Properties

Label 315.10.a.e.1.3
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1253x^{2} - 1039x + 42996 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.50890\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.50890 q^{2} -439.599 q^{4} +625.000 q^{5} +2401.00 q^{7} -8097.06 q^{8} +5318.06 q^{10} +84700.6 q^{11} +189194. q^{13} +20429.9 q^{14} +156177. q^{16} +238796. q^{17} +621510. q^{19} -274749. q^{20} +720709. q^{22} +211156. q^{23} +390625. q^{25} +1.60983e6 q^{26} -1.05548e6 q^{28} -3.28769e6 q^{29} -7.79081e6 q^{31} +5.47459e6 q^{32} +2.03189e6 q^{34} +1.50062e6 q^{35} -8.19742e6 q^{37} +5.28836e6 q^{38} -5.06066e6 q^{40} -1.82676e7 q^{41} +8.54852e6 q^{43} -3.72343e7 q^{44} +1.79671e6 q^{46} +2.44728e7 q^{47} +5.76480e6 q^{49} +3.32379e6 q^{50} -8.31693e7 q^{52} +3.12652e7 q^{53} +5.29379e7 q^{55} -1.94410e7 q^{56} -2.79746e7 q^{58} +1.53039e8 q^{59} +9.34546e7 q^{61} -6.62913e7 q^{62} -3.33800e7 q^{64} +1.18246e8 q^{65} -2.45728e6 q^{67} -1.04974e8 q^{68} +1.27687e7 q^{70} +2.39479e8 q^{71} -3.22135e8 q^{73} -6.97510e7 q^{74} -2.73215e8 q^{76} +2.03366e8 q^{77} -6.41950e8 q^{79} +9.76108e7 q^{80} -1.55437e8 q^{82} +7.07851e8 q^{83} +1.49247e8 q^{85} +7.27385e7 q^{86} -6.85826e8 q^{88} -3.67866e8 q^{89} +4.54254e8 q^{91} -9.28240e7 q^{92} +2.08236e8 q^{94} +3.88443e8 q^{95} -5.71196e8 q^{97} +4.90521e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 13 q^{2} + 501 q^{4} + 2500 q^{5} + 9604 q^{7} + 16263 q^{8} + 8125 q^{10} + 87062 q^{11} + 39494 q^{13} + 31213 q^{14} + 328849 q^{16} + 291756 q^{17} + 50482 q^{19} + 313125 q^{20} - 1003016 q^{22}+ \cdots + 74942413 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.50890 0.376044 0.188022 0.982165i \(-0.439792\pi\)
0.188022 + 0.982165i \(0.439792\pi\)
\(3\) 0 0
\(4\) −439.599 −0.858591
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) −8097.06 −0.698912
\(9\) 0 0
\(10\) 5318.06 0.168172
\(11\) 84700.6 1.74429 0.872146 0.489245i \(-0.162728\pi\)
0.872146 + 0.489245i \(0.162728\pi\)
\(12\) 0 0
\(13\) 189194. 1.83722 0.918611 0.395163i \(-0.129312\pi\)
0.918611 + 0.395163i \(0.129312\pi\)
\(14\) 20429.9 0.142131
\(15\) 0 0
\(16\) 156177. 0.595769
\(17\) 238796. 0.693435 0.346718 0.937970i \(-0.387296\pi\)
0.346718 + 0.937970i \(0.387296\pi\)
\(18\) 0 0
\(19\) 621510. 1.09410 0.547049 0.837100i \(-0.315751\pi\)
0.547049 + 0.837100i \(0.315751\pi\)
\(20\) −274749. −0.383974
\(21\) 0 0
\(22\) 720709. 0.655931
\(23\) 211156. 0.157336 0.0786681 0.996901i \(-0.474933\pi\)
0.0786681 + 0.996901i \(0.474933\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) 1.60983e6 0.690876
\(27\) 0 0
\(28\) −1.05548e6 −0.324517
\(29\) −3.28769e6 −0.863176 −0.431588 0.902071i \(-0.642047\pi\)
−0.431588 + 0.902071i \(0.642047\pi\)
\(30\) 0 0
\(31\) −7.79081e6 −1.51515 −0.757574 0.652749i \(-0.773616\pi\)
−0.757574 + 0.652749i \(0.773616\pi\)
\(32\) 5.47459e6 0.922947
\(33\) 0 0
\(34\) 2.03189e6 0.260762
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) −8.19742e6 −0.719067 −0.359533 0.933132i \(-0.617064\pi\)
−0.359533 + 0.933132i \(0.617064\pi\)
\(38\) 5.28836e6 0.411429
\(39\) 0 0
\(40\) −5.06066e6 −0.312563
\(41\) −1.82676e7 −1.00961 −0.504805 0.863233i \(-0.668436\pi\)
−0.504805 + 0.863233i \(0.668436\pi\)
\(42\) 0 0
\(43\) 8.54852e6 0.381314 0.190657 0.981657i \(-0.438938\pi\)
0.190657 + 0.981657i \(0.438938\pi\)
\(44\) −3.72343e7 −1.49763
\(45\) 0 0
\(46\) 1.79671e6 0.0591653
\(47\) 2.44728e7 0.731548 0.365774 0.930704i \(-0.380804\pi\)
0.365774 + 0.930704i \(0.380804\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 3.32379e6 0.0752088
\(51\) 0 0
\(52\) −8.31693e7 −1.57742
\(53\) 3.12652e7 0.544276 0.272138 0.962258i \(-0.412269\pi\)
0.272138 + 0.962258i \(0.412269\pi\)
\(54\) 0 0
\(55\) 5.29379e7 0.780071
\(56\) −1.94410e7 −0.264164
\(57\) 0 0
\(58\) −2.79746e7 −0.324592
\(59\) 1.53039e8 1.64426 0.822128 0.569303i \(-0.192787\pi\)
0.822128 + 0.569303i \(0.192787\pi\)
\(60\) 0 0
\(61\) 9.34546e7 0.864204 0.432102 0.901825i \(-0.357772\pi\)
0.432102 + 0.901825i \(0.357772\pi\)
\(62\) −6.62913e7 −0.569762
\(63\) 0 0
\(64\) −3.33800e7 −0.248701
\(65\) 1.18246e8 0.821631
\(66\) 0 0
\(67\) −2.45728e6 −0.0148976 −0.00744881 0.999972i \(-0.502371\pi\)
−0.00744881 + 0.999972i \(0.502371\pi\)
\(68\) −1.04974e8 −0.595377
\(69\) 0 0
\(70\) 1.27687e7 0.0635630
\(71\) 2.39479e8 1.11842 0.559211 0.829026i \(-0.311104\pi\)
0.559211 + 0.829026i \(0.311104\pi\)
\(72\) 0 0
\(73\) −3.22135e8 −1.32765 −0.663827 0.747886i \(-0.731069\pi\)
−0.663827 + 0.747886i \(0.731069\pi\)
\(74\) −6.97510e7 −0.270401
\(75\) 0 0
\(76\) −2.73215e8 −0.939383
\(77\) 2.03366e8 0.659281
\(78\) 0 0
