Properties

Label 315.10.a.d.1.2
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1495x^{2} + 193x + 99862 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.41677\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.41677 q^{2} -423.324 q^{4} +625.000 q^{5} -2401.00 q^{7} +8807.73 q^{8} -5885.48 q^{10} -81635.7 q^{11} +142991. q^{13} +22609.7 q^{14} +133802. q^{16} -186341. q^{17} -568546. q^{19} -264578. q^{20} +768745. q^{22} +2.05879e6 q^{23} +390625. q^{25} -1.34652e6 q^{26} +1.01640e6 q^{28} -196707. q^{29} -661063. q^{31} -5.76954e6 q^{32} +1.75473e6 q^{34} -1.50062e6 q^{35} -6.34279e6 q^{37} +5.35387e6 q^{38} +5.50483e6 q^{40} +1.86291e7 q^{41} +4.79937e6 q^{43} +3.45584e7 q^{44} -1.93872e7 q^{46} -1.96227e7 q^{47} +5.76480e6 q^{49} -3.67842e6 q^{50} -6.05318e7 q^{52} -5.89666e7 q^{53} -5.10223e7 q^{55} -2.11474e7 q^{56} +1.85234e6 q^{58} +1.68723e8 q^{59} +9.77330e7 q^{61} +6.22507e6 q^{62} -1.41761e7 q^{64} +8.93696e7 q^{65} -9.57587e7 q^{67} +7.88828e7 q^{68} +1.41310e7 q^{70} +1.52066e8 q^{71} +1.65675e8 q^{73} +5.97286e7 q^{74} +2.40679e8 q^{76} +1.96007e8 q^{77} +2.10472e8 q^{79} +8.36261e7 q^{80} -1.75426e8 q^{82} +5.68738e8 q^{83} -1.16463e8 q^{85} -4.51946e7 q^{86} -7.19026e8 q^{88} +4.82100e7 q^{89} -3.43322e8 q^{91} -8.71537e8 q^{92} +1.84782e8 q^{94} -3.55341e8 q^{95} -9.50202e8 q^{97} -5.42858e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} + 949 q^{4} + 2500 q^{5} - 9604 q^{7} - 7767 q^{8} - 3125 q^{10} - 64546 q^{11} - 29390 q^{13} + 12005 q^{14} + 554577 q^{16} - 278788 q^{17} - 929142 q^{19} + 593125 q^{20} + 2767732 q^{22}+ \cdots - 28824005 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.41677 −0.416166 −0.208083 0.978111i \(-0.566722\pi\)
−0.208083 + 0.978111i \(0.566722\pi\)
\(3\) 0 0
\(4\) −423.324 −0.826806
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) 8807.73 0.760255
\(9\) 0 0
\(10\) −5885.48 −0.186115
\(11\) −81635.7 −1.68118 −0.840588 0.541675i \(-0.817790\pi\)
−0.840588 + 0.541675i \(0.817790\pi\)
\(12\) 0 0
\(13\) 142991. 1.38856 0.694280 0.719705i \(-0.255723\pi\)
0.694280 + 0.719705i \(0.255723\pi\)
\(14\) 22609.7 0.157296
\(15\) 0 0
\(16\) 133802. 0.510413
\(17\) −186341. −0.541114 −0.270557 0.962704i \(-0.587208\pi\)
−0.270557 + 0.962704i \(0.587208\pi\)
\(18\) 0 0
\(19\) −568546. −1.00086 −0.500431 0.865776i \(-0.666825\pi\)
−0.500431 + 0.865776i \(0.666825\pi\)
\(20\) −264578. −0.369759
\(21\) 0 0
\(22\) 768745. 0.699649
\(23\) 2.05879e6 1.53404 0.767021 0.641622i \(-0.221738\pi\)
0.767021 + 0.641622i \(0.221738\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −1.34652e6 −0.577872
\(27\) 0 0
\(28\) 1.01640e6 0.312503
\(29\) −196707. −0.0516450 −0.0258225 0.999667i \(-0.508220\pi\)
−0.0258225 + 0.999667i \(0.508220\pi\)
\(30\) 0 0
\(31\) −661063. −0.128563 −0.0642814 0.997932i \(-0.520476\pi\)
−0.0642814 + 0.997932i \(0.520476\pi\)
\(32\) −5.76954e6 −0.972672
\(33\) 0 0
\(34\) 1.75473e6 0.225193
\(35\) −1.50062e6 −0.169031
\(36\) 0 0
\(37\) −6.34279e6 −0.556381 −0.278191 0.960526i \(-0.589735\pi\)
−0.278191 + 0.960526i \(0.589735\pi\)
\(38\) 5.35387e6 0.416525
\(39\) 0 0
\(40\) 5.50483e6 0.339996
\(41\) 1.86291e7 1.02959 0.514796 0.857312i \(-0.327868\pi\)
0.514796 + 0.857312i \(0.327868\pi\)
\(42\) 0 0
\(43\) 4.79937e6 0.214080 0.107040 0.994255i \(-0.465863\pi\)
0.107040 + 0.994255i \(0.465863\pi\)
\(44\) 3.45584e7 1.39001
\(45\) 0 0
\(46\) −1.93872e7 −0.638417
\(47\) −1.96227e7 −0.586567 −0.293284 0.956026i \(-0.594748\pi\)
−0.293284 + 0.956026i \(0.594748\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −3.67842e6 −0.0832333
\(51\) 0 0
\(52\) −6.05318e7 −1.14807
\(53\) −5.89666e7 −1.02651 −0.513256 0.858235i \(-0.671561\pi\)
−0.513256 + 0.858235i \(0.671561\pi\)
\(54\) 0 0
\(55\) −5.10223e7 −0.751845
\(56\) −2.11474e7 −0.287349
\(57\) 0 0
\(58\) 1.85234e6 0.0214929
\(59\) 1.68723e8 1.81276 0.906378 0.422468i \(-0.138836\pi\)
0.906378 + 0.422468i \(0.138836\pi\)
\(60\) 0 0
\(61\) 9.77330e7 0.903768 0.451884 0.892077i \(-0.350752\pi\)
0.451884 + 0.892077i \(0.350752\pi\)
\(62\) 6.22507e6 0.0535035
\(63\) 0 0
\(64\) −1.41761e7 −0.105620
\(65\) 8.93696e7 0.620983
\(66\) 0 0
\(67\) −9.57587e7 −0.580552 −0.290276 0.956943i \(-0.593747\pi\)
−0.290276 + 0.956943i \(0.593747\pi\)
\(68\) 7.88828e7 0.447396
\(69\) 0 0
\(70\) 1.41310e7 0.0703449
\(71\) 1.52066e8 0.710180 0.355090 0.934832i \(-0.384450\pi\)
0.355090 + 0.934832i \(0.384450\pi\)
\(72\) 0 0
\(73\) 1.65675e8 0.682815 0.341407 0.939915i \(-0.389096\pi\)
0.341407 + 0.939915i \(0.389096\pi\)
\(74\) 5.97286e7 0.231547
\(75\) 0 0
\(76\) 2.40679e8 0.827519
\(77\) 1.96007e8 0.635425
\(78\) 0 0
\(79\) 2.10472e8 0.607957 0.303979 0.952679i \(-0.401685\pi\)
