
435435 0 0
436436 −0.389345 + 0.0255190i −0.389345 + 0.0255190i
437437 0 0
438438 0 0
439439 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
440440 0 0
441441 0 0
442442 0 0
443443 −0.357164 + 1.05217i −0.357164 + 1.05217i 0.608761 + 0.793353i 0.291667π0.291667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
450450 −0.991445 0.130526i −0.991445 0.130526i
451451 0 0
452452 0.662827 0.382683i 0.662827 0.382683i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.860919 1.12197i −0.860919 1.12197i −0.991445 0.130526i 0.958333π-0.958333\pi
0.130526 0.991445i 0.458333π-0.458333\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 −0.980785 0.195090i 0.937500π-0.937500\pi
0.980785 + 0.195090i 0.0625000π0.0625000\pi
462462 0 0
463463 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i 0.625000π-0.625000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
464464 0.128293 + 1.95737i 0.128293 + 1.95737i
465465 0 0
466466 −0.923880 1.60021i −0.923880 1.60021i
467467 0 0 −0.751840 0.659346i 0.770833π-0.770833\pi
0.751840 + 0.659346i 0.229167π0.229167\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −0.343955 0.263926i −0.343955 0.263926i
474474 0 0
475475 0 0
476476 0 0
477477 0.923880 + 1.38268i 0.923880 + 1.38268i
478478 1.12197 0.860919i 1.12197 0.860919i
479479 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0.783227 + 0.324423i 0.783227 + 0.324423i
485485 0 0
486486 0 0
487487 −1.46593 1.12484i −1.46593 1.12484i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
488488 0 0
489489 0 0
490490 0 0
491491 −1.38268 0.923880i −1.38268 0.923880i −0.382683 0.923880i 0.625000π-0.625000\pi
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 1.09645 1.25026i 1.09645 1.25026i 0.130526 0.991445i 0.458333π-0.458333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
504504 0 0
505505 0 0
506506 0.132081 + 0.267834i 0.132081 + 0.267834i
507507 0 0
508508 −1.36603 0.366025i −1.36603 0.366025i
509509 0 0 −0.0654031 0.997859i 0.520833π-0.520833\pi
0.0654031 + 0.997859i 0.479167π0.479167\pi
510510 0 0
511511 0 0
512512 0.923880 0.382683i 0.923880 0.382683i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
522522 1.75928 + 0.867580i 1.75928 + 0.867580i
523523 0 0 −0.442289 0.896873i 0.645833π-0.645833\pi
0.442289 + 0.896873i 0.354167π0.354167\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.107206 + 0.400100i −0.107206 + 0.400100i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 −1.25026 + 1.09645i −1.25026 + 1.09645i
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 1.65938 0.108761i 1.65938 0.108761i 0.793353 0.608761i 0.208333π-0.208333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −1.08979 1.63099i −1.08979 1.63099i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.382683 0.923880i 0.625000π-0.625000\pi
548548 1.83195 + 0.241181i 1.83195 + 0.241181i
549549 0 0
550550 0.293353 0.257264i 0.293353 0.257264i
551551 0 0
552552 0 0
553553 0 0
554554 0.382683 + 0.0761205i 0.382683 + 0.0761205i
555555 0 0
556556 0 0
557557 −0.369474 + 0.125419i −0.369474 + 0.125419i −0.500000 0.866025i 0.666667π-0.666667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0.478235 + 1.78480i 0.478235 + 1.78480i
563563 0 0 −0.321439 0.946930i 0.604167π-0.604167\pi
0.321439 + 0.946930i 0.395833π0.395833\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 1.41421 1.41421
569569 −1.40211 0.184592i −1.40211 0.184592i −0.608761 0.793353i 0.708333π-0.708333\pi