\(79\) −6.41950e8 −1.85430 −0.927149 0.374693i \(-0.877748\pi\)
−0.927149 + 0.374693i \(0.877748\pi\)
\(80\) 9.76108e7 0.266436
\(81\) 0 0
\(82\) −1.55437e8 −0.379658
\(83\) 7.07851e8 1.63716 0.818579 0.574394i \(-0.194762\pi\)
0.818579 + 0.574394i \(0.194762\pi\)
\(84\) 0 0
\(85\) 1.49247e8 0.310114
\(86\) 7.27385e7 0.143391
\(87\) 0 0
\(88\) −6.85826e8 −1.21911
\(89\) −3.67866e8 −0.621490 −0.310745 0.950493i \(-0.600579\pi\)
−0.310745 + 0.950493i \(0.600579\pi\)
\(90\) 0 0
\(91\) 4.54254e8 0.694405
\(92\) −9.28240e7 −0.135087
\(93\) 0 0
\(94\) 2.08236e8 0.275094
\(95\) 3.88443e8 0.489296
\(96\) 0 0
\(97\) −5.71196e8 −0.655107 −0.327553 0.944833i \(-0.606224\pi\)
−0.327553 + 0.944833i \(0.606224\pi\)
\(98\) 4.90521e7 0.0537206
\(99\) 0 0
\(100\) −1.71718e8 −0.171718
\(101\) −1.64426e8 −0.157226 −0.0786131 0.996905i \(-0.525049\pi\)
−0.0786131 + 0.996905i \(0.525049\pi\)
\(102\) 0 0
\(103\) −4.33218e8 −0.379262 −0.189631 0.981855i \(-0.560729\pi\)
−0.189631 + 0.981855i \(0.560729\pi\)
\(104\) −1.53191e9 −1.28406
\(105\) 0 0
\(106\) 2.66032e8 0.204672
\(107\) 1.12984e9 0.833280 0.416640 0.909072i \(-0.363208\pi\)
0.416640 + 0.909072i \(0.363208\pi\)
\(108\) 0 0
\(109\) 1.28549e9 0.872268 0.436134 0.899882i \(-0.356347\pi\)
0.436134 + 0.899882i \(0.356347\pi\)
\(110\) 4.50443e8 0.293341
\(111\) 0 0
\(112\) 3.74982e8 0.225180
\(113\) 1.13778e9 0.656456 0.328228 0.944598i \(-0.393549\pi\)
0.328228 + 0.944598i \(0.393549\pi\)
\(114\) 0 0
\(115\) 1.31973e8 0.0703629
\(116\) 1.44526e9 0.741115
\(117\) 0 0
\(118\) 1.30220e9 0.618313
\(119\) 5.73348e8 0.262094
\(120\) 0 0
\(121\) 4.81624e9 2.04256
\(122\) 7.95196e8 0.324979
\(123\) 0 0
\(124\) 3.42483e9 1.30089
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 2.72140e8 0.0928273 0.0464136 0.998922i \(-0.485221\pi\)
0.0464136 + 0.998922i \(0.485221\pi\)
\(128\) −3.08702e9 −1.01647
\(129\) 0 0
\(130\) 1.00614e9 0.308969
\(131\) 3.49321e9 1.03634 0.518172 0.855276i \(-0.326613\pi\)
0.518172 + 0.855276i \(0.326613\pi\)
\(132\) 0 0
\(133\) 1.49224e9 0.413531
\(134\) −2.09087e7 −0.00560216
\(135\) 0 0
\(136\) −1.93354e9 −0.484650
\(137\) −1.58837e9 −0.385219 −0.192610 0.981275i \(-0.561695\pi\)
−0.192610 + 0.981275i \(0.561695\pi\)
\(138\) 0 0
\(139\) −6.80759e9 −1.54677 −0.773387 0.633934i \(-0.781439\pi\)
−0.773387 + 0.633934i \(0.781439\pi\)
\(140\) −6.59673e8 −0.145128
\(141\) 0 0
\(142\) 2.03771e9 0.420576
\(143\) 1.60248e10 3.20465
\(144\) 0 0
\(145\) −2.05480e9 −0.386024
\(146\) −2.74101e9 −0.499256
\(147\) 0 0
\(148\) 3.60357e9 0.617384
\(149\) −5.22131e9 −0.867843 −0.433922 0.900951i \(-0.642871\pi\)
−0.433922 + 0.900951i \(0.642871\pi\)
\(150\) 0 0
\(151\) 7.29225e9 1.14147 0.570736 0.821134i \(-0.306658\pi\)
0.570736 + 0.821134i \(0.306658\pi\)
\(152\) −5.03240e9 −0.764679
\(153\) 0 0
\(154\) 1.73042e9 0.247919
\(155\) −4.86926e9 −0.677595
\(156\) 0 0
\(157\) −1.17911e9 −0.154884 −0.0774420 0.996997i \(-0.524675\pi\)
−0.0774420 + 0.996997i \(0.524675\pi\)
\(158\) −5.46229e9 −0.697298
\(159\) 0 0
\(160\) 3.42162e9 0.412755
\(161\) 5.06986e8 0.0594675
\(162\) 0 0
\(163\) −3.90232e9 −0.432991 −0.216495 0.976284i \(-0.569463\pi\)
−0.216495 + 0.976284i \(0.569463\pi\)
\(164\) 8.03040e9 0.866842
\(165\) 0 0
\(166\) 6.02304e9 0.615643
\(167\) −1.75237e10 −1.74342 −0.871708 0.490027i \(-0.836987\pi\)
−0.871708 + 0.490027i \(0.836987\pi\)
\(168\) 0 0
\(169\) 2.51898e10 2.37538
\(170\) 1.26993e9 0.116616
\(171\) 0 0
\(172\) −3.75792e9 −0.327393
\(173\) 1.31696e10 1.11780 0.558902 0.829234i \(-0.311223\pi\)
0.558902 + 0.829234i \(0.311223\pi\)
\(174\) 0 0
\(175\) 9.37891e8 0.0755929
\(176\) 1.32283e10 1.03920
\(177\) 0 0
\(178\) −3.13013e9 −0.233708
\(179\) −8.29958e9 −0.604251 −0.302126 0.953268i \(-0.597696\pi\)
−0.302126 + 0.953268i \(0.597696\pi\)
\(180\) 0 0
\(181\) −2.35265e10 −1.62931 −0.814654 0.579948i \(-0.803073\pi\)
−0.814654 + 0.579948i \(0.803073\pi\)
\(182\) 3.86520e9 0.261127
\(183\) 0 0
\(184\) −1.70975e9 −0.109964
\(185\) −5.12338e9 −0.321576
\(186\) 0 0
\(187\) 2.02261e10 1.20955
\(188\) −1.07582e10 −0.628100
\(189\) 0 0
\(190\) 3.30523e9 0.183997
\(191\) −1.46919e10 −0.798779 −0.399389 0.916781i \(-0.630778\pi\)
−0.399389 + 0.916781i \(0.630778\pi\)
\(192\) 0 0
\(193\) 1.81312e10 0.940631 0.470316 0.882498i \(-0.344140\pi\)
0.470316 + 0.882498i \(0.344140\pi\)
\(194\) −4.86025e9 −0.246349
\(195\) 0 0
\(196\) −2.53420e9 −0.122656
\(197\) 7.70706e9 0.364578 0.182289 0.983245i \(-0.441649\pi\)
0.182289 + 0.983245i \(0.441649\pi\)
\(198\) 0 0
\(199\) 3.03335e10 1.37115 0.685573 0.728004i \(-0.259552\pi\)
0.685573 + 0.728004i \(0.259552\pi\)
\(200\) −3.16291e9 −0.139782
\(201\) 0 0