0.303979 + 0.952679i \(0.401685\pi\)
\(80\) 8.36261e7 0.228264
\(81\) 0 0
\(82\) −1.75426e8 −0.428482
\(83\) 5.68738e8 1.31541 0.657704 0.753276i \(-0.271528\pi\)
0.657704 + 0.753276i \(0.271528\pi\)
\(84\) 0 0
\(85\) −1.16463e8 −0.241994
\(86\) −4.51946e7 −0.0890929
\(87\) 0 0
\(88\) −7.19026e8 −1.27812
\(89\) 4.82100e7 0.0814483 0.0407241 0.999170i \(-0.487034\pi\)
0.0407241 + 0.999170i \(0.487034\pi\)
\(90\) 0 0
\(91\) −3.43322e8 −0.524827
\(92\) −8.71537e8 −1.26835
\(93\) 0 0
\(94\) 1.84782e8 0.244109
\(95\) −3.55341e8 −0.447599
\(96\) 0 0
\(97\) −9.50202e8 −1.08979 −0.544895 0.838504i \(-0.683431\pi\)
−0.544895 + 0.838504i \(0.683431\pi\)
\(98\) −5.42858e7 −0.0594523
\(99\) 0 0
\(100\) −1.65361e8 −0.165361
\(101\) −6.86462e8 −0.656403 −0.328202 0.944608i \(-0.606443\pi\)
−0.328202 + 0.944608i \(0.606443\pi\)
\(102\) 0 0
\(103\) 1.44857e8 0.126815 0.0634077 0.997988i \(-0.479803\pi\)
0.0634077 + 0.997988i \(0.479803\pi\)
\(104\) 1.25943e9 1.05566
\(105\) 0 0
\(106\) 5.55274e8 0.427200
\(107\) −8.85421e7 −0.0653014 −0.0326507 0.999467i \(-0.510395\pi\)
−0.0326507 + 0.999467i \(0.510395\pi\)
\(108\) 0 0
\(109\) −2.78795e9 −1.89176 −0.945881 0.324514i \(-0.894799\pi\)
−0.945881 + 0.324514i \(0.894799\pi\)
\(110\) 4.80465e8 0.312892
\(111\) 0 0
\(112\) −3.21258e8 −0.192918
\(113\) 3.34793e9 1.93163 0.965813 0.259241i \(-0.0834726\pi\)
0.965813 + 0.259241i \(0.0834726\pi\)
\(114\) 0 0
\(115\) 1.28675e9 0.686045
\(116\) 8.32708e7 0.0427004
\(117\) 0 0
\(118\) −1.58882e9 −0.754408
\(119\) 4.47405e8 0.204522
\(120\) 0 0
\(121\) 4.30644e9 1.82635
\(122\) −9.20329e8 −0.376118
\(123\) 0 0
\(124\) 2.79844e8 0.106296
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) −2.49430e9 −0.850810 −0.425405 0.905003i \(-0.639868\pi\)
−0.425405 + 0.905003i \(0.639868\pi\)
\(128\) 3.08750e9 1.01663
\(129\) 0 0
\(130\) −8.41573e8 −0.258432
\(131\) 1.80018e9 0.534067 0.267034 0.963687i \(-0.413957\pi\)
0.267034 + 0.963687i \(0.413957\pi\)
\(132\) 0 0
\(133\) 1.36508e9 0.378291
\(134\) 9.01737e8 0.241606
\(135\) 0 0
\(136\) −1.64124e9 −0.411385
\(137\) −4.24238e9 −1.02889 −0.514443 0.857525i \(-0.672001\pi\)
−0.514443 + 0.857525i \(0.672001\pi\)
\(138\) 0 0
\(139\) −3.50196e9 −0.795692 −0.397846 0.917452i \(-0.630242\pi\)
−0.397846 + 0.917452i \(0.630242\pi\)
\(140\) 6.35251e8 0.139756
\(141\) 0 0
\(142\) −1.43197e9 −0.295553
\(143\) −1.16732e10 −2.33441
\(144\) 0 0
\(145\) −1.22942e8 −0.0230963
\(146\) −1.56012e9 −0.284164
\(147\) 0 0
\(148\) 2.68506e9 0.460019
\(149\) 4.96552e9 0.825328 0.412664 0.910883i \(-0.364598\pi\)
0.412664 + 0.910883i \(0.364598\pi\)
\(150\) 0 0
\(151\) 1.12718e10 1.76440 0.882202 0.470870i \(-0.156060\pi\)
0.882202 + 0.470870i \(0.156060\pi\)
\(152\) −5.00760e9 −0.760911
\(153\) 0 0
\(154\) −1.84576e9 −0.264442
\(155\) −4.13164e8 −0.0574950
\(156\) 0 0
\(157\) −1.00503e10 −1.32018 −0.660088 0.751188i \(-0.729481\pi\)
−0.660088 + 0.751188i \(0.729481\pi\)
\(158\) −1.98197e9 −0.253011
\(159\) 0 0
\(160\) −3.60596e9 −0.434992
\(161\) −4.94316e9 −0.579814
\(162\) 0 0
\(163\) 6.51839e9 0.723263 0.361632 0.932321i \(-0.382220\pi\)
0.361632 + 0.932321i \(0.382220\pi\)
\(164\) −7.88617e9 −0.851273
\(165\) 0 0
\(166\) −5.35567e9 −0.547428
\(167\) 2.61874e9 0.260536 0.130268 0.991479i \(-0.458416\pi\)
0.130268 + 0.991479i \(0.458416\pi\)
\(168\) 0 0
\(169\) 9.84204e9 0.928101
\(170\) 1.09671e9 0.100710
\(171\) 0 0
\(172\) −2.03169e9 −0.177003
\(173\) −1.64438e10 −1.39571 −0.697856 0.716238i \(-0.745863\pi\)
−0.697856 + 0.716238i \(0.745863\pi\)
\(174\) 0 0
\(175\) −9.37891e8 −0.0755929
\(176\) −1.09230e10 −0.858094
\(177\) 0 0
\(178\) −4.53982e8 −0.0338960
\(179\) −6.28033e9 −0.457240 −0.228620 0.973516i \(-0.573421\pi\)
−0.228620 + 0.973516i \(0.573421\pi\)
\(180\) 0 0
\(181\) −5.12651e9 −0.355033 −0.177516 0.984118i \(-0.556806\pi\)
−0.177516 + 0.984118i \(0.556806\pi\)
\(182\) 3.23299e9 0.218415
\(183\) 0 0
\(184\) 1.81333e10 1.16626
\(185\) −3.96424e9 −0.248821
\(186\) 0 0
\(187\) 1.52121e10 0.909708
\(188\) 8.30676e9 0.484977
\(189\) 0 0
\(190\) 3.34617e9 0.186276
\(191\) −4.75403e9 −0.258471 −0.129236 0.991614i \(-0.541252\pi\)
−0.129236 + 0.991614i \(0.541252\pi\)
\(192\) 0 0
\(193\) −2.27139e10 −1.17838 −0.589189 0.807996i \(-0.700552\pi\)
−0.589189 + 0.807996i \(0.700552\pi\)
\(194\) 8.94783e9 0.453534
\(195\) 0 0
\(196\) −2.44038e9 −0.118115
\(197\) 1.93880e9 0.0917140 0.0458570 0.998948i \(-0.485398\pi\)
0.0458570 + 0.998948i \(0.485398\pi\)
\(198\) 0 0
\(199\) −2.30672e10 −1.04269 −0.521345 0.853346i \(-0.674570\pi\)
−0.521345 + 0.853346i \(0.674570\pi\)
\(200\) 3.44052e9 0.152051
\(201\) 0 0
\(202\) 6.46426e9 0.273173
