Properties

Label 315.10.a.e.1.1
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1253x^{2} - 1039x + 42996 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-33.9278\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-30.9278 q^{2} +444.529 q^{4} +625.000 q^{5} +2401.00 q^{7} +2086.72 q^{8} -19329.9 q^{10} +51657.7 q^{11} -129921. q^{13} -74257.7 q^{14} -292137. q^{16} +259513. q^{17} +90316.4 q^{19} +277831. q^{20} -1.59766e6 q^{22} -751692. q^{23} +390625. q^{25} +4.01818e6 q^{26} +1.06731e6 q^{28} +2.20510e6 q^{29} +3.10032e6 q^{31} +7.96675e6 q^{32} -8.02616e6 q^{34} +1.50062e6 q^{35} -1.42524e7 q^{37} -2.79329e6 q^{38} +1.30420e6 q^{40} +1.45691e7 q^{41} +1.89091e7 q^{43} +2.29633e7 q^{44} +2.32482e7 q^{46} +1.43175e7 q^{47} +5.76480e6 q^{49} -1.20812e7 q^{50} -5.77538e7 q^{52} +3.44220e7 q^{53} +3.22860e7 q^{55} +5.01022e6 q^{56} -6.81989e7 q^{58} +3.61330e7 q^{59} -9.33007e7 q^{61} -9.58860e7 q^{62} -9.68200e7 q^{64} -8.12008e7 q^{65} +2.05762e8 q^{67} +1.15361e8 q^{68} -4.64110e7 q^{70} +1.92397e8 q^{71} +8.11669e7 q^{73} +4.40795e8 q^{74} +4.01483e7 q^{76} +1.24030e8 q^{77} +1.07122e8 q^{79} -1.82585e8 q^{80} -4.50592e8 q^{82} -3.54922e8 q^{83} +1.62195e8 q^{85} -5.84818e8 q^{86} +1.07795e8 q^{88} -4.42433e8 q^{89} -3.11941e8 q^{91} -3.34149e8 q^{92} -4.42810e8 q^{94} +5.64478e7 q^{95} -6.40463e8 q^{97} -1.78293e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 13 q^{2} + 501 q^{4} + 2500 q^{5} + 9604 q^{7} + 16263 q^{8} + 8125 q^{10} + 87062 q^{11} + 39494 q^{13} + 31213 q^{14} + 328849 q^{16} + 291756 q^{17} + 50482 q^{19} + 313125 q^{20} - 1003016 q^{22}+ \cdots + 74942413 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −30.9278 −1.36683 −0.683414 0.730031i \(-0.739506\pi\)
−0.683414 + 0.730031i \(0.739506\pi\)
\(3\) 0 0
\(4\) 444.529 0.868221
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 2086.72 0.180119
\(9\) 0 0
\(10\) −19329.9 −0.611264
\(11\) 51657.7 1.06382 0.531909 0.846801i \(-0.321475\pi\)
0.531909 + 0.846801i \(0.321475\pi\)
\(12\) 0 0
\(13\) −129921. −1.26164 −0.630820 0.775930i \(-0.717281\pi\)
−0.630820 + 0.775930i \(0.717281\pi\)
\(14\) −74257.7 −0.516613
\(15\) 0 0
\(16\) −292137. −1.11441
\(17\) 259513. 0.753595 0.376798 0.926296i \(-0.377025\pi\)
0.376798 + 0.926296i \(0.377025\pi\)
\(18\) 0 0
\(19\) 90316.4 0.158992 0.0794961 0.996835i \(-0.474669\pi\)
0.0794961 + 0.996835i \(0.474669\pi\)
\(20\) 277831. 0.388280
\(21\) 0 0
\(22\) −1.59766e6 −1.45406
\(23\) −751692. −0.560099 −0.280049 0.959986i \(-0.590351\pi\)
−0.280049 + 0.959986i \(0.590351\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) 4.01818e6 1.72444
\(27\) 0 0
\(28\) 1.06731e6 0.328157
\(29\) 2.20510e6 0.578945 0.289472 0.957186i \(-0.406520\pi\)
0.289472 + 0.957186i \(0.406520\pi\)
\(30\) 0 0
\(31\) 3.10032e6 0.602946 0.301473 0.953475i \(-0.402522\pi\)
0.301473 + 0.953475i \(0.402522\pi\)
\(32\) 7.96675e6 1.34309
\(33\) 0 0
\(34\) −8.02616e6 −1.03004
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) −1.42524e7 −1.25020 −0.625101 0.780544i \(-0.714942\pi\)
−0.625101 + 0.780544i \(0.714942\pi\)
\(38\) −2.79329e6 −0.217315
\(39\) 0 0
\(40\) 1.30420e6 0.0805517
\(41\) 1.45691e7 0.805205 0.402603 0.915375i \(-0.368106\pi\)
0.402603 + 0.915375i \(0.368106\pi\)
\(42\) 0 0
\(43\) 1.89091e7 0.843458 0.421729 0.906722i \(-0.361423\pi\)
0.421729 + 0.906722i \(0.361423\pi\)
\(44\) 2.29633e7 0.923630
\(45\) 0 0
\(46\) 2.32482e7 0.765559
\(47\) 1.43175e7 0.427985 0.213992 0.976835i \(-0.431353\pi\)
0.213992 + 0.976835i \(0.431353\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) −1.20812e7 −0.273366
\(51\) 0 0
\(52\) −5.77538e7 −1.09538
\(53\) 3.44220e7 0.599232 0.299616 0.954060i \(-0.403142\pi\)
0.299616 + 0.954060i \(0.403142\pi\)
\(54\) 0 0
\(55\) 3.22860e7 0.475754
\(56\) 5.01022e6 0.0680786
\(57\) 0 0
\(58\) −6.81989e7 −0.791319
\(59\) 3.61330e7 0.388213 0.194107 0.980980i \(-0.437819\pi\)
0.194107 + 0.980980i \(0.437819\pi\)
\(60\) 0 0
\(61\) −9.33007e7 −0.862781 −0.431390 0.902165i \(-0.641977\pi\)
−0.431390 + 0.902165i \(0.641977\pi\)
\(62\) −9.58860e7 −0.824124
\(63\) 0 0
\(64\) −9.68200e7 −0.721365
\(65\) −8.12008e7 −0.564222
\(66\) 0 0
\(67\) 2.05762e8 1.24746 0.623732 0.781638i \(-0.285616\pi\)
0.623732 + 0.781638i \(0.285616\pi\)
\(68\) 1.15361e8 0.654288
\(69\) 0 0
\(70\) −4.64110e7 −0.231036
\(71\) 1.92397e8 0.898535 0.449268 0.893397i \(-0.351685\pi\)
0.449268 + 0.893397i \(0.351685\pi\)
\(72\) 0 0
\(73\) 8.11669e7 0.334523 0.167262 0.985913i \(-0.446508\pi\)
0.167262 + 0.985913i \(0.446508\pi\)
\(74\) 4.40795e8 1.70881
\(75\) 0 0
\(76\) 4.01483e7 0.138040
\(77\) 1.24030e8 0.402086
\(78\) 0 0