\(202\) −1.39909e9 −0.0591240
\(203\) −7.89373e9 −0.326250
\(204\) 0 0
\(205\) −1.14172e10 −0.451511
\(206\) −3.68621e9 −0.142619
\(207\) 0 0
\(208\) 2.95478e10 1.09456
\(209\) 5.26422e10 1.90843
\(210\) 0 0
\(211\) −3.92883e10 −1.36456 −0.682279 0.731092i \(-0.739011\pi\)
−0.682279 + 0.731092i \(0.739011\pi\)
\(212\) −1.37441e10 −0.467311
\(213\) 0 0
\(214\) 9.61372e9 0.313350
\(215\) 5.34282e9 0.170529
\(216\) 0 0
\(217\) −1.87057e10 −0.572672
\(218\) 1.09381e10 0.328011
\(219\) 0 0
\(220\) −2.32714e10 −0.669762
\(221\) 4.51786e10 1.27399
\(222\) 0 0
\(223\) 6.57832e10 1.78133 0.890663 0.454664i \(-0.150241\pi\)
0.890663 + 0.454664i \(0.150241\pi\)
\(224\) 1.31445e10 0.348841
\(225\) 0 0
\(226\) 9.68127e9 0.246856
\(227\) −1.71346e10 −0.428310 −0.214155 0.976800i \(-0.568700\pi\)
−0.214155 + 0.976800i \(0.568700\pi\)
\(228\) 0 0
\(229\) −6.28548e10 −1.51035 −0.755177 0.655521i \(-0.772449\pi\)
−0.755177 + 0.655521i \(0.772449\pi\)
\(230\) 1.12294e9 0.0264595
\(231\) 0 0
\(232\) 2.66206e10 0.603284
\(233\) 7.49874e9 0.166681 0.0833406 0.996521i \(-0.473441\pi\)
0.0833406 + 0.996521i \(0.473441\pi\)
\(234\) 0 0
\(235\) 1.52955e10 0.327158
\(236\) −6.72759e10 −1.41174
\(237\) 0 0
\(238\) 4.87856e9 0.0985589
\(239\) −1.17440e10 −0.232823 −0.116412 0.993201i \(-0.537139\pi\)
−0.116412 + 0.993201i \(0.537139\pi\)
\(240\) 0 0
\(241\) 7.32711e9 0.139912 0.0699562 0.997550i \(-0.477714\pi\)
0.0699562 + 0.997550i \(0.477714\pi\)
\(242\) 4.09809e10 0.768091
\(243\) 0 0
\(244\) −4.10825e10 −0.741998
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) 1.17586e11 2.01010
\(248\) 6.30827e10 1.05896
\(249\) 0 0
\(250\) 2.07737e9 0.0336344
\(251\) 1.01275e11 1.61053 0.805265 0.592915i \(-0.202023\pi\)
0.805265 + 0.592915i \(0.202023\pi\)
\(252\) 0 0
\(253\) 1.78851e10 0.274440
\(254\) 2.31561e9 0.0349071
\(255\) 0 0
\(256\) −9.17658e9 −0.133537
\(257\) −1.90121e10 −0.271851 −0.135925 0.990719i \(-0.543401\pi\)
−0.135925 + 0.990719i \(0.543401\pi\)
\(258\) 0 0
\(259\) −1.96820e10 −0.271782
\(260\) −5.19808e10 −0.705445
\(261\) 0 0
\(262\) 2.97234e10 0.389711
\(263\) 8.69752e10 1.12097 0.560486 0.828164i \(-0.310615\pi\)
0.560486 + 0.828164i \(0.310615\pi\)
\(264\) 0 0
\(265\) 1.95407e10 0.243408
\(266\) 1.26974e10 0.155506
\(267\) 0 0
\(268\) 1.08021e9 0.0127910
\(269\) −4.30691e10 −0.501511 −0.250756 0.968050i \(-0.580679\pi\)
−0.250756 + 0.968050i \(0.580679\pi\)
\(270\) 0 0
\(271\) −2.87351e10 −0.323632 −0.161816 0.986821i \(-0.551735\pi\)
−0.161816 + 0.986821i \(0.551735\pi\)
\(272\) 3.72945e10 0.413128
\(273\) 0 0
\(274\) −1.35153e10 −0.144859
\(275\) 3.30862e10 0.348859
\(276\) 0 0
\(277\) 1.04061e11 1.06201 0.531005 0.847369i \(-0.321815\pi\)
0.531005 + 0.847369i \(0.321815\pi\)
\(278\) −5.79252e10 −0.581655
\(279\) 0 0
\(280\) −1.21507e10 −0.118138
\(281\) 1.41171e11 1.35072 0.675361 0.737487i \(-0.263988\pi\)
0.675361 + 0.737487i \(0.263988\pi\)
\(282\) 0 0
\(283\) −1.59424e11 −1.47746 −0.738728 0.674003i \(-0.764573\pi\)
−0.738728 + 0.674003i \(0.764573\pi\)
\(284\) −1.05275e11 −0.960266
\(285\) 0 0
\(286\) 1.36354e11 1.20509
\(287\) −4.38605e10 −0.381597
\(288\) 0 0
\(289\) −6.15646e10 −0.519147
\(290\) −1.74841e10 −0.145162
\(291\) 0 0
\(292\) 1.41610e11 1.13991
\(293\) 1.36625e11 1.08299 0.541496 0.840703i \(-0.317858\pi\)
0.541496 + 0.840703i \(0.317858\pi\)
\(294\) 0 0
\(295\) 9.56497e10 0.735334
\(296\) 6.63750e10 0.502564
\(297\) 0 0
\(298\) −4.44276e10 −0.326347
\(299\) 3.99494e10 0.289062
\(300\) 0 0
\(301\) 2.05250e10 0.144123
\(302\) 6.20491e10 0.429244
\(303\) 0 0
\(304\) 9.70657e10 0.651831
\(305\) 5.84091e10 0.386484
\(306\) 0 0
\(307\) 9.46778e10 0.608311 0.304155 0.952622i \(-0.401626\pi\)
0.304155 + 0.952622i \(0.401626\pi\)
\(308\) −8.93995e10 −0.566052
\(309\) 0 0
\(310\) −4.14321e10 −0.254806
\(311\) −3.38383e10 −0.205110 −0.102555 0.994727i \(-0.532702\pi\)
−0.102555 + 0.994727i \(0.532702\pi\)
\(312\) 0 0
\(313\) 3.57622e10 0.210608 0.105304 0.994440i \(-0.466418\pi\)
0.105304 + 0.994440i \(0.466418\pi\)
\(314\) −1.00330e10 −0.0582432
\(315\) 0 0
\(316\) 2.82200e11 1.59208
\(317\) 9.29341e10 0.516902 0.258451 0.966024i \(-0.416788\pi\)
0.258451 + 0.966024i \(0.416788\pi\)
\(318\) 0 0
\(319\) −2.78469e11 −1.50563
\(320\) −2.08625e10 −0.111222
\(321\) 0 0
\(322\) 4.31390e9 0.0223624
\(323\) 1.48414e11 0.758687
\(324\) 0 0
\(325\) 7.39038e10 0.367444
\(326\) −3.32045e10 −0.162824
\(327\) 0 0
\(328\) 1.47914e11 0.705629
\(329\) 5.87591e10 0.276499
\(330\) 0 0
\(331\) 7.12840e10 0.326412 0.163206 0.986592i \(-0.447816\pi\)
0.163206 + 0.986592i \(0.447816\pi\)
\(332\) −3.11170e11 −1.40565
\(333\) 0 0
\(334\) −1.49107e11 −0.655601