\(203\) 4.72293e8 0.0195200
\(204\) 0 0
\(205\) 1.16432e10 0.460448
\(206\) −1.36408e9 −0.0527763
\(207\) 0 0
\(208\) 1.91325e10 0.708740
\(209\) 4.64137e10 1.68263
\(210\) 0 0
\(211\) −5.19377e10 −1.80390 −0.901948 0.431844i \(-0.857863\pi\)
−0.901948 + 0.431844i \(0.857863\pi\)
\(212\) 2.49620e10 0.848727
\(213\) 0 0
\(214\) 8.33780e8 0.0271763
\(215\) 2.99961e9 0.0957395
\(216\) 0 0
\(217\) 1.58721e9 0.0485921
\(218\) 2.62535e10 0.787287
\(219\) 0 0
\(220\) 2.15990e10 0.621629
\(221\) −2.66452e10 −0.751370
\(222\) 0 0
\(223\) −6.75023e9 −0.182788 −0.0913938 0.995815i \(-0.529132\pi\)
−0.0913938 + 0.995815i \(0.529132\pi\)
\(224\) 1.38527e10 0.367635
\(225\) 0 0
\(226\) −3.15266e10 −0.803877
\(227\) 1.55162e9 0.0387854 0.0193927 0.999812i \(-0.493827\pi\)
0.0193927 + 0.999812i \(0.493827\pi\)
\(228\) 0 0
\(229\) −7.09078e10 −1.70386 −0.851930 0.523655i \(-0.824568\pi\)
−0.851930 + 0.523655i \(0.824568\pi\)
\(230\) −1.21170e10 −0.285509
\(231\) 0 0
\(232\) −1.73254e9 −0.0392634
\(233\) −7.24517e10 −1.61045 −0.805224 0.592971i \(-0.797955\pi\)
−0.805224 + 0.592971i \(0.797955\pi\)
\(234\) 0 0
\(235\) −1.22642e10 −0.262321
\(236\) −7.14244e10 −1.49880
\(237\) 0 0
\(238\) −4.21311e9 −0.0851151
\(239\) −4.54381e10 −0.900802 −0.450401 0.892826i \(-0.648719\pi\)
−0.450401 + 0.892826i \(0.648719\pi\)
\(240\) 0 0
\(241\) −9.03673e10 −1.72558 −0.862789 0.505564i \(-0.831284\pi\)
−0.862789 + 0.505564i \(0.831284\pi\)
\(242\) −4.05528e10 −0.760066
\(243\) 0 0
\(244\) −4.13728e10 −0.747241
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) −8.12972e10 −1.38976
\(248\) −5.82246e9 −0.0977404
\(249\) 0 0
\(250\) −2.29902e9 −0.0372230
\(251\) 5.21785e10 0.829775 0.414887 0.909873i \(-0.363821\pi\)
0.414887 + 0.909873i \(0.363821\pi\)
\(252\) 0 0
\(253\) −1.68071e11 −2.57900
\(254\) 2.34883e10 0.354079
\(255\) 0 0
\(256\) −2.18161e10 −0.317466
\(257\) −4.84258e9 −0.0692433 −0.0346216 0.999400i \(-0.511023\pi\)
−0.0346216 + 0.999400i \(0.511023\pi\)
\(258\) 0 0
\(259\) 1.52290e10 0.210292
\(260\) −3.78324e10 −0.513432
\(261\) 0 0
\(262\) −1.69519e10 −0.222261
\(263\) 7.87714e10 1.01524 0.507619 0.861582i \(-0.330526\pi\)
0.507619 + 0.861582i \(0.330526\pi\)
\(264\) 0 0
\(265\) −3.68541e10 −0.459071
\(266\) −1.28546e10 −0.157432
\(267\) 0 0
\(268\) 4.05370e10 0.480004
\(269\) −5.14223e9 −0.0598778 −0.0299389 0.999552i \(-0.509531\pi\)
−0.0299389 + 0.999552i \(0.509531\pi\)
\(270\) 0 0
\(271\) −1.41745e10 −0.159642 −0.0798209 0.996809i \(-0.525435\pi\)
−0.0798209 + 0.996809i \(0.525435\pi\)
\(272\) −2.49328e10 −0.276192
\(273\) 0 0
\(274\) 3.99495e10 0.428188
\(275\) −3.18890e10 −0.336235
\(276\) 0 0
\(277\) 6.40169e10 0.653335 0.326668 0.945139i \(-0.394074\pi\)
0.326668 + 0.945139i \(0.394074\pi\)
\(278\) 3.29772e10 0.331140
\(279\) 0 0
\(280\) −1.32171e10 −0.128507
\(281\) −9.28031e10 −0.887941 −0.443970 0.896041i \(-0.646430\pi\)
−0.443970 + 0.896041i \(0.646430\pi\)
\(282\) 0 0
\(283\) −1.21652e11 −1.12741 −0.563704 0.825977i \(-0.690624\pi\)
−0.563704 + 0.825977i \(0.690624\pi\)
\(284\) −6.43731e10 −0.587181
\(285\) 0 0
\(286\) 1.09924e11 0.971505
\(287\) −4.47286e10 −0.389149
\(288\) 0 0
\(289\) −8.38648e10 −0.707196
\(290\) 1.15771e9 0.00961192
\(291\) 0 0
\(292\) −7.01341e10 −0.564555
\(293\) −5.64775e10 −0.447684 −0.223842 0.974625i \(-0.571860\pi\)
−0.223842 + 0.974625i \(0.571860\pi\)
\(294\) 0 0
\(295\) 1.05452e11 0.810689
\(296\) −5.58656e10 −0.422992
\(297\) 0 0
\(298\) −4.67592e10 −0.343474
\(299\) 2.94390e11 2.13011
\(300\) 0 0
\(301\) −1.15233e10 −0.0809147
\(302\) −1.06144e11 −0.734286
\(303\) 0 0
\(304\) −7.60725e10 −0.510853
\(305\) 6.10831e10 0.404177
\(306\) 0 0
\(307\) −3.31660e10 −0.213093 −0.106547 0.994308i \(-0.533979\pi\)
−0.106547 + 0.994308i \(0.533979\pi\)
\(308\) −8.29747e10 −0.525373
\(309\) 0 0
\(310\) 3.89067e9 0.0239275
\(311\) 1.96048e11 1.18834 0.594170 0.804340i \(-0.297481\pi\)
0.594170 + 0.804340i \(0.297481\pi\)
\(312\) 0 0
\(313\) −2.73808e11 −1.61249 −0.806244 0.591583i \(-0.798503\pi\)
−0.806244 + 0.591583i \(0.798503\pi\)
\(314\) 9.46416e10 0.549413
\(315\) 0 0
\(316\) −8.90981e10 −0.502662
\(317\) −3.33062e11 −1.85250 −0.926250 0.376909i \(-0.876987\pi\)
−0.926250 + 0.376909i \(0.876987\pi\)
\(318\) 0 0
\(319\) 1.60583e10 0.0868243
\(320\) −8.86005e9 −0.0472347
\(321\) 0 0
\(322\) 4.65486e10 0.241299
\(323\) 1.05944e11 0.541581
\(324\) 0 0
\(325\) 5.58560e10 0.277712
\(326\) −6.13822e10 −0.300998
\(327\) 0 0
\(328\) 1.64081e11 0.782753
\(329\) 4.71140e10 0.221702
\(330\) 0 0
\(331\) 2.82425e11 1.29324 0.646618 0.762814i \(-0.276183\pi\)
0.646618 + 0.762814i \(0.276183\pi\)
\(332\) −2.40761e11 −1.08759
\(333\) 0 0