\(79\) 1.07122e8 0.309427 0.154713 0.987959i \(-0.450555\pi\)
0.154713 + 0.987959i \(0.450555\pi\)
\(80\) −1.82585e8 −0.498381
\(81\) 0 0
\(82\) −4.50592e8 −1.10058
\(83\) −3.54922e8 −0.820883 −0.410441 0.911887i \(-0.634625\pi\)
−0.410441 + 0.911887i \(0.634625\pi\)
\(84\) 0 0
\(85\) 1.62195e8 0.337018
\(86\) −5.84818e8 −1.15286
\(87\) 0 0
\(88\) 1.07795e8 0.191614
\(89\) −4.42433e8 −0.747468 −0.373734 0.927536i \(-0.621923\pi\)
−0.373734 + 0.927536i \(0.621923\pi\)
\(90\) 0 0
\(91\) −3.11941e8 −0.476855
\(92\) −3.34149e8 −0.486290
\(93\) 0 0
\(94\) −4.42810e8 −0.584982
\(95\) 5.64478e7 0.0711034
\(96\) 0 0
\(97\) −6.40463e8 −0.734549 −0.367275 0.930113i \(-0.619709\pi\)
−0.367275 + 0.930113i \(0.619709\pi\)
\(98\) −1.78293e8 −0.195261
\(99\) 0 0
\(100\) 1.73644e8 0.173644
\(101\) −5.75536e8 −0.550334 −0.275167 0.961396i \(-0.588733\pi\)
−0.275167 + 0.961396i \(0.588733\pi\)
\(102\) 0 0
\(103\) 5.97246e8 0.522860 0.261430 0.965222i \(-0.415806\pi\)
0.261430 + 0.965222i \(0.415806\pi\)
\(104\) −2.71110e8 −0.227245
\(105\) 0 0
\(106\) −1.06460e9 −0.819047
\(107\) −1.37917e9 −1.01716 −0.508580 0.861015i \(-0.669829\pi\)
−0.508580 + 0.861015i \(0.669829\pi\)
\(108\) 0 0
\(109\) −1.97995e9 −1.34349 −0.671744 0.740783i \(-0.734455\pi\)
−0.671744 + 0.740783i \(0.734455\pi\)
\(110\) −9.98536e8 −0.650275
\(111\) 0 0
\(112\) −7.01420e8 −0.421209
\(113\) 2.56021e9 1.47714 0.738572 0.674175i \(-0.235501\pi\)
0.738572 + 0.674175i \(0.235501\pi\)
\(114\) 0 0
\(115\) −4.69807e8 −0.250484
\(116\) 9.80231e8 0.502652
\(117\) 0 0
\(118\) −1.11752e9 −0.530621
\(119\) 6.23090e8 0.284832
\(120\) 0 0
\(121\) 3.10567e8 0.131711
\(122\) 2.88559e9 1.17927
\(123\) 0 0
\(124\) 1.37818e9 0.523491
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) −5.69352e9 −1.94207 −0.971034 0.238943i \(-0.923199\pi\)
−0.971034 + 0.238943i \(0.923199\pi\)
\(128\) −1.08454e9 −0.357110
\(129\) 0 0
\(130\) 2.51136e9 0.771195
\(131\) −2.61624e7 −0.00776170 −0.00388085 0.999992i \(-0.501235\pi\)
−0.00388085 + 0.999992i \(0.501235\pi\)
\(132\) 0 0
\(133\) 2.16850e8 0.0600934
\(134\) −6.36376e9 −1.70507
\(135\) 0 0
\(136\) 5.41531e8 0.135737
\(137\) −4.42139e9 −1.07230 −0.536150 0.844123i \(-0.680122\pi\)
−0.536150 + 0.844123i \(0.680122\pi\)
\(138\) 0 0
\(139\) 3.73682e9 0.849055 0.424527 0.905415i \(-0.360440\pi\)
0.424527 + 0.905415i \(0.360440\pi\)
\(140\) 6.67072e8 0.146756
\(141\) 0 0
\(142\) −5.95041e9 −1.22814
\(143\) −6.71143e9 −1.34216
\(144\) 0 0
\(145\) 1.37819e9 0.258912
\(146\) −2.51032e9 −0.457236
\(147\) 0 0
\(148\) −6.33561e9 −1.08545
\(149\) −4.21470e9 −0.700532 −0.350266 0.936650i \(-0.613909\pi\)
−0.350266 + 0.936650i \(0.613909\pi\)
\(150\) 0 0
\(151\) 1.01846e10 1.59422 0.797110 0.603834i \(-0.206361\pi\)
0.797110 + 0.603834i \(0.206361\pi\)
\(152\) 1.88465e8 0.0286375
\(153\) 0 0
\(154\) −3.83598e9 −0.549582
\(155\) 1.93770e9 0.269646
\(156\) 0 0
\(157\) 6.91306e9 0.908075 0.454038 0.890983i \(-0.349983\pi\)
0.454038 + 0.890983i \(0.349983\pi\)
\(158\) −3.31305e9 −0.422933
\(159\) 0 0
\(160\) 4.97922e9 0.600649
\(161\) −1.80481e9 −0.211697
\(162\) 0 0
\(163\) −1.38846e9 −0.154060 −0.0770298 0.997029i \(-0.524544\pi\)
−0.0770298 + 0.997029i \(0.524544\pi\)
\(164\) 6.47641e9 0.699096
\(165\) 0 0
\(166\) 1.09769e10 1.12201
\(167\) −2.76615e9 −0.275202 −0.137601 0.990488i \(-0.543939\pi\)
−0.137601 + 0.990488i \(0.543939\pi\)
\(168\) 0 0
\(169\) 6.27504e9 0.591733
\(170\) −5.01635e9 −0.460646
\(171\) 0 0
\(172\) 8.40567e9 0.732309
\(173\) −1.57511e9 −0.133691 −0.0668457 0.997763i \(-0.521294\pi\)
−0.0668457 + 0.997763i \(0.521294\pi\)
\(174\) 0 0
\(175\) 9.37891e8 0.0755929
\(176\) −1.50911e10 −1.18553
\(177\) 0 0
\(178\) 1.36835e10 1.02166
\(179\) 6.62999e9 0.482697 0.241348 0.970439i \(-0.422410\pi\)
0.241348 + 0.970439i \(0.422410\pi\)
\(180\) 0 0
\(181\) 2.73231e10 1.89224 0.946119 0.323819i \(-0.104967\pi\)
0.946119 + 0.323819i \(0.104967\pi\)
\(182\) 9.64765e9 0.651779
\(183\) 0 0
\(184\) −1.56857e9 −0.100884
\(185\) −8.90775e9 −0.559107
\(186\) 0 0
\(187\) 1.34058e10 0.801689
\(188\) 6.36457e9 0.371585
\(189\) 0 0
\(190\) −1.74581e9 −0.0971862
\(191\) −2.04415e10 −1.11138 −0.555689 0.831390i \(-0.687545\pi\)
−0.555689 + 0.831390i \(0.687545\pi\)
\(192\) 0 0
\(193\) −2.46642e10 −1.27955 −0.639777 0.768561i \(-0.720973\pi\)
−0.639777 + 0.768561i \(0.720973\pi\)
\(194\) 1.98081e10 1.00400
\(195\) 0 0
\(196\) 2.56262e9 0.124032
\(197\) 3.76002e10 1.77866 0.889329 0.457267i \(-0.151172\pi\)
0.889329 + 0.457267i \(0.151172\pi\)
\(198\) 0 0
\(199\) 1.12694e10 0.509403 0.254702 0.967020i \(-0.418023\pi\)
0.254702 + 0.967020i \(0.418023\pi\)
\(200\) 8.15126e8 0.0360238