\(335\) −1.53580e9 −0.00666242
\(336\) 0 0
\(337\) −4.12351e10 −0.174153 −0.0870767 0.996202i \(-0.527753\pi\)
−0.0870767 + 0.996202i \(0.527753\pi\)
\(338\) 2.14337e11 0.893249
\(339\) 0 0
\(340\) −6.56089e10 −0.266261
\(341\) −6.59887e11 −2.64286
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) −6.92179e10 −0.266505
\(345\) 0 0
\(346\) 1.12059e11 0.420343
\(347\) 1.15561e11 0.427887 0.213944 0.976846i \(-0.431369\pi\)
0.213944 + 0.976846i \(0.431369\pi\)
\(348\) 0 0
\(349\) −1.48436e11 −0.535581 −0.267790 0.963477i \(-0.586294\pi\)
−0.267790 + 0.963477i \(0.586294\pi\)
\(350\) 7.98042e9 0.0284263
\(351\) 0 0
\(352\) 4.63701e11 1.60989
\(353\) −2.97608e11 −1.02014 −0.510068 0.860134i \(-0.670380\pi\)
−0.510068 + 0.860134i \(0.670380\pi\)
\(354\) 0 0
\(355\) 1.49675e11 0.500173
\(356\) 1.61713e11 0.533606
\(357\) 0 0
\(358\) −7.06203e10 −0.227225
\(359\) −1.05804e11 −0.336183 −0.168091 0.985771i \(-0.553760\pi\)
−0.168091 + 0.985771i \(0.553760\pi\)
\(360\) 0 0
\(361\) 6.35864e10 0.197052
\(362\) −2.00184e11 −0.612691
\(363\) 0 0
\(364\) −1.99689e11 −0.596210
\(365\) −2.01334e11 −0.593745
\(366\) 0 0
\(367\) −5.06458e11 −1.45729 −0.728645 0.684892i \(-0.759849\pi\)
−0.728645 + 0.684892i \(0.759849\pi\)
\(368\) 3.29778e10 0.0937361
\(369\) 0 0
\(370\) −4.35944e10 −0.120927
\(371\) 7.50677e10 0.205717
\(372\) 0 0
\(373\) 3.83248e11 1.02516 0.512578 0.858640i \(-0.328690\pi\)
0.512578 + 0.858640i \(0.328690\pi\)
\(374\) 1.72102e11 0.454846
\(375\) 0 0
\(376\) −1.98157e11 −0.511287
\(377\) −6.22010e11 −1.58585
\(378\) 0 0
\(379\) 2.92901e11 0.729196 0.364598 0.931165i \(-0.381206\pi\)
0.364598 + 0.931165i \(0.381206\pi\)
\(380\) −1.70759e11 −0.420105
\(381\) 0 0
\(382\) −1.25012e11 −0.300376
\(383\) 2.49849e11 0.593312 0.296656 0.954984i \(-0.404129\pi\)
0.296656 + 0.954984i \(0.404129\pi\)
\(384\) 0 0
\(385\) 1.27104e11 0.294839
\(386\) 1.54277e11 0.353719
\(387\) 0 0
\(388\) 2.51097e11 0.562469
\(389\) 5.76843e11 1.27728 0.638638 0.769508i \(-0.279498\pi\)
0.638638 + 0.769508i \(0.279498\pi\)
\(390\) 0 0
\(391\) 5.04232e10 0.109103
\(392\) −4.66779e10 −0.0998446
\(393\) 0 0
\(394\) 6.55787e10 0.137097
\(395\) −4.01219e11 −0.829267
\(396\) 0 0
\(397\) 3.17997e11 0.642489 0.321244 0.946996i \(-0.395899\pi\)
0.321244 + 0.946996i \(0.395899\pi\)
\(398\) 2.58105e11 0.515611
\(399\) 0 0
\(400\) 6.10068e10 0.119154
\(401\) 7.92446e11 1.53045 0.765227 0.643761i \(-0.222627\pi\)
0.765227 + 0.643761i \(0.222627\pi\)
\(402\) 0 0
\(403\) −1.47397e12 −2.78366
\(404\) 7.22815e10 0.134993
\(405\) 0 0
\(406\) −6.71670e10 −0.122684
\(407\) −6.94326e11 −1.25426
\(408\) 0 0
\(409\) −9.24061e11 −1.63285 −0.816424 0.577453i \(-0.804047\pi\)
−0.816424 + 0.577453i \(0.804047\pi\)
\(410\) −9.71482e10 −0.169788
\(411\) 0 0
\(412\) 1.90442e11 0.325631
\(413\) 3.67448e11 0.621470
\(414\) 0 0
\(415\) 4.42407e11 0.732159
\(416\) 1.03576e12 1.69566
\(417\) 0 0
\(418\) 4.47928e11 0.717653
\(419\) 1.25893e11 0.199543 0.0997717 0.995010i \(-0.468189\pi\)
0.0997717 + 0.995010i \(0.468189\pi\)
\(420\) 0 0
\(421\) 2.45108e11 0.380267 0.190133 0.981758i \(-0.439108\pi\)
0.190133 + 0.981758i \(0.439108\pi\)
\(422\) −3.34300e11 −0.513134
\(423\) 0 0
\(424\) −2.53156e11 −0.380401
\(425\) 9.32795e10 0.138687
\(426\) 0 0
\(427\) 2.24384e11 0.326638
\(428\) −4.96677e11 −0.715446
\(429\) 0 0
\(430\) 4.54616e10 0.0641263
\(431\) −4.05916e11 −0.566615 −0.283308 0.959029i \(-0.591432\pi\)
−0.283308 + 0.959029i \(0.591432\pi\)
\(432\) 0 0
\(433\) 1.01105e10 0.0138221 0.00691107 0.999976i \(-0.497800\pi\)
0.00691107 + 0.999976i \(0.497800\pi\)
\(434\) −1.59165e11 −0.215350
\(435\) 0 0
\(436\) −5.65100e11 −0.748922
\(437\) 1.31236e11 0.172141
\(438\) 0 0
\(439\) 9.62543e11 1.23689 0.618443 0.785830i \(-0.287764\pi\)
0.618443 + 0.785830i \(0.287764\pi\)
\(440\) −4.28641e11 −0.545201
\(441\) 0 0
\(442\) 3.84420e11 0.479078
\(443\) 1.60851e12 1.98430 0.992151 0.125048i \(-0.0399085\pi\)
0.992151 + 0.125048i \(0.0399085\pi\)
\(444\) 0 0
\(445\) −2.29916e11 −0.277939
\(446\) 5.59743e11 0.669857
\(447\) 0 0
\(448\) −8.01454e10 −0.0940000
\(449\) 3.14682e11 0.365396 0.182698 0.983169i \(-0.441517\pi\)
0.182698 + 0.983169i \(0.441517\pi\)
\(450\) 0 0
\(451\) −1.54728e12 −1.76106
\(452\) −5.00167e11 −0.563627
\(453\) 0 0
\(454\) −1.45797e11 −0.161063
\(455\) 2.83909e11 0.310547
\(456\) 0 0
\(457\) −1.81581e12 −1.94736 −0.973682 0.227909i \(-0.926811\pi\)
−0.973682 + 0.227909i \(0.926811\pi\)
\(458\) −5.34826e11 −0.567960
\(459\) 0 0
\(460\) −5.80150e10 −0.0604130
\(461\) −5.49214e11 −0.566353 −0.283177 0.959068i \(-0.591388\pi\)
−0.283177 + 0.959068i \(0.591388\pi\)
\(462\) 0 0