\(334\) −2.46600e10 −0.108426
\(335\) −5.98492e10 −0.259631
\(336\) 0 0
\(337\) 3.36843e11 1.42263 0.711317 0.702871i \(-0.248099\pi\)
0.711317 + 0.702871i \(0.248099\pi\)
\(338\) −9.26802e10 −0.386244
\(339\) 0 0
\(340\) 4.93017e10 0.200082
\(341\) 5.39663e10 0.216137
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) 4.22716e10 0.162755
\(345\) 0 0
\(346\) 1.54848e11 0.580849
\(347\) −9.03801e10 −0.334649 −0.167325 0.985902i \(-0.553513\pi\)
−0.167325 + 0.985902i \(0.553513\pi\)
\(348\) 0 0
\(349\) −4.05067e11 −1.46155 −0.730773 0.682620i \(-0.760840\pi\)
−0.730773 + 0.682620i \(0.760840\pi\)
\(350\) 8.83190e9 0.0314592
\(351\) 0 0
\(352\) 4.71001e11 1.63523
\(353\) −2.70274e11 −0.926440 −0.463220 0.886243i \(-0.653306\pi\)
−0.463220 + 0.886243i \(0.653306\pi\)
\(354\) 0 0
\(355\) 9.50410e10 0.317602
\(356\) −2.04085e10 −0.0673419
\(357\) 0 0
\(358\) 5.91404e10 0.190288
\(359\) 1.05345e11 0.334726 0.167363 0.985895i \(-0.446475\pi\)
0.167363 + 0.985895i \(0.446475\pi\)
\(360\) 0 0
\(361\) 5.56967e8 0.00172602
\(362\) 4.82752e10 0.147753
\(363\) 0 0
\(364\) 1.45337e11 0.433930
\(365\) 1.03547e11 0.305364
\(366\) 0 0
\(367\) 1.59156e11 0.457958 0.228979 0.973431i \(-0.426461\pi\)
0.228979 + 0.973431i \(0.426461\pi\)
\(368\) 2.75470e11 0.782995
\(369\) 0 0
\(370\) 3.73304e10 0.103551
\(371\) 1.41579e11 0.387985
\(372\) 0 0
\(373\) −3.67998e11 −0.984364 −0.492182 0.870492i \(-0.663800\pi\)
−0.492182 + 0.870492i \(0.663800\pi\)
\(374\) −1.43249e11 −0.378590
\(375\) 0 0
\(376\) −1.72831e11 −0.445940
\(377\) −2.81274e10 −0.0717122
\(378\) 0 0
\(379\) 4.62007e11 1.15020 0.575098 0.818084i \(-0.304964\pi\)
0.575098 + 0.818084i \(0.304964\pi\)
\(380\) 1.50425e11 0.370078
\(381\) 0 0
\(382\) 4.47676e10 0.107567
\(383\) −3.55193e11 −0.843471 −0.421735 0.906719i \(-0.638579\pi\)
−0.421735 + 0.906719i \(0.638579\pi\)
\(384\) 0 0
\(385\) 1.22505e11 0.284171
\(386\) 2.13892e11 0.490401
\(387\) 0 0
\(388\) 4.02244e11 0.901045
\(389\) 3.70667e11 0.820749 0.410375 0.911917i \(-0.365398\pi\)
0.410375 + 0.911917i \(0.365398\pi\)
\(390\) 0 0
\(391\) −3.83638e11 −0.830092
\(392\) 5.07748e10 0.108608
\(393\) 0 0
\(394\) −1.82573e10 −0.0381683
\(395\) 1.31545e11 0.271887
\(396\) 0 0
\(397\) 4.80651e10 0.0971119 0.0485560 0.998820i \(-0.484538\pi\)
0.0485560 + 0.998820i \(0.484538\pi\)
\(398\) 2.17218e11 0.433932
\(399\) 0 0
\(400\) 5.22663e10 0.102083
\(401\) −7.92241e10 −0.153006 −0.0765028 0.997069i \(-0.524375\pi\)
−0.0765028 + 0.997069i \(0.524375\pi\)
\(402\) 0 0
\(403\) −9.45263e10 −0.178517
\(404\) 2.90596e11 0.542718
\(405\) 0 0
\(406\) −4.44747e9 −0.00812356
\(407\) 5.17798e11 0.935375
\(408\) 0 0
\(409\) −4.79197e11 −0.846757 −0.423379 0.905953i \(-0.639156\pi\)
−0.423379 + 0.905953i \(0.639156\pi\)
\(410\) −1.09641e11 −0.191623
\(411\) 0 0
\(412\) −6.13215e10 −0.104852
\(413\) −4.05103e11 −0.685157
\(414\) 0 0
\(415\) 3.55461e11 0.588268
\(416\) −8.24995e11 −1.35061
\(417\) 0 0
\(418\) −4.37067e11 −0.700252
\(419\) 2.43897e11 0.386584 0.193292 0.981141i \(-0.438084\pi\)
0.193292 + 0.981141i \(0.438084\pi\)
\(420\) 0 0
\(421\) −1.06824e12 −1.65730 −0.828648 0.559769i \(-0.810890\pi\)
−0.828648 + 0.559769i \(0.810890\pi\)
\(422\) 4.89085e11 0.750721
\(423\) 0 0
\(424\) −5.19362e11 −0.780411
\(425\) −7.27895e10 −0.108223
\(426\) 0 0
\(427\) −2.34657e11 −0.341592
\(428\) 3.74820e10 0.0539916
\(429\) 0 0
\(430\) −2.82466e10 −0.0398436
\(431\) 4.43324e11 0.618833 0.309416 0.950927i \(-0.399866\pi\)
0.309416 + 0.950927i \(0.399866\pi\)
\(432\) 0 0
\(433\) 1.09500e12 1.49699 0.748494 0.663141i \(-0.230777\pi\)
0.748494 + 0.663141i \(0.230777\pi\)
\(434\) −1.49464e10 −0.0202224
\(435\) 0 0
\(436\) 1.18021e12 1.56412
\(437\) −1.17052e12 −1.53537
\(438\) 0 0
\(439\) −4.14241e11 −0.532308 −0.266154 0.963931i \(-0.585753\pi\)
−0.266154 + 0.963931i \(0.585753\pi\)
\(440\) −4.49391e11 −0.571594
\(441\) 0 0
\(442\) 2.50912e11 0.312695
\(443\) 4.12784e11 0.509220 0.254610 0.967044i \(-0.418053\pi\)
0.254610 + 0.967044i \(0.418053\pi\)
\(444\) 0 0
\(445\) 3.01312e10 0.0364248
\(446\) 6.35654e10 0.0760701
\(447\) 0 0
\(448\) 3.40368e10 0.0399206
\(449\) 1.58278e12 1.83786 0.918929 0.394423i \(-0.129055\pi\)
0.918929 + 0.394423i \(0.129055\pi\)
\(450\) 0 0
\(451\) −1.52080e12 −1.73093
\(452\) −1.41726e12 −1.59708
\(453\) 0 0
\(454\) −1.46112e10 −0.0161412
\(455\) −2.14576e11 −0.234710
\(456\) 0 0
\(457\) 1.51321e12 1.62284 0.811421 0.584462i \(-0.198694\pi\)
0.811421 + 0.584462i \(0.198694\pi\)
\(458\) 6.67722e11 0.709089
\(459\) 0 0
\(460\) −5.44711e11 −0.567226
\(461\) 2.69025e11 0.277420 0.138710 0.990333i \(-0.455704\pi\)
0.138710 + 0.990333i \(0.455704\pi\)
\(462\) 0 0
