Properties

Label 315.10.b.a.251.12
Level $315$
Weight $10$
Character 315.251
Analytic conductor $162.236$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(251,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.251");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.12
Character \(\chi\) \(=\) 315.251
Dual form 315.10.b.a.251.37

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0056i q^{2} -217.303 q^{4} -625.000 q^{5} +(6343.29 + 341.079i) q^{7} -7958.48i q^{8} +16878.5i q^{10} +55883.2i q^{11} -109769. i q^{13} +(9211.04 - 171304. i) q^{14} -326183. q^{16} +280977. q^{17} +403251. i q^{19} +135814. q^{20} +1.50916e6 q^{22} -644398. i q^{23} +390625. q^{25} -2.96437e6 q^{26} +(-1.37841e6 - 74117.3i) q^{28} +3.85346e6i q^{29} -7.05000e6i q^{31} +4.73401e6i q^{32} -7.58795e6i q^{34} +(-3.96455e6 - 213174. i) q^{35} -1.31664e7 q^{37} +1.08900e7 q^{38} +4.97405e6i q^{40} -1.26870e7 q^{41} +1.72814e7 q^{43} -1.21436e7i q^{44} -1.74024e7 q^{46} +5.70134e7 q^{47} +(4.01209e7 + 4.32712e6i) q^{49} -1.05491e7i q^{50} +2.38530e7i q^{52} +7.58499e7i q^{53} -3.49270e7i q^{55} +(2.71447e6 - 5.04829e7i) q^{56} +1.04065e8 q^{58} +1.60813e8 q^{59} +1.34644e7i q^{61} -1.90390e8 q^{62} -3.91606e7 q^{64} +6.86055e7i q^{65} -8.67690e6 q^{67} -6.10570e7 q^{68} +(-5.75690e6 + 1.07065e8i) q^{70} -4.14842e8i q^{71} +2.93937e8i q^{73} +3.55566e8i q^{74} -8.76274e7i q^{76} +(-1.90606e7 + 3.54483e8i) q^{77} -5.32251e8 q^{79} +2.03864e8 q^{80} +3.42621e8i q^{82} +7.08646e8 q^{83} -1.75610e8 q^{85} -4.66694e8i q^{86} +4.44745e8 q^{88} +9.09623e8 q^{89} +(3.74398e7 - 6.96295e8i) q^{91} +1.40029e8i q^{92} -1.53968e9i q^{94} -2.52032e8i q^{95} -1.19759e9i q^{97} +(1.16857e8 - 1.08349e9i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12288 q^{4} - 30000 q^{5} + 1824 q^{7} + 442908 q^{14} + 3258948 q^{16} + 7680000 q^{20} - 2860668 q^{22} + 18750000 q^{25} - 5432976 q^{26} - 3685092 q^{28} - 1140000 q^{35} + 7750344 q^{37} + 17423136 q^{38}+ \cdots - 2546372484 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 27.0056i 1.19349i −0.802431 0.596745i \(-0.796460\pi\)
0.802431 0.596745i \(-0.203540\pi\)
\(3\) 0 0
\(4\) −217.303 −0.424419
\(5\) −625.000 −0.447214
\(6\) 0 0
\(7\) 6343.29 + 341.079i 0.998558 + 0.0536925i
\(8\) 7958.48i 0.686950i
\(9\) 0 0
\(10\) 16878.5i 0.533745i
\(11\) 55883.2i 1.15084i 0.817859 + 0.575419i \(0.195161\pi\)
−0.817859 + 0.575419i \(0.804839\pi\)
\(12\) 0 0
\(13\) 109769.i 1.06594i −0.846133 0.532972i \(-0.821075\pi\)
0.846133 0.532972i \(-0.178925\pi\)
\(14\) 9211.04 171304.i 0.0640815 1.19177i
\(15\) 0 0
\(16\) −326183. −1.24429
\(17\) 280977. 0.815925 0.407963 0.912999i \(-0.366239\pi\)
0.407963 + 0.912999i \(0.366239\pi\)
\(18\) 0 0
\(19\) 403251.i 0.709879i 0.934889 + 0.354939i \(0.115498\pi\)
−0.934889 + 0.354939i \(0.884502\pi\)
\(20\) 135814. 0.189806
\(21\) 0 0
\(22\) 1.50916e6 1.37351
\(23\) 644398.i 0.480152i −0.970754 0.240076i \(-0.922828\pi\)
0.970754 0.240076i \(-0.0771724\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −2.96437e6 −1.27219
\(27\) 0 0
\(28\) −1.37841e6 74117.3i −0.423807 0.0227881i
\(29\) 3.85346e6i 1.01172i 0.862616 + 0.505860i \(0.168825\pi\)
−0.862616 + 0.505860i \(0.831175\pi\)
\(30\) 0 0
\(31\) 7.05000e6i 1.37108i −0.728037 0.685538i \(-0.759567\pi\)
0.728037 0.685538i \(-0.240433\pi\)
\(32\) 4.73401e6i 0.798095i
\(33\) 0 0
\(34\) 7.58795e6i 0.973799i
\(35\) −3.96455e6 213174.i −0.446568 0.0240120i
\(36\) 0 0
\(37\) −1.31664e7 −1.15494 −0.577469 0.816413i \(-0.695959\pi\)
−0.577469 + 0.816413i \(0.695959\pi\)
\(38\) 1.08900e7 0.847233
\(39\) 0 0
\(40\) 4.97405e6i 0.307214i
\(41\) −1.26870e7 −0.701185 −0.350593 0.936528i \(-0.614020\pi\)
−0.350593 + 0.936528i \(0.614020\pi\)
\(42\) 0 0
\(43\) 1.72814e7 0.770851 0.385426 0.922739i \(-0.374055\pi\)
0.385426 + 0.922739i \(0.374055\pi\)
\(44\) 1.21436e7i 0.488437i
\(45\) 0 0
\(46\) −1.74024e7 −0.573057
\(47\) 5.70134e7 1.70426 0.852131 0.523328i \(-0.175310\pi\)
0.852131 + 0.523328i \(0.175310\pi\)
\(48\) 0 0
\(49\) 4.01209e7 + 4.32712e6i 0.994234 + 0.107230i
\(50\) 1.05491e7i 0.238698i
\(51\) 0 0
\(52\) 2.38530e7i 0.452406i