\(463\) 8.97351e11 0.907502 0.453751 0.891128i \(-0.350086\pi\)
0.453751 + 0.891128i \(0.350086\pi\)
\(464\) −5.13462e11 −0.514254
\(465\) 0 0
\(466\) 6.38061e10 0.0626795
\(467\) −4.77151e10 −0.0464227 −0.0232113 0.999731i \(-0.507389\pi\)
−0.0232113 + 0.999731i \(0.507389\pi\)
\(468\) 0 0
\(469\) −5.89992e9 −0.00563077
\(470\) 1.30148e11 0.123026
\(471\) 0 0
\(472\) −1.23917e12 −1.14919
\(473\) 7.24065e11 0.665123
\(474\) 0 0
\(475\) 2.42777e11 0.218820
\(476\) −2.52043e11 −0.225032
\(477\) 0 0
\(478\) −9.99288e10 −0.0875518
\(479\) 1.70191e12 1.47716 0.738579 0.674167i \(-0.235497\pi\)
0.738579 + 0.674167i \(0.235497\pi\)
\(480\) 0 0
\(481\) −1.55090e12 −1.32109
\(482\) 6.23457e10 0.0526132
\(483\) 0 0
\(484\) −2.11721e12 −1.75372
\(485\) −3.56997e11 −0.292973
\(486\) 0 0
\(487\) 1.19913e12 0.966023 0.483012 0.875614i \(-0.339543\pi\)
0.483012 + 0.875614i \(0.339543\pi\)
\(488\) −7.56707e11 −0.604003
\(489\) 0 0
\(490\) 3.06576e10 0.0240246
\(491\) −2.54813e12 −1.97859 −0.989294 0.145938i \(-0.953380\pi\)
−0.989294 + 0.145938i \(0.953380\pi\)
\(492\) 0 0
\(493\) −7.85085e11 −0.598557
\(494\) 1.00053e12 0.755887
\(495\) 0 0
\(496\) −1.21675e12 −0.902679
\(497\) 5.74990e11 0.422723
\(498\) 0 0
\(499\) −1.05425e12 −0.761189 −0.380595 0.924742i \(-0.624281\pi\)
−0.380595 + 0.924742i \(0.624281\pi\)
\(500\) −1.07324e11 −0.0767947
\(501\) 0 0
\(502\) 8.61736e11 0.605630
\(503\) 1.45930e12 1.01646 0.508230 0.861222i \(-0.330300\pi\)
0.508230 + 0.861222i \(0.330300\pi\)
\(504\) 0 0
\(505\) −1.02766e11 −0.0703137
\(506\) 1.52182e11 0.103202
\(507\) 0 0
\(508\) −1.19632e11 −0.0797007
\(509\) −1.40901e12 −0.930430 −0.465215 0.885198i \(-0.654023\pi\)
−0.465215 + 0.885198i \(0.654023\pi\)
\(510\) 0 0
\(511\) −7.73446e11 −0.501806
\(512\) 1.50247e12 0.966254
\(513\) 0 0
\(514\) −1.61772e11 −0.102228
\(515\) −2.70761e11 −0.169611
\(516\) 0 0
\(517\) 2.07286e12 1.27603
\(518\) −1.67472e11 −0.102202
\(519\) 0 0
\(520\) −9.57446e11 −0.574247
\(521\) −1.65259e12 −0.982643 −0.491321 0.870978i \(-0.663486\pi\)
−0.491321 + 0.870978i \(0.663486\pi\)
\(522\) 0 0
\(523\) −1.76435e12 −1.03116 −0.515581 0.856841i \(-0.672424\pi\)
−0.515581 + 0.856841i \(0.672424\pi\)
\(524\) −1.53561e12 −0.889795
\(525\) 0 0
\(526\) 7.40063e11 0.421534
\(527\) −1.86041e12 −1.05066
\(528\) 0 0
\(529\) −1.75657e12 −0.975245
\(530\) 1.66270e11 0.0915320
\(531\) 0 0
\(532\) −6.55988e11 −0.355054
\(533\) −3.45611e12 −1.85488
\(534\) 0 0
\(535\) 7.06151e11 0.372654
\(536\) 1.98967e10 0.0104121
\(537\) 0 0
\(538\) −3.66471e11 −0.188590
\(539\) 4.88282e11 0.249185
\(540\) 0 0
\(541\) −8.50067e11 −0.426644 −0.213322 0.976982i \(-0.568428\pi\)
−0.213322 + 0.976982i \(0.568428\pi\)
\(542\) −2.44504e11 −0.121700
\(543\) 0 0
\(544\) 1.30731e12 0.640004
\(545\) 8.03433e11 0.390090
\(546\) 0 0
\(547\) 2.05072e12 0.979407 0.489704 0.871889i \(-0.337105\pi\)
0.489704 + 0.871889i \(0.337105\pi\)
\(548\) 6.98244e11 0.330746
\(549\) 0 0
\(550\) 2.81527e11 0.131186
\(551\) −2.04333e12 −0.944400
\(552\) 0 0
\(553\) −1.54132e12 −0.700859
\(554\) 8.85444e11 0.399362
\(555\) 0 0
\(556\) 2.99261e12 1.32805
\(557\) −2.68111e12 −1.18023 −0.590115 0.807319i \(-0.700918\pi\)
−0.590115 + 0.807319i \(0.700918\pi\)
\(558\) 0 0
\(559\) 1.61733e12 0.700559
\(560\) 2.34364e11 0.100703
\(561\) 0 0
\(562\) 1.20121e12 0.507931
\(563\) −1.46222e12 −0.613374 −0.306687 0.951810i \(-0.599220\pi\)
−0.306687 + 0.951810i \(0.599220\pi\)
\(564\) 0 0
\(565\) 7.11113e11 0.293576
\(566\) −1.35652e12 −0.555589
\(567\) 0 0
\(568\) −1.93908e12 −0.781678
\(569\) −1.87869e12 −0.751364 −0.375682 0.926749i \(-0.622592\pi\)
−0.375682 + 0.926749i \(0.622592\pi\)
\(570\) 0 0
\(571\) −3.56191e12 −1.40223 −0.701117 0.713046i \(-0.747315\pi\)
−0.701117 + 0.713046i \(0.747315\pi\)
\(572\) −7.04449e12 −2.75149
\(573\) 0 0
\(574\) −3.73205e11 −0.143497
\(575\) 8.24829e10 0.0314673
\(576\) 0 0
\(577\) −3.51615e12 −1.32062 −0.660308 0.750995i \(-0.729574\pi\)
−0.660308 + 0.750995i \(0.729574\pi\)
\(578\) −5.23847e11 −0.195222
\(579\) 0 0
\(580\) 9.03289e11 0.331437
\(581\) 1.69955e12 0.618787
\(582\) 0 0
\(583\) 2.64818e12 0.949377
\(584\) 2.60835e12 0.927913
\(585\) 0 0
\(586\) 1.16253e12 0.407253
\(587\) −2.39384e12 −0.832194 −0.416097 0.909320i \(-0.636602\pi\)
−0.416097 + 0.909320i \(0.636602\pi\)
\(588\) 0 0
\(589\) −4.84207e12 −1.65772
\(590\) 8.13874e11 0.276518
\(591\) 0 0
\(592\) −1.28025e12 −0.428398
\(593\) −4.92157e12 −1.63440 −0.817198 0.576357i \(-0.804474\pi\)
−0.817198 + 0.576357i \(0.804474\pi\)
\(594\) 0 0
\(595\) 3.58343e11 0.117212
\(596\) 2.29528e12 0.745122
\(597\) 0 0
\(598\) 3.39926e11 0.108700
\(599\) 4.51212e12 1.43206 0.716028 0.698071i \(-0.245958\pi\)