\(201\) 0 0
\(202\) 1.78001e10 0.752212
\(203\) 5.29444e9 0.218821
\(204\) 0 0
\(205\) 9.10571e9 0.360099
\(206\) −1.84715e10 −0.714661
\(207\) 0 0
\(208\) 3.79548e10 1.40599
\(209\) 4.66554e9 0.169139
\(210\) 0 0
\(211\) 2.96721e10 1.03057 0.515285 0.857019i \(-0.327686\pi\)
0.515285 + 0.857019i \(0.327686\pi\)
\(212\) 1.53016e10 0.520266
\(213\) 0 0
\(214\) 4.26546e10 1.39028
\(215\) 1.18182e10 0.377206
\(216\) 0 0
\(217\) 7.44386e9 0.227892
\(218\) 6.12354e10 1.83632
\(219\) 0 0
\(220\) 1.43521e10 0.413060
\(221\) −3.37162e10 −0.950766
\(222\) 0 0
\(223\) −1.53280e10 −0.415061 −0.207531 0.978229i \(-0.566543\pi\)
−0.207531 + 0.978229i \(0.566543\pi\)
\(224\) 1.91282e10 0.507641
\(225\) 0 0
\(226\) −7.91817e10 −2.01900
\(227\) 1.51208e10 0.377972 0.188986 0.981980i \(-0.439480\pi\)
0.188986 + 0.981980i \(0.439480\pi\)
\(228\) 0 0
\(229\) −5.99252e10 −1.43996 −0.719979 0.693996i \(-0.755848\pi\)
−0.719979 + 0.693996i \(0.755848\pi\)
\(230\) 1.45301e10 0.342368
\(231\) 0 0
\(232\) 4.60143e9 0.104279
\(233\) 6.20541e10 1.37933 0.689666 0.724128i \(-0.257757\pi\)
0.689666 + 0.724128i \(0.257757\pi\)
\(234\) 0 0
\(235\) 8.94847e9 0.191401
\(236\) 1.60622e10 0.337055
\(237\) 0 0
\(238\) −1.92708e10 −0.389317
\(239\) 5.37734e10 1.06605 0.533024 0.846100i \(-0.321055\pi\)
0.533024 + 0.846100i \(0.321055\pi\)
\(240\) 0 0
\(241\) −2.31709e10 −0.442452 −0.221226 0.975223i \(-0.571006\pi\)
−0.221226 + 0.975223i \(0.571006\pi\)
\(242\) −9.60515e9 −0.180026
\(243\) 0 0
\(244\) −4.14749e10 −0.749085
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) −1.17340e10 −0.200591
\(248\) 6.46950e9 0.108602
\(249\) 0 0
\(250\) −7.55073e9 −0.122253
\(251\) −1.41545e10 −0.225093 −0.112547 0.993646i \(-0.535901\pi\)
−0.112547 + 0.993646i \(0.535901\pi\)
\(252\) 0 0
\(253\) −3.88306e10 −0.595844
\(254\) 1.76088e11 2.65447
\(255\) 0 0
\(256\) 8.31144e10 1.20947
\(257\) 1.28261e11 1.83399 0.916995 0.398899i \(-0.130608\pi\)
0.916995 + 0.398899i \(0.130608\pi\)
\(258\) 0 0
\(259\) −3.42200e10 −0.472532
\(260\) −3.60961e10 −0.489870
\(261\) 0 0
\(262\) 8.09146e8 0.0106089
\(263\) 1.53155e10 0.197392 0.0986960 0.995118i \(-0.468533\pi\)
0.0986960 + 0.995118i \(0.468533\pi\)
\(264\) 0 0
\(265\) 2.15138e10 0.267985
\(266\) −6.70669e9 −0.0821373
\(267\) 0 0
\(268\) 9.14671e10 1.08307
\(269\) 1.42724e11 1.66193 0.830964 0.556326i \(-0.187789\pi\)
0.830964 + 0.556326i \(0.187789\pi\)
\(270\) 0 0
\(271\) 1.19856e11 1.34989 0.674944 0.737869i \(-0.264168\pi\)
0.674944 + 0.737869i \(0.264168\pi\)
\(272\) −7.58132e10 −0.839817
\(273\) 0 0
\(274\) 1.36744e11 1.46565
\(275\) 2.01788e10 0.212764
\(276\) 0 0
\(277\) 3.81727e9 0.0389578 0.0194789 0.999810i \(-0.493799\pi\)
0.0194789 + 0.999810i \(0.493799\pi\)
\(278\) −1.15572e11 −1.16051
\(279\) 0 0
\(280\) 3.13139e9 0.0304457
\(281\) 1.43663e11 1.37457 0.687283 0.726390i \(-0.258803\pi\)
0.687283 + 0.726390i \(0.258803\pi\)
\(282\) 0 0
\(283\) 6.91570e9 0.0640910 0.0320455 0.999486i \(-0.489798\pi\)
0.0320455 + 0.999486i \(0.489798\pi\)
\(284\) 8.55260e10 0.780127
\(285\) 0 0
\(286\) 2.07570e11 1.83450
\(287\) 3.49805e10 0.304339
\(288\) 0 0
\(289\) −5.12411e10 −0.432094
\(290\) −4.26243e10 −0.353888
\(291\) 0 0
\(292\) 3.60811e10 0.290440
\(293\) −2.23244e11 −1.76960 −0.884802 0.465967i \(-0.845707\pi\)
−0.884802 + 0.465967i \(0.845707\pi\)
\(294\) 0 0
\(295\) 2.25832e10 0.173614
\(296\) −2.97408e10 −0.225185
\(297\) 0 0
\(298\) 1.30351e11 0.957508
\(299\) 9.76607e10 0.706642
\(300\) 0 0
\(301\) 4.54008e10 0.318797
\(302\) −3.14988e11 −2.17903
\(303\) 0 0
\(304\) −2.63847e10 −0.177183
\(305\) −5.83129e10 −0.385847
\(306\) 0 0
\(307\) 2.42296e11 1.55677 0.778383 0.627790i \(-0.216040\pi\)
0.778383 + 0.627790i \(0.216040\pi\)
\(308\) 5.51350e10 0.349099
\(309\) 0 0
\(310\) −5.99287e10 −0.368559
\(311\) 1.48593e11 0.900694 0.450347 0.892854i \(-0.351300\pi\)
0.450347 + 0.892854i \(0.351300\pi\)
\(312\) 0 0
\(313\) −1.97735e11 −1.16449 −0.582243 0.813015i \(-0.697825\pi\)
−0.582243 + 0.813015i \(0.697825\pi\)
\(314\) −2.13806e11 −1.24118
\(315\) 0 0
\(316\) 4.76190e10 0.268651
\(317\) 9.37774e10 0.521593 0.260796 0.965394i \(-0.416015\pi\)
0.260796 + 0.965394i \(0.416015\pi\)
\(318\) 0 0
\(319\) 1.13910e11 0.615892
\(320\) −6.05125e10 −0.322604
\(321\) 0 0
\(322\) 5.58189e10 0.289354
\(323\) 2.34383e10 0.119816
\(324\) 0 0
\(325\) −5.07505e10 −0.252328
\(326\) 4.29420e10 0.210573
\(327\) 0 0
\(328\) 3.04017e10 0.145033
\(329\) 3.43764e10 0.161763
\(330\) 0 0
\(331\) −1.37421e11 −0.629257 −0.314628 0.949215i \(-0.601880\pi\)
−0.314628 + 0.949215i \(0.601880\pi\)
\(332\) −1.57773e11 −0.712708
\(333\) 0 0
\(334\) 8.55509e10 0.376154