\(53\) 7.58499e7i 1.32043i 0.751079 + 0.660213i \(0.229534\pi\)
−0.751079 + 0.660213i \(0.770466\pi\)
\(54\) 0 0
\(55\) 3.49270e7i 0.514670i
\(56\) 2.71447e6 5.04829e7i 0.0368841 0.685959i
\(57\) 0 0
\(58\) 1.04065e8 1.20748
\(59\) 1.60813e8 1.72778 0.863889 0.503683i \(-0.168022\pi\)
0.863889 + 0.503683i \(0.168022\pi\)
\(60\) 0 0
\(61\) 1.34644e7i 0.124509i 0.998060 + 0.0622546i \(0.0198291\pi\)
−0.998060 + 0.0622546i \(0.980171\pi\)
\(62\) −1.90390e8 −1.63637
\(63\) 0 0
\(64\) −3.91606e7 −0.291769
\(65\) 6.86055e7i 0.476704i
\(66\) 0 0
\(67\) −8.67690e6 −0.0526051 −0.0263026 0.999654i \(-0.508373\pi\)
−0.0263026 + 0.999654i \(0.508373\pi\)
\(68\) −6.10570e7 −0.346294
\(69\) 0 0
\(70\) −5.75690e6 + 1.07065e8i −0.0286581 + 0.532975i
\(71\) 4.14842e8i 1.93741i −0.248223 0.968703i \(-0.579847\pi\)
0.248223 0.968703i \(-0.420153\pi\)
\(72\) 0 0
\(73\) 2.93937e8i 1.21144i 0.795679 + 0.605718i \(0.207114\pi\)
−0.795679 + 0.605718i \(0.792886\pi\)
\(74\) 3.55566e8i 1.37841i
\(75\) 0 0
\(76\) 8.76274e7i 0.301286i
\(77\) −1.90606e7 + 3.54483e8i −0.0617913 + 1.14918i
\(78\) 0 0
\(79\) −5.32251e8 −1.53743 −0.768714 0.639593i \(-0.779103\pi\)
−0.768714 + 0.639593i \(0.779103\pi\)
\(80\) 2.03864e8 0.556462
\(81\) 0 0
\(82\) 3.42621e8i 0.836858i
\(83\) 7.08646e8 1.63900 0.819498 0.573082i \(-0.194252\pi\)
0.819498 + 0.573082i \(0.194252\pi\)
\(84\) 0 0
\(85\) −1.75610e8 −0.364893
\(86\) 4.66694e8i 0.920003i
\(87\) 0 0
\(88\) 4.44745e8 0.790568
\(89\) 9.09623e8 1.53676 0.768380 0.639993i \(-0.221063\pi\)
0.768380 + 0.639993i \(0.221063\pi\)
\(90\) 0 0
\(91\) 3.74398e7 6.96295e8i 0.0572332 1.06441i
\(92\) 1.40029e8i 0.203786i
\(93\) 0 0
\(94\) 1.53968e9i 2.03402i
\(95\) 2.52032e8i 0.317467i
\(96\) 0 0
\(97\) 1.19759e9i 1.37352i −0.726883 0.686761i \(-0.759032\pi\)
0.726883 0.686761i \(-0.240968\pi\)
\(98\) 1.16857e8 1.08349e9i 0.127978 1.18661i
\(99\) 0 0
\(100\) −8.48838e7 −0.0848838
\(101\) 1.52865e9 1.46172 0.730858 0.682530i \(-0.239120\pi\)
0.730858 + 0.682530i \(0.239120\pi\)
\(102\) 0 0
\(103\) 1.53181e9i 1.34103i −0.741898 0.670513i \(-0.766074\pi\)
0.741898 0.670513i \(-0.233926\pi\)
\(104\) −8.73594e8 −0.732250
\(105\) 0 0
\(106\) 2.04837e9 1.57591
\(107\) 9.16093e8i 0.675636i 0.941211 + 0.337818i \(0.109689\pi\)
−0.941211 + 0.337818i \(0.890311\pi\)
\(108\) 0 0
\(109\) −6.73302e8 −0.456868 −0.228434 0.973559i \(-0.573361\pi\)
−0.228434 + 0.973559i \(0.573361\pi\)
\(110\) −9.43224e8 −0.614254
\(111\) 0 0
\(112\) −2.06907e9 1.11254e8i −1.24249 0.0668089i
\(113\) 5.34863e8i 0.308595i −0.988024 0.154298i \(-0.950689\pi\)
0.988024 0.154298i \(-0.0493115\pi\)
\(114\) 0 0
\(115\) 4.02749e8i 0.214731i
\(116\) 8.37367e8i 0.429393i
\(117\) 0 0
\(118\) 4.34286e9i 2.06209i
\(119\) 1.78232e9 + 9.58352e7i 0.814748 + 0.0438091i
\(120\) 0 0
\(121\) −7.64981e8 −0.324427
\(122\) 3.63613e8 0.148601
\(123\) 0 0
\(124\) 1.53198e9i 0.581911i
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) 1.27644e9 0.435396 0.217698 0.976016i \(-0.430145\pi\)
0.217698 + 0.976016i \(0.430145\pi\)
\(128\) 3.48137e9i 1.14632i
\(129\) 0 0
\(130\) 1.85273e9 0.568942
\(131\) −4.63787e9 −1.37594 −0.687968 0.725741i \(-0.741497\pi\)
−0.687968 + 0.725741i \(0.741497\pi\)
\(132\) 0 0
\(133\) −1.37540e8 + 2.55794e9i −0.0381152 + 0.708855i
\(134\) 2.34325e8i 0.0627837i
\(135\) 0 0
\(136\) 2.23615e9i 0.560500i
\(137\) 1.30313e9i 0.316042i −0.987436 0.158021i \(-0.949489\pi\)
0.987436 0.158021i \(-0.0505113\pi\)
\(138\) 0 0
\(139\) 5.56356e9i 1.26411i −0.774922 0.632056i \(-0.782211\pi\)
0.774922 0.632056i \(-0.217789\pi\)
\(140\) 8.61507e8 + 4.63233e7i 0.189532 + 0.0101912i
\(141\) 0 0
\(142\) −1.12031e10 −2.31227
\(143\) 6.13423e9 1.22673
\(144\) 0 0
\(145\) 2.40841e9i 0.452455i
\(146\) 7.93793e9 1.44584
\(147\) 0 0
\(148\) 2.86109e9 0.490177
\(149\) 5.34293e9i 0.888058i −0.896012 0.444029i \(-0.853549\pi\)
0.896012 0.444029i \(-0.146451\pi\)
\(150\) 0 0
\(151\) 7.95331e8 0.124495 0.0622475 0.998061i \(-0.480173\pi\)
0.0622475 + 0.998061i \(0.480173\pi\)
\(152\) 3.20927e9 0.487651
\(153\) 0 0
\(154\) 9.57302e9 + 5.14742e8i 1.37153 + 0.0737474i
\(155\) 4.40625e9i 0.613164i
\(156\) 0 0