0.716028 + 0.698071i \(0.245958\pi\)
\(600\) 0 0
\(601\) 4.33139e12 1.35423 0.677115 0.735877i \(-0.263230\pi\)
0.677115 + 0.735877i \(0.263230\pi\)
\(602\) 1.74645e11 0.0541967
\(603\) 0 0
\(604\) −3.20566e12 −0.980058
\(605\) 3.01015e12 0.913459
\(606\) 0 0
\(607\) −1.88763e12 −0.564376 −0.282188 0.959359i \(-0.591060\pi\)
−0.282188 + 0.959359i \(0.591060\pi\)
\(608\) 3.40251e12 1.00980
\(609\) 0 0
\(610\) 4.96998e11 0.145335
\(611\) 4.63009e12 1.34402
\(612\) 0 0
\(613\) 3.50333e12 1.00210 0.501048 0.865419i \(-0.332948\pi\)
0.501048 + 0.865419i \(0.332948\pi\)
\(614\) 8.05604e11 0.228752
\(615\) 0 0
\(616\) −1.64667e12 −0.460779
\(617\) 6.96071e12 1.93362 0.966808 0.255503i \(-0.0822410\pi\)
0.966808 + 0.255503i \(0.0822410\pi\)
\(618\) 0 0
\(619\) 4.80705e12 1.31604 0.658022 0.752998i \(-0.271393\pi\)
0.658022 + 0.752998i \(0.271393\pi\)
\(620\) 2.14052e12 0.581777
\(621\) 0 0
\(622\) −2.87927e11 −0.0771304
\(623\) −8.83246e11 −0.234901
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 3.04297e11 0.0791978
\(627\) 0 0
\(628\) 5.18336e11 0.132982
\(629\) −1.95751e12 −0.498626
\(630\) 0 0
\(631\) 4.54293e12 1.14078 0.570392 0.821372i \(-0.306791\pi\)
0.570392 + 0.821372i \(0.306791\pi\)
\(632\) 5.19791e12 1.29599
\(633\) 0 0
\(634\) 7.90768e11 0.194378
\(635\) 1.70088e11 0.0415136
\(636\) 0 0
\(637\) 1.09066e12 0.262460
\(638\) −2.36947e12 −0.566184
\(639\) 0 0
\(640\) −1.92939e12 −0.454579
\(641\) −2.57828e12 −0.603210 −0.301605 0.953433i \(-0.597522\pi\)
−0.301605 + 0.953433i \(0.597522\pi\)
\(642\) 0 0
\(643\) 5.54902e12 1.28017 0.640083 0.768305i \(-0.278900\pi\)
0.640083 + 0.768305i \(0.278900\pi\)
\(644\) −2.22870e11 −0.0510583
\(645\) 0 0
\(646\) 1.26284e12 0.285300
\(647\) −5.61451e12 −1.25963 −0.629814 0.776746i \(-0.716869\pi\)
−0.629814 + 0.776746i \(0.716869\pi\)
\(648\) 0 0
\(649\) 1.29625e13 2.86806
\(650\) 6.28840e11 0.138175
\(651\) 0 0
\(652\) 1.71545e12 0.371762
\(653\) 8.36692e12 1.80076 0.900380 0.435103i \(-0.143288\pi\)
0.900380 + 0.435103i \(0.143288\pi\)
\(654\) 0 0
\(655\) 2.18326e12 0.463467
\(656\) −2.85298e12 −0.601495
\(657\) 0 0
\(658\) 4.99976e11 0.103976
\(659\) −6.92847e12 −1.43104 −0.715522 0.698591i \(-0.753811\pi\)
−0.715522 + 0.698591i \(0.753811\pi\)
\(660\) 0 0
\(661\) 2.81659e12 0.573875 0.286937 0.957949i \(-0.407363\pi\)
0.286937 + 0.957949i \(0.407363\pi\)
\(662\) 6.06549e11 0.122745
\(663\) 0 0
\(664\) −5.73151e12 −1.14423
\(665\) 9.32653e11 0.184936
\(666\) 0 0
\(667\) −6.94216e11 −0.135809
\(668\) 7.70338e12 1.49688
\(669\) 0 0
\(670\) −1.30679e10 −0.00250536
\(671\) 7.91566e12 1.50743
\(672\) 0 0
\(673\) −1.22982e12 −0.231085 −0.115543 0.993303i \(-0.536861\pi\)
−0.115543 + 0.993303i \(0.536861\pi\)
\(674\) −3.50865e11 −0.0654893
\(675\) 0 0
\(676\) −1.10734e13 −2.03948
\(677\) −2.17691e12 −0.398283 −0.199142 0.979971i \(-0.563815\pi\)
−0.199142 + 0.979971i \(0.563815\pi\)
\(678\) 0 0
\(679\) −1.37144e12 −0.247607
\(680\) −1.20846e12 −0.216742
\(681\) 0 0
\(682\) −5.61491e12 −0.993833
\(683\) −7.73735e12 −1.36050 −0.680250 0.732980i \(-0.738129\pi\)
−0.680250 + 0.732980i \(0.738129\pi\)
\(684\) 0 0
\(685\) −9.92729e11 −0.172275
\(686\) 1.17774e11 0.0203045
\(687\) 0 0
\(688\) 1.33509e12 0.227175
\(689\) 5.91517e12 0.999956
\(690\) 0 0
\(691\) 3.42836e12 0.572051 0.286025 0.958222i \(-0.407666\pi\)
0.286025 + 0.958222i \(0.407666\pi\)
\(692\) −5.78934e12 −0.959736
\(693\) 0 0
\(694\) 9.83299e11 0.160904
\(695\) −4.25475e12 −0.691739
\(696\) 0 0
\(697\) −4.36222e12 −0.700100
\(698\) −1.26303e12 −0.201402
\(699\) 0 0
\(700\) −4.12295e11 −0.0649034
\(701\) 1.96070e12 0.306676 0.153338 0.988174i \(-0.450998\pi\)
0.153338 + 0.988174i \(0.450998\pi\)
\(702\) 0 0
\(703\) −5.09477e12 −0.786730
\(704\) −2.82731e12 −0.433807
\(705\) 0 0
\(706\) −2.53232e12 −0.383616
\(707\) −3.94787e11 −0.0594259
\(708\) 0 0
\(709\) 4.18254e12 0.621630 0.310815 0.950471i \(-0.399398\pi\)
0.310815 + 0.950471i \(0.399398\pi\)
\(710\) 1.27357e12 0.188087
\(711\) 0 0
\(712\) 2.97863e12 0.434367
\(713\) −1.64508e12 −0.238388
\(714\) 0 0
\(715\) 1.00155e13 1.43316
\(716\) 3.64848e12 0.518805
\(717\) 0 0
\(718\) −9.00272e11 −0.126419
\(719\) 5.71065e12 0.796904 0.398452 0.917189i \(-0.369548\pi\)
0.398452 + 0.917189i \(0.369548\pi\)
\(720\) 0 0
\(721\) −1.04016e12 −0.143348
\(722\) 5.41051e11 0.0741004
\(723\) 0 0
\(724\) 1.03422e13 1.39891
\(725\) −1.28425e12 −0.172635
\(726\) 0 0
\(727\) 4.83775e12 0.642301 0.321150 0.947028i \(-0.395930\pi\)
0.321150 + 0.947028i \(0.395930\pi\)
\(728\) −3.67812e12 −0.485328
\(729\) 0 0
\(730\) −1.71313e12 −0.223274
\(731\) 2.04135e12 0.264417
\(732\) 0 0