\(463\) 1.58258e12 1.60048 0.800242 0.599678i \(-0.204704\pi\)
0.800242 + 0.599678i \(0.204704\pi\)
\(464\) −2.63197e10 −0.0263603
\(465\) 0 0
\(466\) 6.82260e11 0.670214
\(467\) 5.45148e10 0.0530382 0.0265191 0.999648i \(-0.491558\pi\)
0.0265191 + 0.999648i \(0.491558\pi\)
\(468\) 0 0
\(469\) 2.29917e11 0.219428
\(470\) 1.15489e11 0.109169
\(471\) 0 0
\(472\) 1.48606e12 1.37816
\(473\) −3.91800e11 −0.359906
\(474\) 0 0
\(475\) −2.22088e11 −0.200173
\(476\) −1.89398e11 −0.169100
\(477\) 0 0
\(478\) 4.27880e11 0.374883
\(479\) 1.04188e12 0.904291 0.452146 0.891944i \(-0.350659\pi\)
0.452146 + 0.891944i \(0.350659\pi\)
\(480\) 0 0
\(481\) −9.06964e11 −0.772569
\(482\) 8.50968e11 0.718127
\(483\) 0 0
\(484\) −1.82302e12 −1.51004
\(485\) −5.93876e11 −0.487369
\(486\) 0 0
\(487\) −4.56101e9 −0.00367435 −0.00183718 0.999998i \(-0.500585\pi\)
−0.00183718 + 0.999998i \(0.500585\pi\)
\(488\) 8.60807e11 0.687094
\(489\) 0 0
\(490\) −3.39286e10 −0.0265879
\(491\) 1.32266e12 1.02702 0.513512 0.858082i \(-0.328344\pi\)
0.513512 + 0.858082i \(0.328344\pi\)
\(492\) 0 0
\(493\) 3.66546e10 0.0279458
\(494\) 7.65557e11 0.578371
\(495\) 0 0
\(496\) −8.84513e10 −0.0656201
\(497\) −3.65109e11 −0.268423
\(498\) 0 0
\(499\) 1.65126e12 1.19224 0.596118 0.802897i \(-0.296709\pi\)
0.596118 + 0.802897i \(0.296709\pi\)
\(500\) −1.03351e11 −0.0739517
\(501\) 0 0
\(502\) −4.91353e11 −0.345324
\(503\) 2.24891e12 1.56645 0.783225 0.621739i \(-0.213573\pi\)
0.783225 + 0.621739i \(0.213573\pi\)
\(504\) 0 0
\(505\) −4.29039e11 −0.293552
\(506\) 1.58269e12 1.07329
\(507\) 0 0
\(508\) 1.05590e12 0.703455
\(509\) 1.12596e12 0.743518 0.371759 0.928329i \(-0.378755\pi\)
0.371759 + 0.928329i \(0.378755\pi\)
\(510\) 0 0
\(511\) −3.97784e11 −0.258080
\(512\) −1.37536e12 −0.884509
\(513\) 0 0
\(514\) 4.56014e10 0.0288167
\(515\) 9.05356e10 0.0567135
\(516\) 0 0
\(517\) 1.60191e12 0.986122
\(518\) −1.43408e11 −0.0875166
\(519\) 0 0
\(520\) 7.87144e11 0.472106
\(521\) −3.16980e12 −1.88479 −0.942393 0.334508i \(-0.891430\pi\)
−0.942393 + 0.334508i \(0.891430\pi\)
\(522\) 0 0
\(523\) −3.20261e12 −1.87174 −0.935872 0.352339i \(-0.885386\pi\)
−0.935872 + 0.352339i \(0.885386\pi\)
\(524\) −7.62062e11 −0.441570
\(525\) 0 0
\(526\) −7.41772e11 −0.422508
\(527\) 1.23183e11 0.0695671
\(528\) 0 0
\(529\) 2.43747e12 1.35329
\(530\) 3.47047e11 0.191050
\(531\) 0 0
\(532\) −5.77871e11 −0.312773
\(533\) 2.66381e12 1.42965
\(534\) 0 0
\(535\) −5.53388e10 −0.0292037
\(536\) −8.43417e11 −0.441368
\(537\) 0 0
\(538\) 4.84231e10 0.0249191
\(539\) −4.70614e11 −0.240168
\(540\) 0 0
\(541\) −1.26299e12 −0.633886 −0.316943 0.948445i \(-0.602656\pi\)
−0.316943 + 0.948445i \(0.602656\pi\)
\(542\) 1.33478e11 0.0664375
\(543\) 0 0
\(544\) 1.07510e12 0.526326
\(545\) −1.74247e12 −0.846021
\(546\) 0 0
\(547\) −1.89310e12 −0.904130 −0.452065 0.891985i \(-0.649312\pi\)
−0.452065 + 0.891985i \(0.649312\pi\)
\(548\) 1.79590e12 0.850689
\(549\) 0 0
\(550\) 3.00291e11 0.139930
\(551\) 1.11837e11 0.0516895
\(552\) 0 0
\(553\) −5.05344e11 −0.229786
\(554\) −6.02833e11 −0.271896
\(555\) 0 0
\(556\) 1.48247e12 0.657883
\(557\) −3.08955e12 −1.36003 −0.680013 0.733200i \(-0.738026\pi\)
−0.680013 + 0.733200i \(0.738026\pi\)
\(558\) 0 0
\(559\) 6.86269e11 0.297263
\(560\) −2.00786e11 −0.0862756
\(561\) 0 0
\(562\) 8.73905e11 0.369531
\(563\) −3.48321e12 −1.46114 −0.730570 0.682838i \(-0.760745\pi\)
−0.730570 + 0.682838i \(0.760745\pi\)
\(564\) 0 0
\(565\) 2.09245e12 0.863849
\(566\) 1.14557e12 0.469189
\(567\) 0 0
\(568\) 1.33935e12 0.539918
\(569\) −4.84964e12 −1.93956 −0.969782 0.243975i \(-0.921549\pi\)
−0.969782 + 0.243975i \(0.921549\pi\)
\(570\) 0 0
\(571\) 3.64312e12 1.43420 0.717102 0.696969i \(-0.245468\pi\)
0.717102 + 0.696969i \(0.245468\pi\)
\(572\) 4.94155e12 1.93011
\(573\) 0 0
\(574\) 4.21199e11 0.161951
\(575\) 8.04216e11 0.306808
\(576\) 0 0
\(577\) 4.98140e12 1.87094 0.935471 0.353404i \(-0.114976\pi\)
0.935471 + 0.353404i \(0.114976\pi\)
\(578\) 7.89736e11 0.294311
\(579\) 0 0
\(580\) 5.20442e10 0.0190962
\(581\) −1.36554e12 −0.497178
\(582\) 0 0
\(583\) 4.81378e12 1.72575
\(584\) 1.45922e12 0.519113
\(585\) 0 0
\(586\) 5.31836e11 0.186311
\(587\) −3.70534e12 −1.28812 −0.644061 0.764974i \(-0.722752\pi\)
−0.644061 + 0.764974i \(0.722752\pi\)
\(588\) 0 0
\(589\) 3.75845e11 0.128674
\(590\) −9.93014e11 −0.337381
\(591\) 0 0
\(592\) −8.48676e11 −0.283984
\(593\) 1.49825e12 0.497551 0.248776 0.968561i \(-0.419972\pi\)
0.248776 + 0.968561i \(0.419972\pi\)
\(594\) 0 0
\(595\) 2.79628e11 0.0914650
\(596\) −2.10203e12 −0.682386
\(597\) 0 0
\(598\) −2.77220e12 −0.886480
\(599\) −1.91927e12 −0.609138 −0.304569 0.952490i \(-0.598512\pi\)
−0.304569 + 0.952490i \(0.598512\pi\)