\(157\) 6.81194e9i 0.894793i −0.894336 0.447396i \(-0.852351\pi\)
0.894336 0.447396i \(-0.147649\pi\)
\(158\) 1.43738e10i 1.83491i
\(159\) 0 0
\(160\) 2.95876e9i 0.356919i
\(161\) 2.19791e8 4.08760e9i 0.0257806 0.479459i
\(162\) 0 0
\(163\) 6.23408e9 0.691717 0.345858 0.938287i \(-0.387588\pi\)
0.345858 + 0.938287i \(0.387588\pi\)
\(164\) 2.75692e9 0.297596
\(165\) 0 0
\(166\) 1.91374e10i 1.95613i
\(167\) 1.21756e10 1.21134 0.605669 0.795717i \(-0.292906\pi\)
0.605669 + 0.795717i \(0.292906\pi\)
\(168\) 0 0
\(169\) −1.44470e9 −0.136235
\(170\) 4.74247e9i 0.435496i
\(171\) 0 0
\(172\) −3.75529e9 −0.327164
\(173\) −1.22845e10 −1.04268 −0.521339 0.853350i \(-0.674567\pi\)
−0.521339 + 0.853350i \(0.674567\pi\)
\(174\) 0 0
\(175\) 2.47785e9 + 1.33234e8i 0.199712 + 0.0107385i
\(176\) 1.82281e10i 1.43197i
\(177\) 0 0
\(178\) 2.45649e10i 1.83411i
\(179\) 2.34710e10i 1.70880i −0.519613 0.854402i \(-0.673924\pi\)
0.519613 0.854402i \(-0.326076\pi\)
\(180\) 0 0
\(181\) 1.97718e10i 1.36928i 0.728882 + 0.684639i \(0.240040\pi\)
−0.728882 + 0.684639i \(0.759960\pi\)
\(182\) −1.88039e10 1.01109e9i −1.27036 0.0683072i
\(183\) 0 0
\(184\) −5.12843e9 −0.329841
\(185\) 8.22898e9 0.516504
\(186\) 0 0
\(187\) 1.57019e10i 0.938997i
\(188\) −1.23892e10 −0.723321
\(189\) 0 0
\(190\) −6.80627e9 −0.378894
\(191\) 2.98816e10i 1.62463i 0.583221 + 0.812314i \(0.301792\pi\)
−0.583221 + 0.812314i \(0.698208\pi\)
\(192\) 0 0
\(193\) 5.53792e9 0.287302 0.143651 0.989628i \(-0.454116\pi\)
0.143651 + 0.989628i \(0.454116\pi\)
\(194\) −3.23417e10 −1.63928
\(195\) 0 0
\(196\) −8.71838e9 9.40294e8i −0.421972 0.0455105i
\(197\) 1.60172e9i 0.0757685i −0.999282 0.0378842i \(-0.987938\pi\)
0.999282 0.0378842i \(-0.0120618\pi\)
\(198\) 0 0
\(199\) 1.61669e10i 0.730782i −0.930854 0.365391i \(-0.880935\pi\)
0.930854 0.365391i \(-0.119065\pi\)
\(200\) 3.10878e9i 0.137390i
\(201\) 0 0
\(202\) 4.12822e10i 1.74454i
\(203\) −1.31433e9 + 2.44436e10i −0.0543218 + 1.01026i
\(204\) 0 0
\(205\) 7.92940e9 0.313580
\(206\) −4.13674e10 −1.60050
\(207\) 0 0
\(208\) 3.58047e10i 1.32634i
\(209\) −2.25349e10 −0.816955
\(210\) 0 0
\(211\) −5.11331e10 −1.77595 −0.887976 0.459890i \(-0.847889\pi\)
−0.887976 + 0.459890i \(0.847889\pi\)
\(212\) 1.64824e10i 0.560414i
\(213\) 0 0
\(214\) 2.47396e10 0.806365
\(215\) −1.08009e10 −0.344735
\(216\) 0 0
\(217\) 2.40461e9 4.47202e10i 0.0736165 1.36910i
\(218\) 1.81829e10i 0.545268i
\(219\) 0 0
\(220\) 7.58972e9i 0.218436i
\(221\) 3.08425e10i 0.869730i
\(222\) 0 0
\(223\) 1.25396e10i 0.339555i 0.985482 + 0.169777i \(0.0543049\pi\)
−0.985482 + 0.169777i \(0.945695\pi\)
\(224\) −1.61467e9 + 3.00292e10i −0.0428517 + 0.796943i
\(225\) 0 0
\(226\) −1.44443e10 −0.368306
\(227\) −5.35340e10 −1.33818 −0.669088 0.743183i \(-0.733315\pi\)
−0.669088 + 0.743183i \(0.733315\pi\)
\(228\) 0 0
\(229\) 1.05694e10i 0.253975i −0.991904 0.126987i \(-0.959469\pi\)
0.991904 0.126987i \(-0.0405308\pi\)
\(230\) 1.08765e10 0.256279
\(231\) 0 0
\(232\) 3.06677e10 0.695001
\(233\) 3.72843e10i 0.828751i −0.910106 0.414375i \(-0.864000\pi\)
0.910106 0.414375i \(-0.136000\pi\)
\(234\) 0 0
\(235\) −3.56334e10 −0.762169
\(236\) −3.49451e10 −0.733302
\(237\) 0 0
\(238\) 2.58809e9 4.81325e10i 0.0522857 0.972394i
\(239\) 1.92553e10i 0.381732i −0.981616 0.190866i \(-0.938870\pi\)
0.981616 0.190866i \(-0.0611297\pi\)
\(240\) 0 0
\(241\) 5.70917e10i 1.09018i −0.838379 0.545088i \(-0.816496\pi\)
0.838379 0.545088i \(-0.183504\pi\)
\(242\) 2.06588e10i 0.387200i
\(243\) 0 0
\(244\) 2.92584e9i 0.0528441i
\(245\) −2.50756e10 2.70445e9i −0.444635 0.0479548i
\(246\) 0 0
\(247\) 4.42644e10 0.756690
\(248\) −5.61073e10 −0.941861
\(249\) 0 0
\(250\) 6.59316e9i 0.106749i
\(251\) −1.01207e11 −1.60945 −0.804724 0.593649i \(-0.797687\pi\)
−0.804724 + 0.593649i \(0.797687\pi\)
\(252\) 0 0
\(253\) 3.60110e10 0.552577
\(254\) 3.44711e10i 0.519641i
\(255\) 0 0
\(256\) 7.39662e10 1.07635
\(257\) −5.59267e9 −0.0799687 −0.0399843 0.999200i \(-0.512731\pi\)
−0.0399843 + 0.999200i \(0.512731\pi\)
\(258\) 0 0
\(259\) −8.35181e10 4.49077e9i −1.15327 0.0620115i
\(260\) 1.49082e10i 0.202322i
\(261\) 0 0
\(262\) 1.25249e11i 1.64217i