\(335\) 1.28601e11 0.557883
\(336\) 0 0
\(337\) −4.35827e11 −1.84069 −0.920344 0.391111i \(-0.872091\pi\)
−0.920344 + 0.391111i \(0.872091\pi\)
\(338\) −1.94073e11 −0.808798
\(339\) 0 0
\(340\) 7.21006e10 0.292606
\(341\) 1.60155e11 0.641425
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 3.94581e10 0.151923
\(345\) 0 0
\(346\) 4.87147e10 0.182733
\(347\) 5.95838e10 0.220620 0.110310 0.993897i \(-0.464816\pi\)
0.110310 + 0.993897i \(0.464816\pi\)
\(348\) 0 0
\(349\) 1.58456e11 0.571733 0.285866 0.958269i \(-0.407719\pi\)
0.285866 + 0.958269i \(0.407719\pi\)
\(350\) −2.90069e10 −0.103323
\(351\) 0 0
\(352\) 4.11544e11 1.42881
\(353\) −4.78124e11 −1.63891 −0.819453 0.573146i \(-0.805723\pi\)
−0.819453 + 0.573146i \(0.805723\pi\)
\(354\) 0 0
\(355\) 1.20248e11 0.401837
\(356\) −1.96674e11 −0.648967
\(357\) 0 0
\(358\) −2.05051e11 −0.659764
\(359\) 5.64725e11 1.79437 0.897185 0.441655i \(-0.145609\pi\)
0.897185 + 0.441655i \(0.145609\pi\)
\(360\) 0 0
\(361\) −3.14531e11 −0.974722
\(362\) −8.45043e11 −2.58637
\(363\) 0 0
\(364\) −1.38667e11 −0.414015
\(365\) 5.07293e10 0.149603
\(366\) 0 0
\(367\) 2.93967e11 0.845865 0.422933 0.906161i \(-0.361001\pi\)
0.422933 + 0.906161i \(0.361001\pi\)
\(368\) 2.19597e11 0.624181
\(369\) 0 0
\(370\) 2.75497e11 0.764204
\(371\) 8.26472e10 0.226488
\(372\) 0 0
\(373\) −7.23302e11 −1.93477 −0.967386 0.253307i \(-0.918482\pi\)
−0.967386 + 0.253307i \(0.918482\pi\)
\(374\) −4.14612e11 −1.09577
\(375\) 0 0
\(376\) 2.98767e10 0.0770882
\(377\) −2.86489e11 −0.730419
\(378\) 0 0
\(379\) −7.65506e10 −0.190578 −0.0952888 0.995450i \(-0.530377\pi\)
−0.0952888 + 0.995450i \(0.530377\pi\)
\(380\) 2.50927e10 0.0617335
\(381\) 0 0
\(382\) 6.32210e11 1.51906
\(383\) 3.85038e10 0.0914343 0.0457171 0.998954i \(-0.485443\pi\)
0.0457171 + 0.998954i \(0.485443\pi\)
\(384\) 0 0
\(385\) 7.75188e10 0.179818
\(386\) 7.62809e11 1.74893
\(387\) 0 0
\(388\) −2.84704e11 −0.637751
\(389\) 3.16636e11 0.701112 0.350556 0.936542i \(-0.385993\pi\)
0.350556 + 0.936542i \(0.385993\pi\)
\(390\) 0 0
\(391\) −1.95073e11 −0.422088
\(392\) 1.20295e10 0.0257313
\(393\) 0 0
\(394\) −1.16289e12 −2.43112
\(395\) 6.69514e10 0.138380
\(396\) 0 0
\(397\) 8.72503e11 1.76283 0.881414 0.472345i \(-0.156592\pi\)
0.881414 + 0.472345i \(0.156592\pi\)
\(398\) −3.48538e11 −0.696267
\(399\) 0 0
\(400\) −1.14116e11 −0.222883
\(401\) −2.01947e11 −0.390020 −0.195010 0.980801i \(-0.562474\pi\)
−0.195010 + 0.980801i \(0.562474\pi\)
\(402\) 0 0
\(403\) −4.02797e11 −0.760700
\(404\) −2.55843e11 −0.477812
\(405\) 0 0
\(406\) −1.63746e11 −0.299090
\(407\) −7.36246e11 −1.32999
\(408\) 0 0
\(409\) 6.00556e11 1.06120 0.530602 0.847621i \(-0.321966\pi\)
0.530602 + 0.847621i \(0.321966\pi\)
\(410\) −2.81620e11 −0.492193
\(411\) 0 0
\(412\) 2.65493e11 0.453959
\(413\) 8.67554e10 0.146731
\(414\) 0 0
\(415\) −2.21826e11 −0.367110
\(416\) −1.03505e12 −1.69450
\(417\) 0 0
\(418\) −1.44295e11 −0.231184
\(419\) −7.70658e10 −0.122151 −0.0610757 0.998133i \(-0.519453\pi\)
−0.0610757 + 0.998133i \(0.519453\pi\)
\(420\) 0 0
\(421\) −2.92063e10 −0.0453113 −0.0226557 0.999743i \(-0.507212\pi\)
−0.0226557 + 0.999743i \(0.507212\pi\)
\(422\) −9.17694e11 −1.40861
\(423\) 0 0
\(424\) 7.18291e10 0.107933
\(425\) 1.01372e11 0.150719
\(426\) 0 0
\(427\) −2.24015e11 −0.326101
\(428\) −6.13079e11 −0.883120
\(429\) 0 0
\(430\) −3.65511e11 −0.515576
\(431\) 8.55400e11 1.19405 0.597024 0.802224i \(-0.296350\pi\)
0.597024 + 0.802224i \(0.296350\pi\)
\(432\) 0 0
\(433\) −1.27919e12 −1.74879 −0.874395 0.485214i \(-0.838742\pi\)
−0.874395 + 0.485214i \(0.838742\pi\)
\(434\) −2.30222e11 −0.311490
\(435\) 0 0
\(436\) −8.80144e11 −1.16645
\(437\) −6.78901e10 −0.0890513
\(438\) 0 0
\(439\) −6.24487e11 −0.802478 −0.401239 0.915973i \(-0.631420\pi\)
−0.401239 + 0.915973i \(0.631420\pi\)
\(440\) 6.73720e10 0.0856924
\(441\) 0 0
\(442\) 1.04277e12 1.29953
\(443\) −3.08157e11 −0.380151 −0.190075 0.981769i \(-0.560873\pi\)
−0.190075 + 0.981769i \(0.560873\pi\)
\(444\) 0 0
\(445\) −2.76521e11 −0.334278
\(446\) 4.74060e11 0.567318
\(447\) 0 0
\(448\) −2.32465e11 −0.272650
\(449\) −2.51528e11 −0.292064 −0.146032 0.989280i \(-0.546650\pi\)
−0.146032 + 0.989280i \(0.546650\pi\)
\(450\) 0 0
\(451\) 7.52608e11 0.856592
\(452\) 1.13809e12 1.28249
\(453\) 0 0
\(454\) −4.67654e11 −0.516623
\(455\) −1.94963e11 −0.213256
\(456\) 0 0
\(457\) −7.28476e11 −0.781254 −0.390627 0.920549i \(-0.627742\pi\)
−0.390627 + 0.920549i \(0.627742\pi\)
\(458\) 1.85335e12 1.96818
\(459\) 0 0
\(460\) −2.08843e11 −0.217475
\(461\) −7.37088e10 −0.0760090 −0.0380045 0.999278i \(-0.512100\pi\)
−0.0380045 + 0.999278i \(0.512100\pi\)
\(462\) 0 0