\(600\) 0 0
\(601\) 5.04272e12 1.57663 0.788315 0.615271i \(-0.210954\pi\)
0.788315 + 0.615271i \(0.210954\pi\)
\(602\) 1.08512e11 0.0336740
\(603\) 0 0
\(604\) −4.77164e12 −1.45882
\(605\) 2.69153e12 0.816770
\(606\) 0 0
\(607\) −3.22833e12 −0.965226 −0.482613 0.875834i \(-0.660312\pi\)
−0.482613 + 0.875834i \(0.660312\pi\)
\(608\) 3.28025e12 0.973511
\(609\) 0 0
\(610\) −5.75206e11 −0.168205
\(611\) −2.80587e12 −0.814484
\(612\) 0 0
\(613\) 2.89802e12 0.828952 0.414476 0.910060i \(-0.363965\pi\)
0.414476 + 0.910060i \(0.363965\pi\)
\(614\) 3.12316e11 0.0886822
\(615\) 0 0
\(616\) 1.72638e12 0.483085
\(617\) −2.66605e12 −0.740602 −0.370301 0.928912i \(-0.620745\pi\)
−0.370301 + 0.928912i \(0.620745\pi\)
\(618\) 0 0
\(619\) −3.68074e12 −1.00769 −0.503846 0.863794i \(-0.668082\pi\)
−0.503846 + 0.863794i \(0.668082\pi\)
\(620\) 1.74903e11 0.0475372
\(621\) 0 0
\(622\) −1.84614e12 −0.494547
\(623\) −1.15752e11 −0.0307846
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 2.57839e12 0.671063
\(627\) 0 0
\(628\) 4.25455e12 1.09153
\(629\) 1.18192e12 0.301066
\(630\) 0 0
\(631\) −1.51762e12 −0.381093 −0.190547 0.981678i \(-0.561026\pi\)
−0.190547 + 0.981678i \(0.561026\pi\)
\(632\) 1.85378e12 0.462202
\(633\) 0 0
\(634\) 3.13637e12 0.770948
\(635\) −1.55894e12 −0.380494
\(636\) 0 0
\(637\) 8.24317e11 0.198366
\(638\) −1.51217e11 −0.0361334
\(639\) 0 0
\(640\) 1.92969e12 0.454649
\(641\) −4.22255e12 −0.987901 −0.493951 0.869490i \(-0.664448\pi\)
−0.493951 + 0.869490i \(0.664448\pi\)
\(642\) 0 0
\(643\) −6.88640e12 −1.58870 −0.794352 0.607458i \(-0.792189\pi\)
−0.794352 + 0.607458i \(0.792189\pi\)
\(644\) 2.09256e12 0.479393
\(645\) 0 0
\(646\) −9.97646e11 −0.225388
\(647\) 6.62005e12 1.48522 0.742612 0.669722i \(-0.233587\pi\)
0.742612 + 0.669722i \(0.233587\pi\)
\(648\) 0 0
\(649\) −1.37738e13 −3.04756
\(650\) −5.25983e11 −0.115574
\(651\) 0 0
\(652\) −2.75940e12 −0.597998
\(653\) 1.60282e12 0.344965 0.172482 0.985013i \(-0.444821\pi\)
0.172482 + 0.985013i \(0.444821\pi\)
\(654\) 0 0
\(655\) 1.12511e12 0.238842
\(656\) 2.49261e12 0.525518
\(657\) 0 0
\(658\) −4.43662e11 −0.0922647
\(659\) −7.17733e12 −1.48244 −0.741222 0.671260i \(-0.765753\pi\)
−0.741222 + 0.671260i \(0.765753\pi\)
\(660\) 0 0
\(661\) −8.14522e12 −1.65957 −0.829787 0.558081i \(-0.811538\pi\)
−0.829787 + 0.558081i \(0.811538\pi\)
\(662\) −2.65953e12 −0.538201
\(663\) 0 0
\(664\) 5.00929e12 1.00005
\(665\) 8.53174e11 0.169177
\(666\) 0 0
\(667\) −4.04978e11 −0.0792256
\(668\) −1.10858e12 −0.215413
\(669\) 0 0
\(670\) 5.63586e11 0.108050
\(671\) −7.97851e12 −1.51939
\(672\) 0 0
\(673\) −1.03946e12 −0.195316 −0.0976580 0.995220i \(-0.531135\pi\)
−0.0976580 + 0.995220i \(0.531135\pi\)
\(674\) −3.17197e12 −0.592052
\(675\) 0 0
\(676\) −4.16638e12 −0.767359
\(677\) 9.42905e12 1.72512 0.862559 0.505957i \(-0.168861\pi\)
0.862559 + 0.505957i \(0.168861\pi\)
\(678\) 0 0
\(679\) 2.28143e12 0.411902
\(680\) −1.02578e12 −0.183977
\(681\) 0 0
\(682\) −5.08188e11 −0.0899487
\(683\) −4.76113e12 −0.837176 −0.418588 0.908176i \(-0.637475\pi\)
−0.418588 + 0.908176i \(0.637475\pi\)
\(684\) 0 0
\(685\) −2.65149e12 −0.460132
\(686\) 1.30340e11 0.0224709
\(687\) 0 0
\(688\) 6.42164e11 0.109269
\(689\) −8.43171e12 −1.42538
\(690\) 0 0
\(691\) −4.49132e12 −0.749415 −0.374708 0.927143i \(-0.622257\pi\)
−0.374708 + 0.927143i \(0.622257\pi\)
\(692\) 6.96108e12 1.15398
\(693\) 0 0
\(694\) 8.51088e11 0.139270
\(695\) −2.18873e12 −0.355844
\(696\) 0 0
\(697\) −3.47138e12 −0.557127
\(698\) 3.81442e12 0.608246
\(699\) 0 0
\(700\) 3.97032e11 0.0625006
\(701\) 6.11474e12 0.956415 0.478208 0.878247i \(-0.341287\pi\)
0.478208 + 0.878247i \(0.341287\pi\)
\(702\) 0 0
\(703\) 3.60617e12 0.556861
\(704\) 1.15727e12 0.177566
\(705\) 0 0
\(706\) 2.54510e12 0.385553
\(707\) 1.64820e12 0.248097
\(708\) 0 0
\(709\) −7.22690e12 −1.07410 −0.537049 0.843551i \(-0.680461\pi\)
−0.537049 + 0.843551i \(0.680461\pi\)
\(710\) −8.94979e11 −0.132175
\(711\) 0 0
\(712\) 4.24621e11 0.0619214
\(713\) −1.36099e12 −0.197221
\(714\) 0 0
\(715\) −7.29575e12 −1.04398
\(716\) 2.65862e12 0.378049
\(717\) 0 0
\(718\) −9.92011e11 −0.139302
\(719\) 9.43538e12 1.31668 0.658339 0.752722i \(-0.271259\pi\)
0.658339 + 0.752722i \(0.271259\pi\)
\(720\) 0 0
\(721\) −3.47801e11 −0.0479317
\(722\) −5.24483e9 −0.000718313 0
\(723\) 0 0
\(724\) 2.17018e12 0.293543
\(725\) −7.68386e10 −0.0103290
\(726\) 0 0
\(727\) −1.40060e13 −1.85955 −0.929776 0.368127i \(-0.879999\pi\)
−0.929776 + 0.368127i \(0.879999\pi\)
\(728\) −3.02389e12 −0.399002
\(729\) 0 0
\(730\) −9.75074e11 −0.127082
\(731\) −8.94321e11 −0.115842
\(732\) 0 0
\(733\) 6.77926e12 0.867390 0.433695 0.901060i \(-0.357209\pi\)