\(263\) 7.91755e10i 1.02045i 0.860042 + 0.510223i \(0.170437\pi\)
−0.860042 + 0.510223i \(0.829563\pi\)
\(264\) 0 0
\(265\) 4.74062e10i 0.590512i
\(266\) 6.90786e10 + 3.71436e9i 0.846011 + 0.0454901i
\(267\) 0 0
\(268\) 1.88551e9 0.0223266
\(269\) −5.73315e10 −0.667587 −0.333793 0.942646i \(-0.608329\pi\)
−0.333793 + 0.942646i \(0.608329\pi\)
\(270\) 0 0
\(271\) 1.78660e10i 0.201217i 0.994926 + 0.100609i \(0.0320790\pi\)
−0.994926 + 0.100609i \(0.967921\pi\)
\(272\) −9.16497e10 −1.01525
\(273\) 0 0
\(274\) −3.51918e10 −0.377193
\(275\) 2.18294e10i 0.230167i
\(276\) 0 0
\(277\) 6.48551e10 0.661889 0.330944 0.943650i \(-0.392633\pi\)
0.330944 + 0.943650i \(0.392633\pi\)
\(278\) −1.50247e11 −1.50871
\(279\) 0 0
\(280\) −1.69654e9 + 3.15518e10i −0.0164951 + 0.306770i
\(281\) 1.91282e10i 0.183018i 0.995804 + 0.0915092i \(0.0291691\pi\)
−0.995804 + 0.0915092i \(0.970831\pi\)
\(282\) 0 0
\(283\) 1.40410e11i 1.30124i −0.759402 0.650622i \(-0.774508\pi\)
0.759402 0.650622i \(-0.225492\pi\)
\(284\) 9.01463e10i 0.822272i
\(285\) 0 0
\(286\) 1.65659e11i 1.46409i
\(287\) −8.04775e10 4.32728e9i −0.700174 0.0376484i
\(288\) 0 0
\(289\) −3.96399e10 −0.334266
\(290\) −6.50407e10 −0.540000
\(291\) 0 0
\(292\) 6.38731e10i 0.514157i
\(293\) 1.12972e11 0.895505 0.447753 0.894158i \(-0.352225\pi\)
0.447753 + 0.894158i \(0.352225\pi\)
\(294\) 0 0
\(295\) −1.00508e11 −0.772686
\(296\) 1.04784e11i 0.793384i
\(297\) 0 0
\(298\) −1.44289e11 −1.05989
\(299\) −7.07348e10 −0.511815
\(300\) 0 0
\(301\) 1.09621e11 + 5.89432e9i 0.769739 + 0.0413889i
\(302\) 2.14784e10i 0.148583i
\(303\) 0 0
\(304\) 1.31533e11i 0.883293i
\(305\) 8.41523e9i 0.0556822i
\(306\) 0 0
\(307\) 1.25030e11i 0.803323i −0.915788 0.401662i \(-0.868433\pi\)
0.915788 0.401662i \(-0.131567\pi\)
\(308\) 4.14191e9 7.70300e10i 0.0262254 0.487733i
\(309\) 0 0
\(310\) 1.18993e11 0.731805
\(311\) −7.33308e10 −0.444493 −0.222246 0.974991i \(-0.571339\pi\)
−0.222246 + 0.974991i \(0.571339\pi\)
\(312\) 0 0
\(313\) 1.99834e11i 1.17685i −0.808553 0.588423i \(-0.799749\pi\)
0.808553 0.588423i \(-0.200251\pi\)
\(314\) −1.83961e11 −1.06793
\(315\) 0 0
\(316\) 1.15660e11 0.652514
\(317\) 1.94471e11i 1.08165i −0.841135 0.540825i \(-0.818112\pi\)
0.841135 0.540825i \(-0.181888\pi\)
\(318\) 0 0
\(319\) −2.15344e11 −1.16432
\(320\) 2.44754e10 0.130483
\(321\) 0 0
\(322\) −1.10388e11 5.93558e9i −0.572230 0.0307689i
\(323\) 1.13304e11i 0.579208i
\(324\) 0 0
\(325\) 4.28785e10i 0.213189i
\(326\) 1.68355e11i 0.825557i
\(327\) 0 0
\(328\) 1.00970e11i 0.481679i
\(329\) 3.61652e11 + 1.94461e10i 1.70180 + 0.0915061i
\(330\) 0 0
\(331\) 2.67740e11 1.22599 0.612996 0.790086i \(-0.289964\pi\)
0.612996 + 0.790086i \(0.289964\pi\)
\(332\) −1.53991e11 −0.695621
\(333\) 0 0
\(334\) 3.28809e11i 1.44572i
\(335\) 5.42306e9 0.0235257
\(336\) 0 0
\(337\) 9.86386e8 0.00416593 0.00208297 0.999998i \(-0.499337\pi\)
0.00208297 + 0.999998i \(0.499337\pi\)
\(338\) 3.90150e10i 0.162595i
\(339\) 0 0
\(340\) 3.81606e10 0.154867
\(341\) 3.93977e11 1.57789
\(342\) 0 0
\(343\) 2.53023e11 + 4.11326e10i 0.987043 + 0.160458i
\(344\) 1.37534e11i 0.529536i
\(345\) 0 0
\(346\) 3.31750e11i 1.24443i
\(347\) 3.34712e11i 1.23934i 0.784864 + 0.619668i \(0.212733\pi\)
−0.784864 + 0.619668i \(0.787267\pi\)
\(348\) 0 0
\(349\) 2.62595e11i 0.947484i 0.880664 + 0.473742i \(0.157097\pi\)
−0.880664 + 0.473742i \(0.842903\pi\)
\(350\) 3.59806e9 6.69157e10i 0.0128163 0.238354i
\(351\) 0 0
\(352\) −2.64552e11 −0.918477
\(353\) 2.72882e10 0.0935380 0.0467690 0.998906i \(-0.485108\pi\)
0.0467690 + 0.998906i \(0.485108\pi\)
\(354\) 0 0
\(355\) 2.59277e11i 0.866434i
\(356\) −1.97663e11 −0.652230
\(357\) 0 0
\(358\) −6.33847e11 −2.03944
\(359\) 5.18365e11i 1.64706i −0.567270 0.823532i \(-0.692001\pi\)
0.567270 0.823532i \(-0.307999\pi\)
\(360\) 0 0
\(361\) 1.60076e11 0.496072
\(362\) 5.33949e11 1.63422
\(363\) 0 0
\(364\) −8.13577e9 + 1.51307e11i −0.0242908 + 0.451754i
\(365\) 1.83710e11i 0.541771i
\(366\) 0 0
\(367\) 5.01432e11i 1.44283i −0.692504 0.721414i \(-0.743492\pi\)
0.692504 0.721414i \(-0.256508\pi\)
\(368\) 2.10191e11i 0.597447i
\(369\) 0 0
\(370\) 2.22229e11i 0.616442i