\(463\) −4.60918e11 −0.466132 −0.233066 0.972461i \(-0.574876\pi\)
−0.233066 + 0.972461i \(0.574876\pi\)
\(464\) −6.44190e11 −0.645184
\(465\) 0 0
\(466\) −1.91920e12 −1.88531
\(467\) −6.43236e11 −0.625813 −0.312907 0.949784i \(-0.601303\pi\)
−0.312907 + 0.949784i \(0.601303\pi\)
\(468\) 0 0
\(469\) 4.94034e11 0.471497
\(470\) −2.76756e11 −0.261612
\(471\) 0 0
\(472\) 7.53996e10 0.0699246
\(473\) 9.76802e11 0.897287
\(474\) 0 0
\(475\) 3.52799e10 0.0317984
\(476\) 2.76982e11 0.247297
\(477\) 0 0
\(478\) −1.66309e12 −1.45711
\(479\) 2.06775e12 1.79468 0.897342 0.441336i \(-0.145495\pi\)
0.897342 + 0.441336i \(0.145495\pi\)
\(480\) 0 0
\(481\) 1.85169e12 1.57730
\(482\) 7.16626e11 0.604757
\(483\) 0 0
\(484\) 1.38056e11 0.114354
\(485\) −4.00289e11 −0.328500
\(486\) 0 0
\(487\) 8.68183e11 0.699408 0.349704 0.936860i \(-0.386282\pi\)
0.349704 + 0.936860i \(0.386282\pi\)
\(488\) −1.94693e11 −0.155403
\(489\) 0 0
\(490\) −1.11433e11 −0.0873235
\(491\) 5.62296e11 0.436615 0.218307 0.975880i \(-0.429946\pi\)
0.218307 + 0.975880i \(0.429946\pi\)
\(492\) 0 0
\(493\) 5.72251e11 0.436290
\(494\) 3.62908e11 0.274173
\(495\) 0 0
\(496\) −9.05716e11 −0.671931
\(497\) 4.61945e11 0.339614
\(498\) 0 0
\(499\) 1.13252e12 0.817702 0.408851 0.912601i \(-0.365930\pi\)
0.408851 + 0.912601i \(0.365930\pi\)
\(500\) 1.08528e11 0.0776561
\(501\) 0 0
\(502\) 4.37768e11 0.307664
\(503\) −5.02176e11 −0.349784 −0.174892 0.984588i \(-0.555958\pi\)
−0.174892 + 0.984588i \(0.555958\pi\)
\(504\) 0 0
\(505\) −3.59710e11 −0.246117
\(506\) 1.20095e12 0.814416
\(507\) 0 0
\(508\) −2.53094e12 −1.68614
\(509\) 6.17949e11 0.408059 0.204029 0.978965i \(-0.434596\pi\)
0.204029 + 0.978965i \(0.434596\pi\)
\(510\) 0 0
\(511\) 1.94882e11 0.126438
\(512\) −2.01526e12 −1.29603
\(513\) 0 0
\(514\) −3.96684e12 −2.50675
\(515\) 3.73279e11 0.233830
\(516\) 0 0
\(517\) 7.39611e11 0.455298
\(518\) 1.05835e12 0.645870
\(519\) 0 0
\(520\) −1.69443e11 −0.101627
\(521\) 2.25896e12 1.34319 0.671597 0.740916i \(-0.265609\pi\)
0.671597 + 0.740916i \(0.265609\pi\)
\(522\) 0 0
\(523\) 2.96359e12 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(524\) −1.16300e10 −0.00673887
\(525\) 0 0
\(526\) −4.73674e11 −0.269801
\(527\) 8.04571e11 0.454377
\(528\) 0 0
\(529\) −1.23611e12 −0.686289
\(530\) −6.65373e11 −0.366289
\(531\) 0 0
\(532\) 9.63961e10 0.0521743
\(533\) −1.89284e12 −1.01588
\(534\) 0 0
\(535\) −8.61979e11 −0.454888
\(536\) 4.29367e11 0.224692
\(537\) 0 0
\(538\) −4.41415e12 −2.27157
\(539\) 2.97796e11 0.151974
\(540\) 0 0
\(541\) 3.40796e12 1.71043 0.855217 0.518271i \(-0.173424\pi\)
0.855217 + 0.518271i \(0.173424\pi\)
\(542\) −3.70688e12 −1.84507
\(543\) 0 0
\(544\) 2.06747e12 1.01215
\(545\) −1.23747e12 −0.600826
\(546\) 0 0
\(547\) 3.30764e12 1.57970 0.789852 0.613298i \(-0.210157\pi\)
0.789852 + 0.613298i \(0.210157\pi\)
\(548\) −1.96544e12 −0.930994
\(549\) 0 0
\(550\) −6.24085e11 −0.290812
\(551\) 1.99157e11 0.0920477
\(552\) 0 0
\(553\) 2.57200e11 0.116952
\(554\) −1.18060e11 −0.0532486
\(555\) 0 0
\(556\) 1.66113e12 0.737167
\(557\) 4.15545e12 1.82923 0.914617 0.404322i \(-0.132492\pi\)
0.914617 + 0.404322i \(0.132492\pi\)
\(558\) 0 0
\(559\) −2.45670e12 −1.06414
\(560\) −4.38388e11 −0.188370
\(561\) 0 0
\(562\) −4.44317e12 −1.87880
\(563\) −2.31187e12 −0.969787 −0.484894 0.874573i \(-0.661142\pi\)
−0.484894 + 0.874573i \(0.661142\pi\)
\(564\) 0 0
\(565\) 1.60013e12 0.660599
\(566\) −2.13887e11 −0.0876014
\(567\) 0 0
\(568\) 4.01478e11 0.161843
\(569\) 4.00934e12 1.60349 0.801747 0.597663i \(-0.203904\pi\)
0.801747 + 0.597663i \(0.203904\pi\)
\(570\) 0 0
\(571\) 2.40366e12 0.946260 0.473130 0.880993i \(-0.343124\pi\)
0.473130 + 0.880993i \(0.343124\pi\)
\(572\) −2.98343e12 −1.16529
\(573\) 0 0
\(574\) −1.08187e12 −0.415979
\(575\) −2.93630e11 −0.112020
\(576\) 0 0
\(577\) −2.40214e12 −0.902208 −0.451104 0.892471i \(-0.648970\pi\)
−0.451104 + 0.892471i \(0.648970\pi\)
\(578\) 1.58477e12 0.590598
\(579\) 0 0
\(580\) 6.12645e11 0.224793
\(581\) −8.52167e11 −0.310264
\(582\) 0 0
\(583\) 1.77816e12 0.637474
\(584\) 1.69373e11 0.0602540
\(585\) 0 0
\(586\) 6.90446e12 2.41875
\(587\) 2.71458e12 0.943694 0.471847 0.881681i \(-0.343588\pi\)
0.471847 + 0.881681i \(0.343588\pi\)
\(588\) 0 0
\(589\) 2.80010e11 0.0958637
\(590\) −6.98447e11 −0.237301
\(591\) 0 0
\(592\) 4.16365e12 1.39324
\(593\) 2.44735e12 0.812736 0.406368 0.913710i \(-0.366795\pi\)
0.406368 + 0.913710i \(0.366795\pi\)
\(594\) 0 0
\(595\) 3.89431e11 0.127381
\(596\) −1.87356e12 −0.608217
\(597\) 0 0
\(598\) −3.02043e12 −0.965859
\(599\) 1.24301e11 0.0394506 0.0197253 0.999805i \(-0.493721\pi\)
0.0197253 + 0.999805i \(0.493721\pi\)