0.433695 + 0.901060i \(0.357209\pi\)
\(734\) −1.49873e12 −0.190587
\(735\) 0 0
\(736\) −1.18783e13 −1.49212
\(737\) 7.81733e12 0.976011
\(738\) 0 0
\(739\) 1.26577e13 1.56118 0.780592 0.625040i \(-0.214918\pi\)
0.780592 + 0.625040i \(0.214918\pi\)
\(740\) 1.67816e12 0.205727
\(741\) 0 0
\(742\) −1.33321e12 −0.161466
\(743\) 5.10500e12 0.614534 0.307267 0.951623i \(-0.400585\pi\)
0.307267 + 0.951623i \(0.400585\pi\)
\(744\) 0 0
\(745\) 3.10345e12 0.369098
\(746\) 3.46535e12 0.409659
\(747\) 0 0
\(748\) −6.43965e12 −0.752152
\(749\) 2.12589e11 0.0246816
\(750\) 0 0
\(751\) 3.15781e12 0.362248 0.181124 0.983460i \(-0.442026\pi\)
0.181124 + 0.983460i \(0.442026\pi\)
\(752\) −2.62555e12 −0.299392
\(753\) 0 0
\(754\) 2.64869e11 0.0298442
\(755\) 7.04489e12 0.789066
\(756\) 0 0
\(757\) −4.05450e12 −0.448751 −0.224375 0.974503i \(-0.572034\pi\)
−0.224375 + 0.974503i \(0.572034\pi\)
\(758\) −4.35061e12 −0.478673
\(759\) 0 0
\(760\) −3.12975e12 −0.340290
\(761\) 8.92263e11 0.0964411 0.0482205 0.998837i \(-0.484645\pi\)
0.0482205 + 0.998837i \(0.484645\pi\)
\(762\) 0 0
\(763\) 6.69388e12 0.715019
\(764\) 2.01250e12 0.213705
\(765\) 0 0
\(766\) 3.34477e12 0.351024
\(767\) 2.41259e13 2.51712
\(768\) 0 0
\(769\) −1.04962e13 −1.08234 −0.541171 0.840912i \(-0.682019\pi\)
−0.541171 + 0.840912i \(0.682019\pi\)
\(770\) −1.15360e12 −0.118262
\(771\) 0 0
\(772\) 9.61536e12 0.974289
\(773\) −8.06872e12 −0.812825 −0.406413 0.913690i \(-0.633220\pi\)
−0.406413 + 0.913690i \(0.633220\pi\)
\(774\) 0 0
\(775\) −2.58228e11 −0.0257125
\(776\) −8.36912e12 −0.828518
\(777\) 0 0
\(778\) −3.49048e12 −0.341568
\(779\) −1.05915e13 −1.03048
\(780\) 0 0
\(781\) −1.24140e13 −1.19394
\(782\) 3.61263e12 0.345456
\(783\) 0 0
\(784\) 7.71340e11 0.0729162
\(785\) −6.28146e12 −0.590401
\(786\) 0 0
\(787\) 8.88787e12 0.825869 0.412935 0.910761i \(-0.364504\pi\)
0.412935 + 0.910761i \(0.364504\pi\)
\(788\) −8.20743e11 −0.0758297
\(789\) 0 0
\(790\) −1.23873e12 −0.113150
\(791\) −8.03837e12 −0.730086
\(792\) 0 0
\(793\) 1.39750e13 1.25494
\(794\) −4.52618e11 −0.0404147
\(795\) 0 0
\(796\) 9.76489e12 0.862102
\(797\) −1.52691e13 −1.34045 −0.670227 0.742156i \(-0.733803\pi\)
−0.670227 + 0.742156i \(0.733803\pi\)
\(798\) 0 0
\(799\) 3.65651e12 0.317400
\(800\) −2.25373e12 −0.194534
\(801\) 0 0
\(802\) 7.46034e11 0.0636758
\(803\) −1.35250e13 −1.14793
\(804\) 0 0
\(805\) −3.08948e12 −0.259300
\(806\) 8.90132e11 0.0742928
\(807\) 0 0
\(808\) −6.04618e12 −0.499034
\(809\) 2.10480e13 1.72760 0.863798 0.503838i \(-0.168079\pi\)
0.863798 + 0.503838i \(0.168079\pi\)
\(810\) 0 0
\(811\) −2.08302e13 −1.69083 −0.845415 0.534110i \(-0.820647\pi\)
−0.845415 + 0.534110i \(0.820647\pi\)
\(812\) −1.99933e11 −0.0161392
\(813\) 0 0
\(814\) −4.87598e12 −0.389271
\(815\) 4.07400e12 0.323453
\(816\) 0 0
\(817\) −2.72866e12 −0.214265
\(818\) 4.51248e12 0.352392
\(819\) 0 0
\(820\) −4.92886e12 −0.380701
\(821\) −8.68337e12 −0.667028 −0.333514 0.942745i \(-0.608234\pi\)
−0.333514 + 0.942745i \(0.608234\pi\)
\(822\) 0 0
\(823\) −6.42176e12 −0.487927 −0.243963 0.969784i \(-0.578448\pi\)
−0.243963 + 0.969784i \(0.578448\pi\)
\(824\) 1.27586e12 0.0964120
\(825\) 0 0
\(826\) 3.81476e12 0.285139
\(827\) −1.29801e13 −0.964948 −0.482474 0.875910i \(-0.660262\pi\)
−0.482474 + 0.875910i \(0.660262\pi\)
\(828\) 0 0
\(829\) 1.81614e13 1.33553 0.667767 0.744370i \(-0.267250\pi\)
0.667767 + 0.744370i \(0.267250\pi\)
\(830\) −3.34729e12 −0.244817
\(831\) 0 0
\(832\) −2.02706e12 −0.146660
\(833\) −1.07422e12 −0.0773020
\(834\) 0 0
\(835\) 1.63671e12 0.116515
\(836\) −1.96480e13 −1.39120
\(837\) 0 0
\(838\) −2.29672e12 −0.160883
\(839\) −1.74914e12 −0.121869 −0.0609347 0.998142i \(-0.519408\pi\)
−0.0609347 + 0.998142i \(0.519408\pi\)
\(840\) 0 0
\(841\) −1.44685e13 −0.997333
\(842\) 1.00594e13 0.689711
\(843\) 0 0
\(844\) 2.19865e13 1.49147
\(845\) 6.15128e12 0.415059
\(846\) 0 0
\(847\) −1.03398e13 −0.690296
\(848\) −7.88983e12 −0.523946
\(849\) 0 0
\(850\) 6.85442e11 0.0450387
\(851\) −1.30585e13 −0.853512
\(852\) 0 0
\(853\) 2.64586e13 1.71118 0.855591 0.517652i \(-0.173194\pi\)
0.855591 + 0.517652i \(0.173194\pi\)
\(854\) 2.20971e12 0.142159
\(855\) 0 0
\(856\) −7.79855e11 −0.0496457
\(857\) 2.59348e12 0.164237 0.0821183 0.996623i \(-0.473831\pi\)
0.0821183 + 0.996623i \(0.473831\pi\)
\(858\) 0 0
\(859\) −3.03333e12 −0.190086 −0.0950430 0.995473i \(-0.530299\pi\)
−0.0950430 + 0.995473i \(0.530299\pi\)
\(860\) −1.26981e12 −0.0791580
\(861\) 0 0
\(862\) −4.17468e12 −0.257537
\(863\) −1.11634e13 −0.685092 −0.342546 0.939501i \(-0.611289\pi\)
−0.342546 + 0.939501i \(0.611289\pi\)
\(864\) 0 0
\(865\) −1.02774e13 −0.624182