\(371\) −2.58708e10 + 4.81138e11i −0.0708970 + 1.31852i
\(372\) 0 0
\(373\) −5.11137e11 −1.36725 −0.683625 0.729834i \(-0.739597\pi\)
−0.683625 + 0.729834i \(0.739597\pi\)
\(374\) 4.24039e11 1.12068
\(375\) 0 0
\(376\) 4.53740e11i 1.17074i
\(377\) 4.22990e11 1.07844
\(378\) 0 0
\(379\) 3.51354e11 0.874720 0.437360 0.899287i \(-0.355914\pi\)
0.437360 + 0.899287i \(0.355914\pi\)
\(380\) 5.47671e10i 0.134739i
\(381\) 0 0
\(382\) 8.06971e11 1.93898
\(383\) 2.35978e11 0.560373 0.280187 0.959946i \(-0.409604\pi\)
0.280187 + 0.959946i \(0.409604\pi\)
\(384\) 0 0
\(385\) 1.19129e10 2.21552e11i 0.0276339 0.513928i
\(386\) 1.49555e11i 0.342892i
\(387\) 0 0
\(388\) 2.60239e11i 0.582949i
\(389\) 2.40784e11i 0.533157i 0.963813 + 0.266578i \(0.0858931\pi\)
−0.963813 + 0.266578i \(0.914107\pi\)
\(390\) 0 0
\(391\) 1.81061e11i 0.391768i
\(392\) 3.44373e10 3.19302e11i 0.0736618 0.682990i
\(393\) 0 0
\(394\) −4.32554e10 −0.0904290
\(395\) 3.32657e11 0.687559
\(396\) 0 0
\(397\) 3.22406e11i 0.651398i 0.945474 + 0.325699i \(0.105600\pi\)
−0.945474 + 0.325699i \(0.894400\pi\)
\(398\) −4.36597e11 −0.872181
\(399\) 0 0
\(400\) −1.27415e11 −0.248858
\(401\) 2.20901e11i 0.426627i 0.976984 + 0.213314i \(0.0684256\pi\)
−0.976984 + 0.213314i \(0.931574\pi\)
\(402\) 0 0
\(403\) −7.73871e11 −1.46149
\(404\) −3.32180e11 −0.620380
\(405\) 0 0
\(406\) 6.60114e11 + 3.54944e10i 1.20574 + 0.0648325i
\(407\) 7.35779e11i 1.32914i
\(408\) 0 0
\(409\) 7.50987e11i 1.32702i −0.748167 0.663510i \(-0.769066\pi\)
0.748167 0.663510i \(-0.230934\pi\)
\(410\) 2.14138e11i 0.374254i
\(411\) 0 0
\(412\) 3.32866e11i 0.569157i
\(413\) 1.02008e12 + 5.48500e10i 1.72529 + 0.0927687i
\(414\) 0 0
\(415\) −4.42904e11 −0.732981
\(416\) 5.19647e11 0.850724
\(417\) 0 0
\(418\) 6.08570e11i 0.975028i
\(419\) 6.93260e11 1.09884 0.549419 0.835547i \(-0.314849\pi\)
0.549419 + 0.835547i \(0.314849\pi\)
\(420\) 0 0
\(421\) 3.27013e11 0.507336 0.253668 0.967291i \(-0.418363\pi\)
0.253668 + 0.967291i \(0.418363\pi\)
\(422\) 1.38088e12i 2.11958i
\(423\) 0 0
\(424\) 6.03651e11 0.907067
\(425\) 1.09757e11 0.163185
\(426\) 0 0
\(427\) −4.59241e9 + 8.54083e10i −0.00668521 + 0.124330i
\(428\) 1.99069e11i 0.286753i
\(429\) 0 0
\(430\) 2.91684e11i 0.411438i
\(431\) 1.04434e12i 1.45779i −0.684624 0.728897i \(-0.740034\pi\)
0.684624 0.728897i \(-0.259966\pi\)
\(432\) 0 0
\(433\) 3.43746e11i 0.469940i −0.972003 0.234970i \(-0.924501\pi\)
0.972003 0.234970i \(-0.0754991\pi\)
\(434\) −1.20770e12 6.49379e10i −1.63401 0.0878606i
\(435\) 0 0
\(436\) 1.46310e11 0.193903
\(437\) 2.59854e11 0.340850
\(438\) 0 0
\(439\) 9.43539e11i 1.21247i 0.795287 + 0.606233i \(0.207320\pi\)
−0.795287 + 0.606233i \(0.792680\pi\)
\(440\) −2.77966e11 −0.353553
\(441\) 0 0
\(442\) −8.32920e11 −1.03801
\(443\) 4.98440e11i 0.614888i 0.951566 + 0.307444i \(0.0994737\pi\)
−0.951566 + 0.307444i \(0.900526\pi\)
\(444\) 0 0
\(445\) −5.68514e11 −0.687260
\(446\) 3.38638e11 0.405256
\(447\) 0 0
\(448\) −2.48407e11 1.33569e10i −0.291348 0.0156658i
\(449\) 9.76815e11i 1.13424i 0.823636 + 0.567118i \(0.191942\pi\)
−0.823636 + 0.567118i \(0.808058\pi\)
\(450\) 0 0
\(451\) 7.08992e11i 0.806950i
\(452\) 1.16227e11i 0.130974i
\(453\) 0 0
\(454\) 1.44572e12i 1.59710i
\(455\) −2.33999e10 + 4.35184e11i −0.0255954 + 0.476017i
\(456\) 0 0
\(457\) 1.40246e12 1.50407 0.752036 0.659122i \(-0.229072\pi\)
0.752036 + 0.659122i \(0.229072\pi\)
\(458\) −2.85433e11 −0.303117
\(459\) 0 0
\(460\) 8.75183e10i 0.0911357i
\(461\) −5.74667e11 −0.592601 −0.296301 0.955095i \(-0.595753\pi\)
−0.296301 + 0.955095i \(0.595753\pi\)
\(462\) 0 0
\(463\) 1.67308e12 1.69201 0.846004 0.533177i \(-0.179002\pi\)
0.846004 + 0.533177i \(0.179002\pi\)
\(464\) 1.25693e12i 1.25887i
\(465\) 0 0
\(466\) −1.00688e12 −0.989106
\(467\) 4.77367e11 0.464436 0.232218 0.972664i \(-0.425402\pi\)
0.232218 + 0.972664i \(0.425402\pi\)
\(468\) 0 0
\(469\) −5.50401e10 2.95951e9i −0.0525292 0.00282450i
\(470\) 9.62301e11i 0.909642i
\(471\) 0 0
\(472\) 1.27983e12i 1.18690i
\(473\) 9.65739e11i 0.887124i
\(474\) 0 0
\(475\) 1.57520e11i 0.141976i
\(476\) −3.87302e11 2.08252e10i −0.345795 0.0185934i
\(477\) 0 0