\(733\) 1.47990e13 1.89349 0.946747 0.321979i \(-0.104348\pi\)
0.946747 + 0.321979i \(0.104348\pi\)
\(734\) −4.30940e12 −0.548005
\(735\) 0 0
\(736\) 1.15599e12 0.145213
\(737\) −2.08133e11 −0.0259858
\(738\) 0 0
\(739\) −1.16451e13 −1.43629 −0.718145 0.695894i \(-0.755008\pi\)
−0.718145 + 0.695894i \(0.755008\pi\)
\(740\) 2.25223e12 0.276103
\(741\) 0 0
\(742\) 6.38744e11 0.0773587
\(743\) 7.98143e12 0.960796 0.480398 0.877051i \(-0.340492\pi\)
0.480398 + 0.877051i \(0.340492\pi\)
\(744\) 0 0
\(745\) −3.26332e12 −0.388111
\(746\) 3.26102e12 0.385504
\(747\) 0 0
\(748\) −8.89137e12 −1.03851
\(749\) 2.71275e12 0.314950
\(750\) 0 0
\(751\) −5.06543e12 −0.581081 −0.290540 0.956863i \(-0.593835\pi\)
−0.290540 + 0.956863i \(0.593835\pi\)
\(752\) 3.82209e12 0.435834
\(753\) 0 0
\(754\) −5.29262e12 −0.596348
\(755\) 4.55766e12 0.510482
\(756\) 0 0
\(757\) −5.91294e12 −0.654443 −0.327222 0.944948i \(-0.606112\pi\)
−0.327222 + 0.944948i \(0.606112\pi\)
\(758\) 2.49226e12 0.274210
\(759\) 0 0
\(760\) −3.14525e12 −0.341975
\(761\) 1.25566e13 1.35719 0.678597 0.734511i \(-0.262588\pi\)
0.678597 + 0.734511i \(0.262588\pi\)
\(762\) 0 0
\(763\) 3.08647e12 0.329686
\(764\) 6.45852e12 0.685824
\(765\) 0 0
\(766\) 2.12594e12 0.223111
\(767\) 2.89541e13 3.02086
\(768\) 0 0
\(769\) 9.85398e12 1.01612 0.508058 0.861323i \(-0.330364\pi\)
0.508058 + 0.861323i \(0.330364\pi\)
\(770\) 1.08151e12 0.110873
\(771\) 0 0
\(772\) −7.97046e12 −0.807618
\(773\) 4.10104e12 0.413130 0.206565 0.978433i \(-0.433772\pi\)
0.206565 + 0.978433i \(0.433772\pi\)
\(774\) 0 0
\(775\) −3.04329e12 −0.303030
\(776\) 4.62501e12 0.457862
\(777\) 0 0
\(778\) 4.90830e12 0.480312
\(779\) −1.13535e13 −1.10461
\(780\) 0 0
\(781\) 2.02840e13 1.95085
\(782\) 4.29046e11 0.0410273
\(783\) 0 0
\(784\) 9.00331e11 0.0851099
\(785\) −7.36945e11 −0.0692663
\(786\) 0 0
\(787\) −1.27865e13 −1.18813 −0.594067 0.804416i \(-0.702479\pi\)
−0.594067 + 0.804416i \(0.702479\pi\)
\(788\) −3.38801e12 −0.313024
\(789\) 0 0
\(790\) −3.41393e12 −0.311841
\(791\) 2.73181e12 0.248117
\(792\) 0 0
\(793\) 1.76810e13 1.58773
\(794\) 2.70580e12 0.241604
\(795\) 0 0
\(796\) −1.33346e13 −1.17725
\(797\) 6.41049e12 0.562767 0.281384 0.959595i \(-0.409207\pi\)
0.281384 + 0.959595i \(0.409207\pi\)
\(798\) 0 0
\(799\) 5.84399e12 0.507281
\(800\) 2.13851e12 0.184589
\(801\) 0 0
\(802\) 6.74285e12 0.575518
\(803\) −2.72850e13 −2.31582
\(804\) 0 0
\(805\) 3.16866e11 0.0265947
\(806\) −1.25419e13 −1.04678
\(807\) 0 0
\(808\) 1.33137e12 0.109887
\(809\) −1.89503e13 −1.55542 −0.777709 0.628624i \(-0.783618\pi\)
−0.777709 + 0.628624i \(0.783618\pi\)
\(810\) 0 0
\(811\) 8.10314e12 0.657748 0.328874 0.944374i \(-0.393331\pi\)
0.328874 + 0.944374i \(0.393331\pi\)
\(812\) 3.47007e12 0.280115
\(813\) 0 0
\(814\) −5.90795e12 −0.471658
\(815\) −2.43895e12 −0.193639
\(816\) 0 0
\(817\) 5.31299e12 0.417195
\(818\) −7.86275e12 −0.614023
\(819\) 0 0
\(820\) 5.01900e12 0.387664
\(821\) 9.43162e12 0.724506 0.362253 0.932080i \(-0.382008\pi\)
0.362253 + 0.932080i \(0.382008\pi\)
\(822\) 0 0
\(823\) −1.45042e13 −1.10204 −0.551018 0.834493i \(-0.685761\pi\)
−0.551018 + 0.834493i \(0.685761\pi\)
\(824\) 3.50779e12 0.265071
\(825\) 0 0
\(826\) 3.12658e12 0.233700
\(827\) −6.72790e12 −0.500155 −0.250077 0.968226i \(-0.580456\pi\)
−0.250077 + 0.968226i \(0.580456\pi\)
\(828\) 0 0
\(829\) 2.21097e13 1.62588 0.812940 0.582348i \(-0.197866\pi\)
0.812940 + 0.582348i \(0.197866\pi\)
\(830\) 3.76440e12 0.275324
\(831\) 0 0
\(832\) −6.31529e12 −0.456918
\(833\) 1.37661e12 0.0990622
\(834\) 0 0
\(835\) −1.09523e13 −0.779679
\(836\) −2.31414e13 −1.63856
\(837\) 0 0
\(838\) 1.07121e12 0.0750371
\(839\) −1.30193e13 −0.907106 −0.453553 0.891229i \(-0.649844\pi\)
−0.453553 + 0.891229i \(0.649844\pi\)
\(840\) 0 0
\(841\) −3.69827e12 −0.254927
\(842\) 2.08560e12 0.142997
\(843\) 0 0
\(844\) 1.72711e13 1.17160
\(845\) 1.57436e13 1.06230
\(846\) 0 0
\(847\) 1.15638e13 0.772014
\(848\) 4.88291e12 0.324263
\(849\) 0 0
\(850\) 7.93706e11 0.0521524
\(851\) −1.73094e12 −0.113135
\(852\) 0 0
\(853\) −1.56823e13 −1.01424 −0.507118 0.861877i \(-0.669289\pi\)
−0.507118 + 0.861877i \(0.669289\pi\)
\(854\) 1.90927e12 0.122830
\(855\) 0 0
\(856\) −9.14840e12 −0.582389
\(857\) 8.10782e12 0.513441 0.256720 0.966486i \(-0.417358\pi\)
0.256720 + 0.966486i \(0.417358\pi\)
\(858\) 0 0
\(859\) 2.46876e13 1.54707 0.773534 0.633754i \(-0.218487\pi\)
0.773534 + 0.633754i \(0.218487\pi\)
\(860\) −2.34870e12 −0.146415
\(861\) 0 0
\(862\) −3.45390e12 −0.213072
\(863\) −4.86143e12 −0.298343 −0.149171 0.988811i \(-0.547661\pi\)
−0.149171 + 0.988811i \(0.547661\pi\)
\(864\) 0 0
\(865\) 8.23101e12 0.499897
\(866\) 8.60289e10 0.00519773