\(600\) 0 0
\(601\) 3.71305e12 1.16090 0.580451 0.814295i \(-0.302876\pi\)
0.580451 + 0.814295i \(0.302876\pi\)
\(602\) −1.40415e12 −0.435741
\(603\) 0 0
\(604\) 4.52736e12 1.38414
\(605\) 1.94104e11 0.0589028
\(606\) 0 0
\(607\) 8.89382e11 0.265913 0.132956 0.991122i \(-0.457553\pi\)
0.132956 + 0.991122i \(0.457553\pi\)
\(608\) 7.19528e11 0.213541
\(609\) 0 0
\(610\) 1.80349e12 0.527387
\(611\) −1.86015e12 −0.539962
\(612\) 0 0
\(613\) 1.53860e12 0.440103 0.220052 0.975488i \(-0.429377\pi\)
0.220052 + 0.975488i \(0.429377\pi\)
\(614\) −7.49368e12 −2.12783
\(615\) 0 0
\(616\) 2.58816e11 0.0724233
\(617\) −3.70682e12 −1.02972 −0.514859 0.857275i \(-0.672156\pi\)
−0.514859 + 0.857275i \(0.672156\pi\)
\(618\) 0 0
\(619\) −5.27045e12 −1.44291 −0.721456 0.692460i \(-0.756527\pi\)
−0.721456 + 0.692460i \(0.756527\pi\)
\(620\) 8.61363e11 0.234112
\(621\) 0 0
\(622\) −4.59566e12 −1.23109
\(623\) −1.06228e12 −0.282516
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 6.11552e12 1.59165
\(627\) 0 0
\(628\) 3.07306e12 0.788410
\(629\) −3.69868e12 −0.942146
\(630\) 0 0
\(631\) 1.99691e12 0.501448 0.250724 0.968059i \(-0.419331\pi\)
0.250724 + 0.968059i \(0.419331\pi\)
\(632\) 2.23534e11 0.0557336
\(633\) 0 0
\(634\) −2.90033e12 −0.712928
\(635\) −3.55845e12 −0.868519
\(636\) 0 0
\(637\) −7.48970e11 −0.180234
\(638\) −3.52300e12 −0.841820
\(639\) 0 0
\(640\) −6.77840e11 −0.159705
\(641\) 2.45489e12 0.574342 0.287171 0.957879i \(-0.407285\pi\)
0.287171 + 0.957879i \(0.407285\pi\)
\(642\) 0 0
\(643\) −4.85617e12 −1.12033 −0.560163 0.828383i \(-0.689261\pi\)
−0.560163 + 0.828383i \(0.689261\pi\)
\(644\) −8.02292e11 −0.183800
\(645\) 0 0
\(646\) −7.24894e11 −0.163768
\(647\) 4.02189e12 0.902320 0.451160 0.892443i \(-0.351010\pi\)
0.451160 + 0.892443i \(0.351010\pi\)
\(648\) 0 0
\(649\) 1.86655e12 0.412989
\(650\) 1.56960e12 0.344889
\(651\) 0 0
\(652\) −6.17210e11 −0.133758
\(653\) −2.63594e12 −0.567317 −0.283659 0.958925i \(-0.591548\pi\)
−0.283659 + 0.958925i \(0.591548\pi\)
\(654\) 0 0
\(655\) −1.63515e10 −0.00347114
\(656\) −4.25618e12 −0.897331
\(657\) 0 0
\(658\) −1.06319e12 −0.221102
\(659\) −9.36892e12 −1.93511 −0.967554 0.252663i \(-0.918694\pi\)
−0.967554 + 0.252663i \(0.918694\pi\)
\(660\) 0 0
\(661\) 8.25438e11 0.168181 0.0840907 0.996458i \(-0.473201\pi\)
0.0840907 + 0.996458i \(0.473201\pi\)
\(662\) 4.25014e12 0.860086
\(663\) 0 0
\(664\) −7.40623e11 −0.147857
\(665\) 1.35531e11 0.0268746
\(666\) 0 0
\(667\) −1.65756e12 −0.324266
\(668\) −1.22963e12 −0.238936
\(669\) 0 0
\(670\) −3.97735e12 −0.762530
\(671\) −4.81970e12 −0.917843
\(672\) 0 0
\(673\) −3.23621e12 −0.608092 −0.304046 0.952657i \(-0.598338\pi\)
−0.304046 + 0.952657i \(0.598338\pi\)
\(674\) 1.34792e13 2.51590
\(675\) 0 0
\(676\) 2.78944e12 0.513756
\(677\) 7.40697e12 1.35516 0.677581 0.735448i \(-0.263028\pi\)
0.677581 + 0.735448i \(0.263028\pi\)
\(678\) 0 0
\(679\) −1.53775e12 −0.277634
\(680\) 3.38457e11 0.0607034
\(681\) 0 0
\(682\) −4.95325e12 −0.876719
\(683\) 3.59414e12 0.631978 0.315989 0.948763i \(-0.397664\pi\)
0.315989 + 0.948763i \(0.397664\pi\)
\(684\) 0 0
\(685\) −2.76337e12 −0.479547
\(686\) −4.28081e11 −0.0738018
\(687\) 0 0
\(688\) −5.52405e12 −0.939961
\(689\) −4.47215e12 −0.756014
\(690\) 0 0
\(691\) 2.54498e11 0.0424652 0.0212326 0.999775i \(-0.493241\pi\)
0.0212326 + 0.999775i \(0.493241\pi\)
\(692\) −7.00183e11 −0.116074
\(693\) 0 0
\(694\) −1.84280e12 −0.301550
\(695\) 2.33551e12 0.379709
\(696\) 0 0
\(697\) 3.78087e12 0.606799
\(698\) −4.90068e12 −0.781461
\(699\) 0 0
\(700\) 4.16920e11 0.0656314
\(701\) 2.85836e11 0.0447081 0.0223540 0.999750i \(-0.492884\pi\)
0.0223540 + 0.999750i \(0.492884\pi\)
\(702\) 0 0
\(703\) −1.28723e12 −0.198772
\(704\) −5.00150e12 −0.767402
\(705\) 0 0
\(706\) 1.47873e13 2.24010
\(707\) −1.38186e12 −0.208007
\(708\) 0 0
\(709\) 1.36881e12 0.203440 0.101720 0.994813i \(-0.467565\pi\)
0.101720 + 0.994813i \(0.467565\pi\)
\(710\) −3.71901e12 −0.549243
\(711\) 0 0
\(712\) −9.23234e11 −0.134633
\(713\) −2.33048e12 −0.337709
\(714\) 0 0
\(715\) −4.19464e12 −0.600230
\(716\) 2.94722e12 0.419087
\(717\) 0 0
\(718\) −1.74657e13 −2.45260
\(719\) 1.27505e13 1.77929 0.889645 0.456653i \(-0.150952\pi\)
0.889645 + 0.456653i \(0.150952\pi\)
\(720\) 0 0
\(721\) 1.43399e12 0.197623
\(722\) 9.72774e12 1.33228
\(723\) 0 0
\(724\) 1.21459e13 1.64288
\(725\) 8.61367e11 0.115789
\(726\) 0 0
\(727\) −7.20369e12 −0.956423 −0.478212 0.878245i \(-0.658715\pi\)
−0.478212 + 0.878245i \(0.658715\pi\)
\(728\) −6.50934e11 −0.0858906
\(729\) 0 0
\(730\) −1.56895e12 −0.204482
\(731\) 4.90716e12 0.635626
\(732\) 0 0