−0.793353 + 0.608761i 0.791667π0.791667\pi
570570 0 0
571571 1.29335 + 1.47479i 1.29335 + 1.47479i 0.793353 + 0.608761i 0.208333π0.208333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
572572 0 0
573573 0 0
574574 0 0
575575 −0.765367 −0.765367
576576 0.130526 0.991445i 0.130526 0.991445i
577577 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
578578 −0.608761 + 0.793353i −0.608761 + 0.793353i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 −0.643296 0.0846915i −0.643296 0.0846915i
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.555570 0.831470i 0.312500π-0.312500\pi
−0.555570 + 0.831470i 0.687500π0.687500\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0.732626 + 0.835400i 0.732626 + 0.835400i
593593 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
594594 0 0
595595 0 0
596596 −1.63099 + 0.324423i −1.63099 + 0.324423i
597597 0 0
598598 0 0
599599 0 0 0.991445 0.130526i 0.0416667π-0.0416667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
600600 0 0
601601 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
602602 0 0
603603 0.324423 + 1.63099i 0.324423 + 1.63099i
604604 −0.241181 + 1.83195i −0.241181 + 1.83195i
605605 0 0
606606 0 0
607607 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1.47479 1.29335i 1.47479 1.29335i 0.608761 0.793353i 0.291667π-0.291667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i 0.625000π-0.625000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
618618 0 0
619619 0 0 0.0654031 0.997859i 0.479167π-0.479167\pi
−0.0654031 + 0.997859i 0.520833π0.520833\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.258819 + 0.965926i 0.258819 + 0.965926i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −0.541196 + 1.30656i −0.541196 + 1.30656i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
632632 1.83195 + 0.241181i 1.83195 + 0.241181i
633633 0 0
634634 1.95737 + 0.128293i 1.95737 + 0.128293i
635635 0 0
636636 0 0
637637 0 0
638638 −0.707107 + 0.292893i −0.707107 + 0.292893i
639639 0.707107 1.22474i 0.707107 1.22474i
640640 0 0
641641 −0.382683 0.662827i −0.382683 0.662827i 0.608761 0.793353i 0.291667π-0.291667\pi
−0.991445 + 0.130526i 0.958333π0.958333\pi
642642 0 0
643643 0 0 0.831470 0.555570i 0.187500π-0.187500\pi
−0.831470 + 0.555570i 0.812500π0.812500\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.608761 0.793353i 0.291667π-0.291667\pi
−0.608761 + 0.793353i 0.708333π0.708333\pi
648648 −0.793353 0.608761i −0.793353 0.608761i
649649 0 0
650650 0 0
651651 0 0
652652 1.92388 + 0.382683i 1.92388 + 0.382683i
653653 −0.257264 + 0.293353i −0.257264 + 0.293353i −0.866025 0.500000i 0.833333π-0.833333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −0.0761205 + 0.382683i −0.0761205 + 0.382683i 0.923880 + 0.382683i 0.125000π0.125000\pi
−1.00000 π\pi
660660 0 0
661661 0 0 0.0654031 0.997859i 0.479167π-0.479167\pi
−0.0654031 + 0.997859i 0.520833π0.520833\pi
662662 −1.85747 + 0.630526i −1.85747 + 0.630526i
663663 0 0
664664 0 0
665665 0 0
666666 1.08979 0.216773i 1.08979 0.216773i
667667 1.42165 + 0.482584i 1.42165 + 0.482584i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
674674 0.607206 0.465926i 0.607206 0.465926i
675675 0 0
676676 −0.793353 0.608761i −0.793353 0.608761i
677677 0 0 −0.946930 0.321439i 0.895833π-0.895833\pi