\(867\) 0 0
\(868\) 8.22302e12 0.491691
\(869\) −5.43736e13 −3.23444
\(870\) 0 0
\(871\) −4.64901e11 −0.0273703
\(872\) −1.04087e13 −0.609639
\(873\) 0 0
\(874\) 1.11667e12 0.0647327
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) −1.97011e13 −1.12459 −0.562293 0.826938i \(-0.690081\pi\)
−0.562293 + 0.826938i \(0.690081\pi\)
\(878\) 8.19018e12 0.465123
\(879\) 0 0
\(880\) 8.26770e12 0.464743
\(881\) −1.78983e12 −0.100097 −0.0500485 0.998747i \(-0.515938\pi\)
−0.0500485 + 0.998747i \(0.515938\pi\)
\(882\) 0 0
\(883\) 2.95803e12 0.163749 0.0818747 0.996643i \(-0.473909\pi\)
0.0818747 + 0.996643i \(0.473909\pi\)
\(884\) −1.98605e13 −1.09384
\(885\) 0 0
\(886\) 1.36867e13 0.746185
\(887\) 1.15469e13 0.626341 0.313170 0.949697i \(-0.398609\pi\)
0.313170 + 0.949697i \(0.398609\pi\)
\(888\) 0 0
\(889\) 6.53408e11 0.0350854
\(890\) −1.95633e12 −0.104517
\(891\) 0 0
\(892\) −2.89182e13 −1.52943
\(893\) 1.52101e13 0.800386
\(894\) 0 0
\(895\) −5.18724e12 −0.270229
\(896\) −7.41193e12 −0.384189
\(897\) 0 0
\(898\) 2.67760e12 0.137405
\(899\) 2.56138e13 1.30784
\(900\) 0 0
\(901\) 7.46598e12 0.377420
\(902\) −1.31656e13 −0.662234
\(903\) 0 0
\(904\) −9.21268e12 −0.458805
\(905\) −1.47040e13 −0.728648
\(906\) 0 0
\(907\) −7.52299e11 −0.0369111 −0.0184556 0.999830i \(-0.505875\pi\)
−0.0184556 + 0.999830i \(0.505875\pi\)
\(908\) 7.53236e12 0.367743
\(909\) 0 0
\(910\) 2.41575e12 0.116779
\(911\) −4.17434e12 −0.200796 −0.100398 0.994947i \(-0.532012\pi\)
−0.100398 + 0.994947i \(0.532012\pi\)
\(912\) 0 0
\(913\) 5.99554e13 2.85568
\(914\) −1.54505e13 −0.732295
\(915\) 0 0
\(916\) 2.76309e13 1.29678
\(917\) 8.38720e12 0.391701
\(918\) 0 0
\(919\) −2.40098e13 −1.11037 −0.555187 0.831726i \(-0.687353\pi\)
−0.555187 + 0.831726i \(0.687353\pi\)
\(920\) −1.06859e12 −0.0491775
\(921\) 0 0
\(922\) −4.67321e12 −0.212974
\(923\) 4.53080e13 2.05479
\(924\) 0 0
\(925\) −3.20212e12 −0.143813
\(926\) 7.63547e12 0.341261
\(927\) 0 0
\(928\) −1.79987e13 −0.796666
\(929\) −1.56890e13 −0.691072 −0.345536 0.938405i \(-0.612303\pi\)
−0.345536 + 0.938405i \(0.612303\pi\)
\(930\) 0 0
\(931\) 3.58288e12 0.156300
\(932\) −3.29644e12 −0.143111
\(933\) 0 0
\(934\) −4.06003e11 −0.0174570
\(935\) 1.26413e13 0.540929
\(936\) 0 0
\(937\) 4.52860e13 1.91927 0.959635 0.281250i \(-0.0907490\pi\)
0.959635 + 0.281250i \(0.0907490\pi\)
\(938\) −5.02018e10 −0.00211742
\(939\) 0 0
\(940\) −6.72387e12 −0.280895
\(941\) 3.54407e13 1.47350 0.736748 0.676167i \(-0.236360\pi\)
0.736748 + 0.676167i \(0.236360\pi\)
\(942\) 0 0
\(943\) −3.85732e12 −0.158848
\(944\) 2.39013e13 0.979597
\(945\) 0 0
\(946\) 6.16100e12 0.250116
\(947\) −4.57200e13 −1.84727 −0.923636 0.383270i \(-0.874798\pi\)
−0.923636 + 0.383270i \(0.874798\pi\)
\(948\) 0 0
\(949\) −6.09459e13 −2.43919
\(950\) 2.06577e12 0.0822859
\(951\) 0 0
\(952\) −4.64243e12 −0.183181
\(953\) 5.29571e12 0.207973 0.103986 0.994579i \(-0.466840\pi\)
0.103986 + 0.994579i \(0.466840\pi\)
\(954\) 0 0
\(955\) −9.18241e12 −0.357225
\(956\) 5.16266e12 0.199900
\(957\) 0 0
\(958\) 1.44814e13 0.555477
\(959\) −3.81367e12 −0.145599
\(960\) 0 0
\(961\) 3.42572e13 1.29568
\(962\) −1.31965e13 −0.496786
\(963\) 0 0
\(964\) −3.22099e12 −0.120127
\(965\) 1.13320e13 0.420663
\(966\) 0 0
\(967\) −5.20855e13 −1.91557 −0.957785 0.287485i \(-0.907181\pi\)
−0.957785 + 0.287485i \(0.907181\pi\)
\(968\) −3.89974e13 −1.42757
\(969\) 0 0
\(970\) −3.03766e12 −0.110171
\(971\) 4.97025e13 1.79429 0.897143 0.441741i \(-0.145639\pi\)
0.897143 + 0.441741i \(0.145639\pi\)
\(972\) 0 0
\(973\) −1.63450e13 −0.584626
\(974\) 1.02033e13 0.363267
\(975\) 0 0
\(976\) 1.45955e13 0.514866
\(977\) −4.16458e13 −1.46233 −0.731166 0.682199i \(-0.761024\pi\)
−0.731166 + 0.682199i \(0.761024\pi\)
\(978\) 0 0
\(979\) −3.11584e13 −1.08406
\(980\) −1.58387e12 −0.0548534
\(981\) 0 0
\(982\) −2.16818e13 −0.744036
\(983\) −1.49379e13 −0.510267 −0.255134 0.966906i \(-0.582119\pi\)
−0.255134 + 0.966906i \(0.582119\pi\)
\(984\) 0 0
\(985\) 4.81691e12 0.163044
\(986\) −6.68021e12 −0.225084
\(987\) 0 0
\(988\) −5.16905e13 −1.72586
\(989\) 1.80507e12 0.0599945
\(990\) 0 0
\(991\) 3.29026e13 1.08368 0.541838 0.840483i \(-0.317729\pi\)
0.541838 + 0.840483i \(0.317729\pi\)
\(992\) −4.26515e13 −1.39840
\(993\) 0 0
\(994\) 4.89253e12 0.158963
\(995\) 1.89584e13 0.613195
\(996\) 0 0
\(997\) −1.81623e13 −0.582161 −0.291081 0.956699i \(-0.594015\pi\)
−0.291081 + 0.956699i \(0.594015\pi\)
\(998\) −8.97054e12 −0.286241
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.e.1.3 4
3.2 odd 2 105.10.a.d.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.d.1.2 4 3.2 odd 2
315.10.a.e.1.3 4 1.1 even 1 trivial