\(733\) −1.27852e11 −0.0163583 −0.00817917 0.999967i \(-0.502604\pi\)
−0.00817917 + 0.999967i \(0.502604\pi\)
\(734\) −9.09175e12 −1.15615
\(735\) 0 0
\(736\) −5.98854e12 −0.752265
\(737\) 1.06292e13 1.32708
\(738\) 0 0
\(739\) −3.13217e12 −0.386318 −0.193159 0.981167i \(-0.561873\pi\)
−0.193159 + 0.981167i \(0.561873\pi\)
\(740\) −3.95975e12 −0.485429
\(741\) 0 0
\(742\) −2.55610e12 −0.309571
\(743\) −4.86428e12 −0.585556 −0.292778 0.956180i \(-0.594580\pi\)
−0.292778 + 0.956180i \(0.594580\pi\)
\(744\) 0 0
\(745\) −2.63419e12 −0.313287
\(746\) 2.23701e13 2.64450
\(747\) 0 0
\(748\) 5.95928e12 0.696044
\(749\) −3.31138e12 −0.384450
\(750\) 0 0
\(751\) 1.18619e13 1.36074 0.680370 0.732869i \(-0.261819\pi\)
0.680370 + 0.732869i \(0.261819\pi\)
\(752\) −4.18268e12 −0.476952
\(753\) 0 0
\(754\) 8.86049e12 0.998358
\(755\) 6.36538e12 0.712957
\(756\) 0 0
\(757\) 1.71751e13 1.90094 0.950471 0.310813i \(-0.100601\pi\)
0.950471 + 0.310813i \(0.100601\pi\)
\(758\) 2.36754e12 0.260487
\(759\) 0 0
\(760\) 1.17791e11 0.0128071
\(761\) −6.68211e12 −0.722241 −0.361121 0.932519i \(-0.617606\pi\)
−0.361121 + 0.932519i \(0.617606\pi\)
\(762\) 0 0
\(763\) −4.75385e12 −0.507791
\(764\) −9.08683e12 −0.964922
\(765\) 0 0
\(766\) −1.19084e12 −0.124975
\(767\) −4.69445e12 −0.489785
\(768\) 0 0
\(769\) 1.07137e13 1.10477 0.552385 0.833589i \(-0.313718\pi\)
0.552385 + 0.833589i \(0.313718\pi\)
\(770\) −2.39749e12 −0.245781
\(771\) 0 0
\(772\) −1.09639e13 −1.11094
\(773\) −4.59483e12 −0.462873 −0.231437 0.972850i \(-0.574343\pi\)
−0.231437 + 0.972850i \(0.574343\pi\)
\(774\) 0 0
\(775\) 1.21106e12 0.120589
\(776\) −1.33647e12 −0.132306
\(777\) 0 0
\(778\) −9.79286e12 −0.958300
\(779\) 1.31583e12 0.128021
\(780\) 0 0
\(781\) 9.93877e12 0.955879
\(782\) 6.03319e12 0.576922
\(783\) 0 0
\(784\) −1.68411e12 −0.159202
\(785\) 4.32066e12 0.406104
\(786\) 0 0
\(787\) 1.10128e13 1.02332 0.511662 0.859187i \(-0.329030\pi\)
0.511662 + 0.859187i \(0.329030\pi\)
\(788\) 1.67144e13 1.54427
\(789\) 0 0
\(790\) −2.07066e12 −0.189141
\(791\) 6.14707e12 0.558308
\(792\) 0 0
\(793\) 1.21217e13 1.08852
\(794\) −2.69846e13 −2.40948
\(795\) 0 0
\(796\) 5.00958e12 0.442275
\(797\) 1.04621e12 0.0918449 0.0459224 0.998945i \(-0.485377\pi\)
0.0459224 + 0.998945i \(0.485377\pi\)
\(798\) 0 0
\(799\) 3.71558e12 0.322527
\(800\) 3.11201e12 0.268619
\(801\) 0 0
\(802\) 6.24577e12 0.533091
\(803\) 4.19290e12 0.355872
\(804\) 0 0
\(805\) −1.12801e12 −0.0946740
\(806\) 1.24576e13 1.03975
\(807\) 0 0
\(808\) −1.20098e12 −0.0991256
\(809\) 7.20013e12 0.590979 0.295489 0.955346i \(-0.404517\pi\)
0.295489 + 0.955346i \(0.404517\pi\)
\(810\) 0 0
\(811\) 1.58290e13 1.28487 0.642437 0.766338i \(-0.277923\pi\)
0.642437 + 0.766338i \(0.277923\pi\)
\(812\) 2.35354e12 0.189985
\(813\) 0 0
\(814\) 2.27705e13 1.81787
\(815\) −8.67786e11 −0.0688975
\(816\) 0 0
\(817\) 1.70781e12 0.134103
\(818\) −1.85739e13 −1.45048
\(819\) 0 0
\(820\) 4.04776e12 0.312645
\(821\) 1.62250e13 1.24635 0.623177 0.782081i \(-0.285842\pi\)
0.623177 + 0.782081i \(0.285842\pi\)
\(822\) 0 0
\(823\) 1.27028e13 0.965160 0.482580 0.875852i \(-0.339700\pi\)
0.482580 + 0.875852i \(0.339700\pi\)
\(824\) 1.24629e12 0.0941771
\(825\) 0 0
\(826\) −2.68316e12 −0.200556
\(827\) −2.21026e13 −1.64312 −0.821558 0.570125i \(-0.806895\pi\)
−0.821558 + 0.570125i \(0.806895\pi\)
\(828\) 0 0
\(829\) 7.98616e12 0.587277 0.293638 0.955917i \(-0.405134\pi\)
0.293638 + 0.955917i \(0.405134\pi\)
\(830\) 6.86059e12 0.501776
\(831\) 0 0
\(832\) 1.25790e13 0.910103
\(833\) 1.49604e12 0.107656
\(834\) 0 0
\(835\) −1.72884e12 −0.123074
\(836\) 2.07397e12 0.146850
\(837\) 0 0
\(838\) 2.38348e12 0.166960
\(839\) 2.51460e12 0.175202 0.0876011 0.996156i \(-0.472080\pi\)
0.0876011 + 0.996156i \(0.472080\pi\)
\(840\) 0 0
\(841\) −9.64468e12 −0.664823
\(842\) 9.03286e11 0.0619328
\(843\) 0 0
\(844\) 1.31901e13 0.894763
\(845\) 3.92190e12 0.264631
\(846\) 0 0
\(847\) 7.45671e11 0.0497820
\(848\) −1.00559e13 −0.667792
\(849\) 0 0
\(850\) −3.13522e12 −0.206007
\(851\) 1.07134e13 0.700236
\(852\) 0 0
\(853\) 2.20939e13 1.42890 0.714449 0.699687i \(-0.246677\pi\)
0.714449 + 0.699687i \(0.246677\pi\)
\(854\) 6.92829e12 0.445724
\(855\) 0 0
\(856\) −2.87793e12 −0.183210
\(857\) −2.65431e13 −1.68088 −0.840441 0.541903i \(-0.817704\pi\)
−0.840441 + 0.541903i \(0.817704\pi\)
\(858\) 0 0
\(859\) −8.96349e12 −0.561704 −0.280852 0.959751i \(-0.590617\pi\)
−0.280852 + 0.959751i \(0.590617\pi\)
\(860\) 5.25354e12 0.327498
\(861\) 0 0
\(862\) −2.64556e13 −1.63206
\(863\) −1.90231e13 −1.16743 −0.583717 0.811957i \(-0.698402\pi\)
−0.583717 + 0.811957i \(0.698402\pi\)
\(864\) 0 0
\(865\) −9.84444e11 −0.0597886