0.946930 + 0.321439i 0.104167π0.104167\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −0.0726721 + 1.10876i −0.0726721 + 1.10876i 0.793353 + 0.608761i 0.208333π0.208333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0.491445 + 0.996552i 0.491445 + 0.996552i
689689 0 0
690690 0 0
691691 0 0 0.659346 0.751840i 0.270833π-0.270833\pi
−0.659346 + 0.751840i 0.729167π0.729167\pi
692692 0 0
693693 0 0
694694 1.08979 + 1.63099i 1.08979 + 1.63099i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 −0.923880 + 0.617317i −0.923880 + 0.617317i −0.923880 0.382683i 0.875000π-0.875000\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0.257264 + 0.293353i 0.257264 + 0.293353i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −0.125419 + 0.369474i −0.125419 + 0.369474i −0.991445 0.130526i 0.958333π-0.958333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
710710 0 0
711711 1.12484 1.46593i 1.12484 1.46593i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 −0.0726721 1.10876i −0.0726721 1.10876i
717717 0 0
718718 −0.739288 0.198092i −0.739288 0.198092i
719719 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
720720 0 0
721721 0 0
722722 1.00000 1.00000
723723 0 0
724724 0 0
725725 0.128293 1.95737i 0.128293 1.95737i
726726 0 0
727727 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
728728 0 0
729729 −0.923880 + 0.382683i −0.923880 + 0.382683i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.997859 0.0654031i 0.0208333π-0.0208333\pi
−0.997859 + 0.0654031i 0.979167π0.979167\pi
734734 0 0
735735 0 0
736736 0.765367i 0.765367i
737737 −0.561918 0.324423i −0.561918 0.324423i
738738 0 0
739739 0.172572 0.349942i 0.172572 0.349942i −0.793353 0.608761i 0.791667π-0.791667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
740740 0 0
741741 0 0
742742 0 0
743743 −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i 0.750000π0.750000\pi
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0.369474 0.125419i 0.369474 0.125419i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0.923880 1.38268i 0.923880 1.38268i 1.00000i 0.5π-0.5\pi
0.923880 0.382683i 0.125000π-0.125000\pi
758758 0.108761 + 1.65938i 0.108761 + 1.65938i
759759 0 0
760760 0 0
761761 0 0 −0.991445 0.130526i 0.958333π-0.958333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
762762 0 0
763763 0 0
764764 1.30656 1.30656i 1.30656 1.30656i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 −0.198092 0.739288i −0.198092 0.739288i
773773 0 0 −0.659346 0.751840i 0.729167π-0.729167\pi
0.659346 + 0.751840i 0.270833π0.270833\pi
774774 1.10876 + 0.0726721i 1.10876 + 0.0726721i
775775 0 0
776776 0 0
777777 0 0
778778 −0.923880 + 0.617317i −0.923880 + 0.617317i
779779 0 0
780780 0 0
781781 0.177370 + 0.522515i 0.177370 + 0.522515i
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
788788 1.10876 + 0.0726721i 1.10876 + 0.0726721i
789789 0 0
790790 0 0
791791 0 0
792792 0.382683 0.0761205i 0.382683 0.0761205i
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.555570 0.831470i 0.687500π-0.687500\pi
0.555570 + 0.831470i 0.312500π0.312500\pi
798798 0 0
799799 0 0
800800 −0.965926 + 0.258819i −0.965926 + 0.258819i
801801 0 0
802802 −0.0999004 0.758819i −0.0999004 0.758819i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −0.184592 1.40211i −0.184592 1.40211i −0.793353 0.608761i 0.791667π-0.791667\pi
0.608761 0.793353i 0.291667π-0.291667\pi
810810 0 0
811811 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
812812 0 0
813813 0 0