\(478\) −5.20000e11 −0.455594
\(479\) 1.77523e11 0.154080 0.0770399 0.997028i \(-0.475453\pi\)
0.0770399 + 0.997028i \(0.475453\pi\)
\(480\) 0 0
\(481\) 1.44526e12i 1.23110i
\(482\) −1.54180e12 −1.30111
\(483\) 0 0
\(484\) 1.66232e11 0.137693
\(485\) 7.48494e11i 0.614258i
\(486\) 0 0
\(487\) 1.84300e11 0.148473 0.0742363 0.997241i \(-0.476348\pi\)
0.0742363 + 0.997241i \(0.476348\pi\)
\(488\) 1.07156e11 0.0855317
\(489\) 0 0
\(490\) −7.30353e10 + 6.77181e11i −0.0572335 + 0.530668i
\(491\) 1.51219e12i 1.17419i −0.809517 0.587097i \(-0.800271\pi\)
0.809517 0.587097i \(-0.199729\pi\)
\(492\) 0 0
\(493\) 1.08273e12i 0.825487i
\(494\) 1.19539e12i 0.903102i
\(495\) 0 0
\(496\) 2.29959e12i 1.70601i
\(497\) 1.41494e11 2.63146e12i 0.104024 1.93461i
\(498\) 0 0
\(499\) −1.09105e12 −0.787754 −0.393877 0.919163i \(-0.628866\pi\)
−0.393877 + 0.919163i \(0.628866\pi\)
\(500\) 5.30524e10 0.0379612
\(501\) 0 0
\(502\) 2.73314e12i 1.92086i
\(503\) 6.98526e11 0.486549 0.243274 0.969957i \(-0.421778\pi\)
0.243274 + 0.969957i \(0.421778\pi\)
\(504\) 0 0
\(505\) −9.55408e11 −0.653699
\(506\) 9.72499e11i 0.659495i
\(507\) 0 0
\(508\) −2.77374e11 −0.184790
\(509\) 1.13356e12 0.748537 0.374268 0.927320i \(-0.377894\pi\)
0.374268 + 0.927320i \(0.377894\pi\)
\(510\) 0 0
\(511\) −1.00256e11 + 1.86452e12i −0.0650451 + 1.20969i
\(512\) 2.15042e11i 0.138295i
\(513\) 0 0
\(514\) 1.51033e11i 0.0954418i
\(515\) 9.57381e11i 0.599725i
\(516\) 0 0
\(517\) 3.18609e12i 1.96133i
\(518\) −1.21276e11 + 2.25546e12i −0.0740101 + 1.37642i
\(519\) 0 0
\(520\) 5.45996e11 0.327472
\(521\) 2.44217e12 1.45213 0.726067 0.687624i \(-0.241346\pi\)
0.726067 + 0.687624i \(0.241346\pi\)
\(522\) 0 0
\(523\) 1.67491e11i 0.0978888i 0.998802 + 0.0489444i \(0.0155857\pi\)
−0.998802 + 0.0489444i \(0.984414\pi\)
\(524\) 1.00782e12 0.583973
\(525\) 0 0
\(526\) 2.13818e12 1.21789
\(527\) 1.98089e12i 1.11870i
\(528\) 0 0
\(529\) 1.38590e12 0.769454
\(530\) −1.28023e12 −0.704771
\(531\) 0 0
\(532\) 2.98879e10 5.55846e11i 0.0161768 0.300851i
\(533\) 1.39264e12i 0.747423i
\(534\) 0 0
\(535\) 5.72558e11i 0.302154i
\(536\) 6.90550e10i 0.0361371i
\(537\) 0 0
\(538\) 1.54827e12i 0.796758i
\(539\) −2.41813e11 + 2.24209e12i −0.123404 + 1.14420i
\(540\) 0 0
\(541\) 2.71744e12 1.36387 0.681934 0.731414i \(-0.261139\pi\)
0.681934 + 0.731414i \(0.261139\pi\)
\(542\) 4.82482e11 0.240151
\(543\) 0 0
\(544\) 1.33015e12i 0.651185i
\(545\) 4.20814e11 0.204318
\(546\) 0 0
\(547\) −2.87949e12 −1.37522 −0.687612 0.726079i \(-0.741341\pi\)
−0.687612 + 0.726079i \(0.741341\pi\)
\(548\) 2.83173e11i 0.134134i
\(549\) 0 0
\(550\) 5.89515e11 0.274703
\(551\) −1.55391e12 −0.718198
\(552\) 0 0
\(553\) −3.37622e12 1.81540e11i −1.53521 0.0825484i
\(554\) 1.75145e12i 0.789958i
\(555\) 0 0
\(556\) 1.20897e12i 0.536513i
\(557\) 1.03236e12i 0.454445i −0.973843 0.227222i \(-0.927036\pi\)
0.973843 0.227222i \(-0.0729644\pi\)
\(558\) 0 0
\(559\) 1.89696e12i 0.821683i
\(560\) 1.29317e12 + 6.95337e10i 0.555660 + 0.0298779i
\(561\) 0 0
\(562\) 5.16568e11 0.218431
\(563\) −2.08559e12 −0.874866 −0.437433 0.899251i \(-0.644112\pi\)
−0.437433 + 0.899251i \(0.644112\pi\)
\(564\) 0 0
\(565\) 3.34289e11i 0.138008i
\(566\) −3.79185e12 −1.55302
\(567\) 0 0
\(568\) −3.30152e12 −1.33090
\(569\) 4.97701e10i 0.0199051i −0.999950 0.00995253i \(-0.996832\pi\)
0.999950 0.00995253i \(-0.00316804\pi\)
\(570\) 0 0
\(571\) 2.65371e12 1.04470 0.522349 0.852732i \(-0.325056\pi\)
0.522349 + 0.852732i \(0.325056\pi\)
\(572\) −1.33298e12 −0.520646
\(573\) 0 0
\(574\) −1.16861e11 + 2.17334e12i −0.0449330 + 0.835650i
\(575\) 2.51718e11i 0.0960304i
\(576\) 0 0
\(577\) 2.78100e12i 1.04450i 0.852792 + 0.522251i \(0.174908\pi\)
−0.852792 + 0.522251i \(0.825092\pi\)
\(578\) 1.07050e12i 0.398944i
\(579\) 0 0
\(580\) 5.23354e11i 0.192030i
\(581\) 4.49514e12 + 2.41704e11i 1.63663 + 0.0880018i
\(582\) 0 0
\(583\) −4.23874e12 −1.51959
\(584\) 2.33929e12 0.832197
\(585\) 0 0
\(586\) 3.05089e12i 1.06878i
\(587\) −2.37706e12 −0.826360 −0.413180 0.910649i \(-0.635582\pi\)
−0.413180 + 0.910649i \(0.635582\pi\)
\(588\) 0 0
\(589\) 2.84292e12 0.973298
\(590\) 2.71429e12i 0.922193i