\(866\) −1.03114e13 −0.622996
\(867\) 0 0
\(868\) −6.71905e11 −0.0401763
\(869\) −1.71821e13 −1.02208
\(870\) 0 0
\(871\) −1.36927e13 −0.806132
\(872\) −2.45556e13 −1.43822
\(873\) 0 0
\(874\) 1.10225e13 0.638967
\(875\) −5.86182e11 −0.0338062
\(876\) 0 0
\(877\) −6.53951e12 −0.373291 −0.186645 0.982427i \(-0.559762\pi\)
−0.186645 + 0.982427i \(0.559762\pi\)
\(878\) 3.90081e12 0.221529
\(879\) 0 0
\(880\) −6.82688e12 −0.383751
\(881\) −2.60830e13 −1.45870 −0.729349 0.684142i \(-0.760177\pi\)
−0.729349 + 0.684142i \(0.760177\pi\)
\(882\) 0 0
\(883\) 1.37956e13 0.763688 0.381844 0.924227i \(-0.375289\pi\)
0.381844 + 0.924227i \(0.375289\pi\)
\(884\) 1.12796e13 0.621237
\(885\) 0 0
\(886\) −3.88709e12 −0.211920
\(887\) −2.26012e12 −0.122596 −0.0612978 0.998120i \(-0.519524\pi\)
−0.0612978 + 0.998120i \(0.519524\pi\)
\(888\) 0 0
\(889\) 5.98883e12 0.321576
\(890\) −2.83739e11 −0.0151588
\(891\) 0 0
\(892\) 2.85754e12 0.151130
\(893\) 1.11564e13 0.587073
\(894\) 0 0
\(895\) −3.92521e12 −0.204484
\(896\) −7.41308e12 −0.384249
\(897\) 0 0
\(898\) −1.49047e13 −0.764855
\(899\) 1.30035e11 0.00663962
\(900\) 0 0
\(901\) 1.09879e13 0.555460
\(902\) 1.43211e13 0.720353
\(903\) 0 0
\(904\) 2.94876e13 1.46853
\(905\) −3.20407e12 −0.158775
\(906\) 0 0
\(907\) −3.76970e13 −1.84958 −0.924791 0.380475i \(-0.875760\pi\)
−0.924791 + 0.380475i \(0.875760\pi\)
\(908\) −6.56838e11 −0.0320680
\(909\) 0 0
\(910\) 2.02062e12 0.0976782
\(911\) 3.86657e13 1.85991 0.929957 0.367669i \(-0.119844\pi\)
0.929957 + 0.367669i \(0.119844\pi\)
\(912\) 0 0
\(913\) −4.64293e13 −2.21143
\(914\) −1.42495e13 −0.675372
\(915\) 0 0
\(916\) 3.00170e13 1.40876
\(917\) −4.32224e12 −0.201858
\(918\) 0 0
\(919\) −9.70951e12 −0.449032 −0.224516 0.974470i \(-0.572080\pi\)
−0.224516 + 0.974470i \(0.572080\pi\)
\(920\) 1.13333e13 0.521569
\(921\) 0 0
\(922\) −2.53334e12 −0.115453
\(923\) 2.17441e13 0.986127
\(924\) 0 0
\(925\) −2.47765e12 −0.111276
\(926\) −1.49028e13 −0.666067
\(927\) 0 0
\(928\) 1.13491e12 0.0502336
\(929\) −2.04831e13 −0.902248 −0.451124 0.892461i \(-0.648977\pi\)
−0.451124 + 0.892461i \(0.648977\pi\)
\(930\) 0 0
\(931\) −3.27756e12 −0.142980
\(932\) 3.06706e13 1.33153
\(933\) 0 0
\(934\) −5.13354e11 −0.0220727
\(935\) 9.50756e12 0.406834
\(936\) 0 0
\(937\) 5.81444e12 0.246422 0.123211 0.992380i \(-0.460681\pi\)
0.123211 + 0.992380i \(0.460681\pi\)
\(938\) −2.16507e12 −0.0913186
\(939\) 0 0
\(940\) 5.19172e12 0.216888
\(941\) −1.99514e13 −0.829508 −0.414754 0.909934i \(-0.636132\pi\)
−0.414754 + 0.909934i \(0.636132\pi\)
\(942\) 0 0
\(943\) 3.83535e13 1.57944
\(944\) 2.25754e13 0.925255
\(945\) 0 0
\(946\) 3.68949e12 0.149781
\(947\) 1.84349e13 0.744843 0.372422 0.928064i \(-0.378528\pi\)
0.372422 + 0.928064i \(0.378528\pi\)
\(948\) 0 0
\(949\) 2.36900e13 0.948130
\(950\) 2.09135e12 0.0833051
\(951\) 0 0
\(952\) 3.94063e12 0.155489
\(953\) −4.21018e13 −1.65342 −0.826709 0.562629i \(-0.809790\pi\)
−0.826709 + 0.562629i \(0.809790\pi\)
\(954\) 0 0
\(955\) −2.97127e12 −0.115592
\(956\) 1.92350e13 0.744788
\(957\) 0 0
\(958\) −9.81115e12 −0.376335
\(959\) 1.01860e13 0.388882
\(960\) 0 0
\(961\) −2.60026e13 −0.983472
\(962\) 8.54067e12 0.321517
\(963\) 0 0
\(964\) 3.82547e13 1.42672
\(965\) −1.41962e13 −0.526986
\(966\) 0 0
\(967\) −2.95695e12 −0.108749 −0.0543744 0.998521i \(-0.517316\pi\)
−0.0543744 + 0.998521i \(0.517316\pi\)
\(968\) 3.79300e13 1.38849
\(969\) 0 0
\(970\) 5.59239e12 0.202827
\(971\) −2.93845e13 −1.06080 −0.530398 0.847749i \(-0.677957\pi\)
−0.530398 + 0.847749i \(0.677957\pi\)
\(972\) 0 0
\(973\) 8.40822e12 0.300743
\(974\) 4.29500e10 0.00152914
\(975\) 0 0
\(976\) 1.30769e13 0.461295
\(977\) 4.45820e13 1.56543 0.782716 0.622379i \(-0.213834\pi\)
0.782716 + 0.622379i \(0.213834\pi\)
\(978\) 0 0
\(979\) −3.93566e12 −0.136929
\(980\) −1.52524e12 −0.0528227
\(981\) 0 0
\(982\) −1.24552e13 −0.427413
\(983\) −3.77173e12 −0.128840 −0.0644198 0.997923i \(-0.520520\pi\)
−0.0644198 + 0.997923i \(0.520520\pi\)
\(984\) 0 0
\(985\) 1.21175e12 0.0410158
\(986\) −3.45168e11 −0.0116301
\(987\) 0 0
\(988\) 3.44151e13 1.14906
\(989\) 9.88091e12 0.328408
\(990\) 0 0
\(991\) 1.84525e13 0.607749 0.303874 0.952712i \(-0.401720\pi\)
0.303874 + 0.952712i \(0.401720\pi\)
\(992\) 3.81403e12 0.125049
\(993\) 0 0
\(994\) 3.43815e12 0.111708
\(995\) −1.44170e13 −0.466305
\(996\) 0 0
\(997\) 3.89046e13 1.24702 0.623509 0.781816i \(-0.285706\pi\)
0.623509 + 0.781816i \(0.285706\pi\)
\(998\) −1.55495e13 −0.496169
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.d.1.2 4
3.2 odd 2 105.10.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.e.1.3 4 3.2 odd 2
315.10.a.d.1.2 4 1.1 even 1 trivial