814814 −0.216773 + 0.375461i −0.216773 + 0.375461i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −0.867580 1.75928i −0.867580 1.75928i −0.608761 0.793353i 0.708333π-0.708333\pi
−0.258819 0.965926i 0.583333π-0.583333\pi
822822 0 0
823823 0 0 −0.130526 0.991445i 0.541667π-0.541667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
824824 0 0
825825 0 0
826826 0 0
827827 −1.08979 + 0.216773i −1.08979 + 0.216773i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
828828 −0.662827 0.382683i −0.662827 0.382683i
829829 0 0 −0.896873 0.442289i 0.854167π-0.854167\pi
0.896873 + 0.442289i 0.145833π0.145833\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
840840 0 0
841841 −1.08979 + 2.63099i −1.08979 + 2.63099i
842842 −1.95737 + 0.128293i −1.95737 + 0.128293i
843843 0 0
844844 −0.867580 + 1.75928i −0.867580 + 1.75928i
845845 0 0
846846 0 0
847847 0 0
848848 1.38268 + 0.923880i 1.38268 + 0.923880i
849849 0 0
850850 0 0
851851 0.805298 0.273362i 0.805298 0.273362i
852852 0 0
853853 0 0 −0.831470 0.555570i 0.812500π-0.812500\pi
0.831470 + 0.555570i 0.187500π0.187500\pi
854854 0 0
855855 0 0
856856 −0.108761 1.65938i −0.108761 1.65938i
857857 0 0 −0.793353 0.608761i 0.791667π-0.791667\pi
0.793353 + 0.608761i 0.208333π0.208333\pi
858858 0 0
859859 0 0 −0.946930 0.321439i 0.895833π-0.895833\pi
0.946930 + 0.321439i 0.104167π0.104167\pi
860860 0 0
861861 0 0
862862 0 0
863863 1.60021 + 0.923880i 1.60021 + 0.923880i 0.991445 + 0.130526i 0.0416667π0.0416667\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0.140652 + 0.707107i 0.140652 + 0.707107i
870870 0 0
871871 0 0
872872 −0.0255190 + 0.389345i −0.0255190 + 0.389345i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −0.835400 0.732626i −0.835400 0.732626i 0.130526 0.991445i 0.458333π-0.458333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
882882 0 0
883883 1.92388 + 0.382683i 1.92388 + 0.382683i 1.00000 00
0.923880 + 0.382683i 0.125000π0.125000\pi
884884 0 0
885885 0 0
886886 0.996552 + 0.491445i 0.996552 + 0.491445i
887887 0 0 −0.608761 0.793353i 0.708333π-0.708333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
888888 0 0
889889 0 0
890890 0 0
891891 0.125419 0.369474i 0.125419 0.369474i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0.184592 1.40211i 0.184592 1.40211i
899899 0 0
900900 −0.258819 + 0.965926i −0.258819 + 0.965926i
901901 0 0
902902 0 0
903903 0 0
904904 −0.292893 0.707107i −0.292893 0.707107i
905905 0 0
906906 0 0
907907 0.389345 + 0.0255190i 0.389345 + 0.0255190i 0.258819 0.965926i 0.416667π-0.416667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
908908 0 0
909909 0 0
910910 0 0
911911 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
912912 0 0
913913 0 0
914914 −1.22474 + 0.707107i −1.22474 + 0.707107i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 1.12197 0.860919i 1.12197 0.860919i 0.130526 0.991445i 0.458333π-0.458333\pi
0.991445 + 0.130526i 0.0416667π0.0416667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −0.617317 0.923880i −0.617317 0.923880i
926926 −0.465926 0.607206i −0.465926 0.607206i
927927 0 0
928928 1.95737 + 0.128293i 1.95737 + 0.128293i
929929 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
930930 0 0
931931 0 0
932932 −1.70711 + 0.707107i −1.70711 + 0.707107i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.946930 0.321439i 0.104167π-0.104167\pi
−0.946930 + 0.321439i 0.895833π0.895833\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 −0.306563 + 0.306563i −0.306563 + 0.306563i