\(591\) 0 0
\(592\) 4.29464e12 1.43707
\(593\) 1.16491e12 0.386853 0.193426 0.981115i \(-0.438040\pi\)
0.193426 + 0.981115i \(0.438040\pi\)
\(594\) 0 0
\(595\) −1.11395e12 5.98970e10i −0.364366 0.0195920i
\(596\) 1.16103e12i 0.376909i
\(597\) 0 0
\(598\) 1.91024e12i 0.610846i
\(599\) 1.04441e12i 0.331474i 0.986170 + 0.165737i \(0.0530003\pi\)
−0.986170 + 0.165737i \(0.947000\pi\)
\(600\) 0 0
\(601\) 4.94098e12i 1.54482i −0.635124 0.772410i \(-0.719051\pi\)
0.635124 0.772410i \(-0.280949\pi\)
\(602\) 1.59180e11 2.96037e12i 0.0493973 0.918676i
\(603\) 0 0
\(604\) −1.72827e11 −0.0528380
\(605\) 4.78113e11 0.145088
\(606\) 0 0
\(607\) 4.32601e12i 1.29342i −0.762738 0.646708i \(-0.776145\pi\)
0.762738 0.646708i \(-0.223855\pi\)
\(608\) −1.90899e12 −0.566550
\(609\) 0 0
\(610\) −2.27258e11 −0.0664562
\(611\) 6.25829e12i 1.81665i
\(612\) 0 0
\(613\) −3.08449e12 −0.882290 −0.441145 0.897436i \(-0.645428\pi\)
−0.441145 + 0.897436i \(0.645428\pi\)
\(614\) −3.37650e12 −0.958758
\(615\) 0 0
\(616\) 2.82115e12 + 1.51693e11i 0.789428 + 0.0424476i
\(617\) 9.25749e11i 0.257164i 0.991699 + 0.128582i \(0.0410425\pi\)
−0.991699 + 0.128582i \(0.958957\pi\)
\(618\) 0 0
\(619\) 3.64418e12i 0.997682i −0.866694 0.498841i \(-0.833759\pi\)
0.866694 0.498841i \(-0.166241\pi\)
\(620\) 9.57490e11i 0.260238i
\(621\) 0 0
\(622\) 1.98034e12i 0.530498i
\(623\) 5.77000e12 + 3.10253e11i 1.53454 + 0.0825125i
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) −5.39664e12 −1.40455
\(627\) 0 0
\(628\) 1.48025e12i 0.379767i
\(629\) −3.69944e12 −0.942342
\(630\) 0 0
\(631\) 5.74499e12 1.44264 0.721319 0.692603i \(-0.243536\pi\)
0.721319 + 0.692603i \(0.243536\pi\)
\(632\) 4.23591e12i 1.05614i
\(633\) 0 0
\(634\) −5.25179e12 −1.29094
\(635\) −7.97777e11 −0.194715
\(636\) 0 0
\(637\) 4.74983e11 4.40403e12i 0.114301 1.05980i
\(638\) 5.81549e12i 1.38961i
\(639\) 0 0
\(640\) 2.17586e12i 0.512649i
\(641\) 5.23972e10i 0.0122588i 0.999981 + 0.00612939i \(0.00195106\pi\)
−0.999981 + 0.00612939i \(0.998049\pi\)
\(642\) 0 0
\(643\) 2.11895e12i 0.488846i 0.969669 + 0.244423i \(0.0785985\pi\)
−0.969669 + 0.244423i \(0.921402\pi\)
\(644\) −4.77610e10 + 8.88246e11i −0.0109418 + 0.203492i
\(645\) 0 0
\(646\) 3.05985e12 0.691279
\(647\) 7.15695e12 1.60568 0.802840 0.596195i \(-0.203321\pi\)
0.802840 + 0.596195i \(0.203321\pi\)
\(648\) 0 0
\(649\) 8.98676e12i 1.98839i
\(650\) −1.15796e12 −0.254439
\(651\) 0 0
\(652\) −1.35468e12 −0.293578
\(653\) 1.19090e12i 0.256311i 0.991754 + 0.128155i \(0.0409057\pi\)
−0.991754 + 0.128155i \(0.959094\pi\)
\(654\) 0 0
\(655\) 2.89867e12 0.615337
\(656\) 4.13829e12 0.872476
\(657\) 0 0
\(658\) 5.25153e11 9.76664e12i 0.109212 2.03109i
\(659\) 1.41037e12i 0.291306i 0.989336 + 0.145653i \(0.0465283\pi\)
−0.989336 + 0.145653i \(0.953472\pi\)
\(660\) 0 0
\(661\) 1.41937e12i 0.289193i 0.989491 + 0.144597i \(0.0461885\pi\)
−0.989491 + 0.144597i \(0.953812\pi\)
\(662\) 7.23048e12i 1.46321i
\(663\) 0 0
\(664\) 5.63975e12i 1.12591i
\(665\) 8.59627e10 1.59871e12i 0.0170456 0.317009i
\(666\) 0 0
\(667\) 2.48316e12 0.485779
\(668\) −2.64578e12 −0.514115
\(669\) 0 0
\(670\) 1.46453e11i 0.0280777i
\(671\) −7.52431e11 −0.143290
\(672\) 0 0
\(673\) −8.08652e12 −1.51948 −0.759738 0.650229i \(-0.774673\pi\)
−0.759738 + 0.650229i \(0.774673\pi\)
\(674\) 2.66380e10i 0.00497200i
\(675\) 0 0
\(676\) 3.13937e11 0.0578206
\(677\) −2.89331e12 −0.529353 −0.264677 0.964337i \(-0.585265\pi\)
−0.264677 + 0.964337i \(0.585265\pi\)
\(678\) 0 0
\(679\) 4.08473e11 7.59666e12i 0.0737478 1.37154i
\(680\) 1.39759e12i 0.250663i
\(681\) 0 0
\(682\) 1.06396e13i 1.88319i
\(683\) 1.59990e12i 0.281320i 0.990058 + 0.140660i \(0.0449224\pi\)
−0.990058 + 0.140660i \(0.955078\pi\)
\(684\) 0 0
\(685\) 8.14455e11i 0.141338i
\(686\) 1.11081e12 6.83303e12i 0.191505 1.17803i
\(687\) 0 0
\(688\) −5.63688e12 −0.959160
\(689\) 8.32596e12 1.40750
\(690\) 0 0
\(691\) 4.79904e11i 0.0800761i −0.999198 0.0400380i \(-0.987252\pi\)
0.999198 0.0400380i \(-0.0127479\pi\)
\(692\) 2.66945e12 0.442532
\(693\) 0 0
\(694\) 9.03911e12 1.47914
\(695\) 3.47722e12i 0.565328i
\(696\) 0 0
\(697\) −3.56476e12 −0.572114
