Properties

Label 315.10.a.c
Level $315$
Weight $10$
Character orbit 315.a
Self dual yes
Analytic conductor $162.236$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 307x^{2} - 270x + 8836 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 2) q^{2} + (\beta_{3} - \beta_1 + 106) q^{4} + 625 q^{5} - 2401 q^{7} + (8 \beta_{2} - 28 \beta_1 - 24) q^{8} + (625 \beta_1 - 1250) q^{10} + ( - 16 \beta_{3} + 41 \beta_{2} + \cdots - 2458) q^{11}+ \cdots + (5764801 \beta_1 - 11529602) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 424 q^{4} + 2500 q^{5} - 9604 q^{7} - 96 q^{8} - 5000 q^{10} - 9832 q^{11} - 68264 q^{13} + 19208 q^{14} - 290784 q^{16} - 86272 q^{17} + 807672 q^{19} + 265000 q^{20} + 4293352 q^{22} - 683032 q^{23}+ \cdots - 46118408 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 307x^{2} - 270x + 8836 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 3\nu^{2} - 246\nu + 258 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{2} - 6\nu - 614 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 3\beta _1 + 614 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{3} + 4\beta_{2} + 501\beta _1 + 810 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−15.9853
−6.27206
5.15226
17.1051
−33.9706 0 642.004 625.000 0 −2401.00 −4416.33 0 −21231.6
1.2 −14.5441 0 −300.469 625.000 0 −2401.00 11816.6 0 −9090.08
1.3 8.30453 0 −443.035 625.000 0 −2401.00 −7931.11 0 5190.33
1.4 32.2102 0 525.499 625.000 0 −2401.00 434.806 0 20131.4
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.10.a.c 4
3.b odd 2 1 105.10.a.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.10.a.f 4 3.b odd 2 1
315.10.a.c 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 8T_{2}^{3} - 1204T_{2}^{2} - 7040T_{2} + 132160 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 8 T^{3} + \cdots + 132160 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T - 625)^{4} \) Copy content Toggle raw display
$7$ \( (T + 2401)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 32\!\cdots\!64 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 60\!\cdots\!60 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 18\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 33\!\cdots\!84 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 59\!\cdots\!56 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 36\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 73\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 19\!\cdots\!44 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 29\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 81\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 24\!\cdots\!60 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 75\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 23\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 83\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 16\!\cdots\!96 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 53\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 11\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 14\!\cdots\!64 \) Copy content Toggle raw display
show more
show less