947947 −0.257264 + 0.293353i −0.257264 + 0.293353i −0.866025 0.500000i 0.833333π-0.833333\pi
0.608761 + 0.793353i 0.291667π0.291667\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −0.707107 1.70711i −0.707107 1.70711i −0.707107 0.707107i 0.750000π-0.750000\pi
1.00000i 0.5π-0.5\pi
954954 1.49144 0.735499i 1.49144 0.735499i
955955 0 0
956956 −0.707107 1.22474i −0.707107 1.22474i
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.500000 0.866025i 0.500000 0.866025i
962962 0 0
963963 −1.49144 0.735499i −1.49144 0.735499i
964964 0 0
965965 0 0
966966 0 0
967967 −0.707107 1.70711i −0.707107 1.70711i −0.707107 0.707107i 0.750000π-0.750000\pi
1.00000i 0.5π-0.5\pi
968968 0.423880 0.734181i 0.423880 0.734181i
969969 0 0
970970 0 0
971971 0 0 −0.442289 0.896873i 0.645833π-0.645833\pi
0.442289 + 0.896873i 0.354167π0.354167\pi
972972 0 0
973973 0 0
974974 −1.30656 + 1.30656i −1.30656 + 1.30656i
975975 0 0
976976 0 0
977977 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
978978 0 0
979979 0 0
980980 0 0
981981 0.324423 + 0.216773i 0.324423 + 0.216773i
982982 −1.09645 + 1.25026i −1.09645 + 1.25026i
983983 0 0 −0.130526 0.991445i 0.541667π-0.541667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0.848609 0.0556208i 0.848609 0.0556208i
990990 0 0
991991 −0.662827 + 0.382683i −0.662827 + 0.382683i −0.793353 0.608761i 0.791667π-0.791667\pi
0.130526 + 0.991445i 0.458333π0.458333\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 0.751840 0.659346i 0.229167π-0.229167\pi
−0.751840 + 0.659346i 0.770833π0.770833\pi
998998 −1.09645 1.25026i −1.09645 1.25026i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3136.1.ce.a.1293.1 16
7.2 even 3 448.1.bf.a.13.1 8
7.3 odd 6 inner 3136.1.ce.a.717.1 16
7.4 even 3 inner 3136.1.ce.a.717.1 16
7.5 odd 6 448.1.bf.a.13.1 8
7.6 odd 2 CM 3136.1.ce.a.1293.1 16
28.19 even 6 1792.1.bf.a.657.1 8
28.23 odd 6 1792.1.bf.a.657.1 8
56.5 odd 6 3584.1.bf.a.545.1 8
56.19 even 6 3584.1.bf.b.545.1 8
56.37 even 6 3584.1.bf.a.545.1 8
56.51 odd 6 3584.1.bf.b.545.1 8
64.5 even 16 inner 3136.1.ce.a.901.1 16
448.5 odd 48 448.1.bf.a.69.1 yes 8
448.37 even 48 3584.1.bf.a.993.1 8
448.69 odd 16 inner 3136.1.ce.a.901.1 16
448.187 even 48 1792.1.bf.a.881.1 8
448.219 odd 48 3584.1.bf.b.993.1 8
448.229 odd 48 3584.1.bf.a.993.1 8
448.261 even 48 448.1.bf.a.69.1 yes 8
448.325 odd 48 inner 3136.1.ce.a.325.1 16
448.389 even 48 inner 3136.1.ce.a.325.1 16
448.411 even 48 3584.1.bf.b.993.1 8
448.443 odd 48 1792.1.bf.a.881.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.1.bf.a.13.1 8 7.2 even 3
448.1.bf.a.13.1 8 7.5 odd 6
448.1.bf.a.69.1 yes 8 448.5 odd 48
448.1.bf.a.69.1 yes 8 448.261 even 48
1792.1.bf.a.657.1 8 28.19 even 6
1792.1.bf.a.657.1 8 28.23 odd 6
1792.1.bf.a.881.1 8 448.187 even 48
1792.1.bf.a.881.1 8 448.443 odd 48
3136.1.ce.a.325.1 16 448.325 odd 48 inner
3136.1.ce.a.325.1 16 448.389 even 48 inner
3136.1.ce.a.717.1 16 7.3 odd 6 inner
3136.1.ce.a.717.1 16 7.4 even 3 inner
3136.1.ce.a.901.1 16 64.5 even 16 inner
3136.1.ce.a.901.1 16 448.69 odd 16 inner
3136.1.ce.a.1293.1 16 1.1 even 1 trivial
3136.1.ce.a.1293.1 16 7.6 odd 2 CM
3584.1.bf.a.545.1 8 56.5 odd 6
3584.1.bf.a.545.1 8 56.37 even 6
3584.1.bf.a.993.1 8 448.37 even 48
3584.1.bf.a.993.1 8 448.229 odd 48
3584.1.bf.b.545.1 8 56.19 even 6
3584.1.bf.b.545.1 8 56.51 odd 6
3584.1.bf.b.993.1 8 448.219 odd 48
3584.1.bf.b.993.1 8 448.411 even 48