\(866\) 3.95624e13 2.39030
\(867\) 0 0
\(868\) 3.30901e12 0.197861
\(869\) 5.53368e12 0.329174
\(870\) 0 0
\(871\) −2.67328e13 −1.57385
\(872\) −4.13159e12 −0.241988
\(873\) 0 0
\(874\) 2.09969e12 0.121718
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) −8.89591e12 −0.507799 −0.253900 0.967231i \(-0.581713\pi\)
−0.253900 + 0.967231i \(0.581713\pi\)
\(878\) 1.93140e13 1.09685
\(879\) 0 0
\(880\) −9.43194e12 −0.530187
\(881\) −3.32011e13 −1.85678 −0.928391 0.371605i \(-0.878808\pi\)
−0.928391 + 0.371605i \(0.878808\pi\)
\(882\) 0 0
\(883\) 6.33990e12 0.350961 0.175481 0.984483i \(-0.443852\pi\)
0.175481 + 0.984483i \(0.443852\pi\)
\(884\) −1.49878e13 −0.825475
\(885\) 0 0
\(886\) 9.53064e12 0.519601
\(887\) 4.67382e12 0.253522 0.126761 0.991933i \(-0.459542\pi\)
0.126761 + 0.991933i \(0.459542\pi\)
\(888\) 0 0
\(889\) −1.36701e13 −0.734032
\(890\) 8.55217e12 0.456900
\(891\) 0 0
\(892\) −6.81372e12 −0.360365
\(893\) 1.29311e12 0.0680462
\(894\) 0 0
\(895\) 4.14374e12 0.215868
\(896\) −2.60399e12 −0.134975
\(897\) 0 0
\(898\) 7.77920e12 0.399201
\(899\) 6.83651e12 0.349072
\(900\) 0 0
\(901\) 8.93294e12 0.451578
\(902\) −2.32765e13 −1.17082
\(903\) 0 0
\(904\) 5.34245e12 0.266062
\(905\) 1.70769e13 0.846235
\(906\) 0 0
\(907\) −1.02073e13 −0.500816 −0.250408 0.968140i \(-0.580565\pi\)
−0.250408 + 0.968140i \(0.580565\pi\)
\(908\) 6.72165e12 0.328163
\(909\) 0 0
\(910\) 6.02978e12 0.291484
\(911\) 2.05078e13 0.986474 0.493237 0.869895i \(-0.335813\pi\)
0.493237 + 0.869895i \(0.335813\pi\)
\(912\) 0 0
\(913\) −1.83344e13 −0.873270
\(914\) 2.25302e13 1.06784
\(915\) 0 0
\(916\) −2.66385e13 −1.25020
\(917\) −6.28159e10 −0.00293365
\(918\) 0 0
\(919\) 1.80163e13 0.833192 0.416596 0.909092i \(-0.363223\pi\)
0.416596 + 0.909092i \(0.363223\pi\)
\(920\) −9.80357e11 −0.0451169
\(921\) 0 0
\(922\) 2.27965e12 0.103891
\(923\) −2.49964e13 −1.13363
\(924\) 0 0
\(925\) −5.56734e12 −0.250040
\(926\) 1.42552e13 0.637123
\(927\) 0 0
\(928\) 1.75675e13 0.777577
\(929\) 2.38578e13 1.05090 0.525448 0.850826i \(-0.323898\pi\)
0.525448 + 0.850826i \(0.323898\pi\)
\(930\) 0 0
\(931\) 5.20656e11 0.0227132
\(932\) 2.75849e13 1.19756
\(933\) 0 0
\(934\) 1.98939e13 0.855379
\(935\) 8.37863e12 0.358526
\(936\) 0 0
\(937\) 3.41070e13 1.44549 0.722746 0.691114i \(-0.242880\pi\)
0.722746 + 0.691114i \(0.242880\pi\)
\(938\) −1.52794e13 −0.644456
\(939\) 0 0
\(940\) 3.97786e12 0.166178
\(941\) 8.20908e12 0.341304 0.170652 0.985331i \(-0.445413\pi\)
0.170652 + 0.985331i \(0.445413\pi\)
\(942\) 0 0
\(943\) −1.09515e13 −0.450994
\(944\) −1.05558e13 −0.432630
\(945\) 0 0
\(946\) −3.02103e13 −1.22644
\(947\) 3.59289e13 1.45167 0.725837 0.687867i \(-0.241453\pi\)
0.725837 + 0.687867i \(0.241453\pi\)
\(948\) 0 0
\(949\) −1.05453e13 −0.422048
\(950\) −1.09113e12 −0.0434630
\(951\) 0 0
\(952\) 1.30021e12 0.0513037
\(953\) −3.90153e13 −1.53221 −0.766103 0.642717i \(-0.777807\pi\)
−0.766103 + 0.642717i \(0.777807\pi\)
\(954\) 0 0
\(955\) −1.27759e13 −0.497023
\(956\) 2.39039e13 0.925566
\(957\) 0 0
\(958\) −6.39509e13 −2.45303
\(959\) −1.06158e13 −0.405291
\(960\) 0 0
\(961\) −1.68277e13 −0.636456
\(962\) −5.72687e13 −2.15590
\(963\) 0 0
\(964\) −1.03001e13 −0.384147
\(965\) −1.54151e13 −0.572234
\(966\) 0 0
\(967\) −3.06022e12 −0.112547 −0.0562735 0.998415i \(-0.517922\pi\)
−0.0562735 + 0.998415i \(0.517922\pi\)
\(968\) 6.48067e11 0.0237236
\(969\) 0 0
\(970\) 1.23801e13 0.449004
\(971\) 2.82554e12 0.102004 0.0510018 0.998699i \(-0.483759\pi\)
0.0510018 + 0.998699i \(0.483759\pi\)
\(972\) 0 0
\(973\) 8.97211e12 0.320912
\(974\) −2.68510e13 −0.955972
\(975\) 0 0
\(976\) 2.72566e13 0.961494
\(977\) 4.75492e12 0.166962 0.0834810 0.996509i \(-0.473396\pi\)
0.0834810 + 0.996509i \(0.473396\pi\)
\(978\) 0 0
\(979\) −2.28550e13 −0.795170
\(980\) 1.60164e12 0.0554686
\(981\) 0 0
\(982\) −1.73906e13 −0.596778
\(983\) −6.98713e12 −0.238676 −0.119338 0.992854i \(-0.538077\pi\)
−0.119338 + 0.992854i \(0.538077\pi\)
\(984\) 0 0
\(985\) 2.35001e13 0.795440
\(986\) −1.76985e13 −0.596334
\(987\) 0 0
\(988\) −5.21612e12 −0.174157
\(989\) −1.42138e13 −0.472420
\(990\) 0 0
\(991\) 2.88898e13 0.951508 0.475754 0.879578i \(-0.342175\pi\)
0.475754 + 0.879578i \(0.342175\pi\)
\(992\) 2.46994e13 0.809813
\(993\) 0 0
\(994\) −1.42869e13 −0.464195
\(995\) 7.04337e12 0.227812
\(996\) 0 0
\(997\) −6.04428e13 −1.93739 −0.968694 0.248257i \(-0.920142\pi\)
−0.968694 + 0.248257i \(0.920142\pi\)
\(998\) −3.50265e13 −1.11766
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.e.1.1 4
3.2 odd 2 105.10.a.d.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.d.1.4 4 3.2 odd 2
315.10.a.e.1.1 4 1.1 even 1 trivial