\(698\) 7.09153e12 1.13081
\(699\) 0 0
\(700\) −5.38442e11 2.89521e10i −0.0847613 0.00455762i
\(701\) 4.40918e12i 0.689646i −0.938668 0.344823i \(-0.887939\pi\)
0.938668 0.344823i \(-0.112061\pi\)
\(702\) 0 0
\(703\) 5.30935e12i 0.819865i
\(704\) 2.18842e12i 0.335779i
\(705\) 0 0
\(706\) 7.36933e11i 0.111637i
\(707\) 9.69669e12 + 5.21391e11i 1.45961 + 0.0784832i
\(708\) 0 0
\(709\) 2.60735e12 0.387518 0.193759 0.981049i \(-0.437932\pi\)
0.193759 + 0.981049i \(0.437932\pi\)
\(710\) 7.00192e12 1.03408
\(711\) 0 0
\(712\) 7.23922e12i 1.05568i
\(713\) −4.54301e12 −0.658325
\(714\) 0 0
\(715\) −3.83389e12 −0.548609
\(716\) 5.10030e12i 0.725249i
\(717\) 0 0
\(718\) −1.39987e13 −1.96575
\(719\) −9.95833e10 −0.0138965 −0.00694827 0.999976i \(-0.502212\pi\)
−0.00694827 + 0.999976i \(0.502212\pi\)
\(720\) 0 0
\(721\) 5.22468e11 9.71671e12i 0.0720031 1.33909i
\(722\) 4.32296e12i 0.592058i
\(723\) 0 0
\(724\) 4.29645e12i 0.581148i
\(725\) 1.50526e12i 0.202344i
\(726\) 0 0
\(727\) 2.07918e12i 0.276049i 0.990429 + 0.138025i \(0.0440753\pi\)
−0.990429 + 0.138025i \(0.955925\pi\)
\(728\) −5.54145e12 2.97964e11i −0.731194 0.0393163i
\(729\) 0 0
\(730\) −4.96121e12 −0.646598
\(731\) 4.85567e12 0.628957
\(732\) 0 0
\(733\) 2.60457e12i 0.333249i 0.986020 + 0.166624i \(0.0532867\pi\)
−0.986020 + 0.166624i \(0.946713\pi\)
\(734\) −1.35415e13 −1.72200
\(735\) 0 0
\(736\) 3.05059e12 0.383207
\(737\) 4.84893e11i 0.0605399i
\(738\) 0 0
\(739\) −1.08275e13 −1.33545 −0.667725 0.744408i \(-0.732732\pi\)
−0.667725 + 0.744408i \(0.732732\pi\)
\(740\) −1.78818e12 −0.219214
\(741\) 0 0
\(742\) 1.29934e13 + 6.98657e11i 1.57364 + 0.0846148i
\(743\) 3.39705e12i 0.408933i 0.978874 + 0.204466i \(0.0655459\pi\)
−0.978874 + 0.204466i \(0.934454\pi\)
\(744\) 0 0
\(745\) 3.33933e12i 0.397152i
\(746\) 1.38036e13i 1.63180i
\(747\) 0 0
\(748\) 3.41206e12i 0.398528i
\(749\) −3.12460e11 + 5.81104e12i −0.0362766 + 0.674661i
\(750\) 0 0
\(751\) 1.22671e13 1.40722 0.703608 0.710588i \(-0.251571\pi\)
0.703608 + 0.710588i \(0.251571\pi\)
\(752\) −1.85968e13 −2.12059
\(753\) 0 0
\(754\) 1.14231e13i 1.28710i
\(755\) −4.97082e11 −0.0556758
\(756\) 0 0
\(757\) −2.80656e12 −0.310630 −0.155315 0.987865i \(-0.549639\pi\)
−0.155315 + 0.987865i \(0.549639\pi\)
\(758\) 9.48854e12i 1.04397i
\(759\) 0 0
\(760\) −2.00579e12 −0.218084
\(761\) −4.31887e11 −0.0466809 −0.0233404 0.999728i \(-0.507430\pi\)
−0.0233404 + 0.999728i \(0.507430\pi\)
\(762\) 0 0
\(763\) −4.27095e12 2.29649e11i −0.456209 0.0245304i
\(764\) 6.49335e12i 0.689523i
\(765\) 0 0
\(766\) 6.37273e12i 0.668800i
\(767\) 1.76523e13i 1.84171i
\(768\) 0 0
\(769\) 1.40687e13i 1.45073i 0.688365 + 0.725364i \(0.258329\pi\)
−0.688365 + 0.725364i \(0.741671\pi\)
\(770\) −5.98314e12 3.21714e11i −0.613368 0.0329808i
\(771\) 0 0
\(772\) −1.20340e12 −0.121936
\(773\) 5.29728e12 0.533636 0.266818 0.963747i \(-0.414028\pi\)
0.266818 + 0.963747i \(0.414028\pi\)
\(774\) 0 0
\(775\) 2.75391e12i 0.274215i
\(776\) −9.53100e12 −0.943541
\(777\) 0 0
\(778\) 6.50253e12 0.636318
\(779\) 5.11606e12i 0.497756i
\(780\) 0 0
\(781\) 2.31827e13 2.22964
\(782\) −4.88966e12 −0.467571
\(783\) 0 0
\(784\) −1.30867e13 1.41143e12i −1.23711 0.133425i
\(785\) 4.25746e12i 0.400163i
\(786\) 0 0
\(787\) 4.64787e12i 0.431884i 0.976406 + 0.215942i \(0.0692822\pi\)
−0.976406 + 0.215942i \(0.930718\pi\)
\(788\) 3.48058e11i 0.0321576i
\(789\) 0 0
\(790\) 8.98360e12i 0.820595i
\(791\) 1.82430e11 3.39279e12i 0.0165693 0.308150i
\(792\) 0 0
\(793\) 1.47797e12 0.132720
\(794\) 8.70677e12 0.777437
\(795\) 0 0
\(796\) 3.51311e12i 0.310158i
\(797\) −9.50187e12 −0.834155 −0.417077 0.908871i \(-0.636946\pi\)
−0.417077 + 0.908871i \(0.636946\pi\)
\(798\) 0 0
\(799\) 1.60194e13 1.39055
\(800\) 1.84922e12i 0.159619i
\(801\) 0 0
\(802\) 5.96557e12 0.509175
\(803\) −1.64261e13 −1.39417
\(804\) 0 0
\(805\) −1.37369e11 + 2.55475e12i −0.0115294 + 0.214421i
\(806\) 2.08988e13i 1.74427i
\(807\) 0 0
\(808\) 1.21658e13i 1.00413i
\(809\) 1.02505e12i 0.0841354i −0.999115 0.0420677i \(-0.986605\pi\)
0.999115 0.0420677i \(-0.0133945\pi\)
\(810\) 0 0
\(811\) 1.74059e13i 1.41287i 0.707778 + 0.706435i \(0.249698\pi\)
−0.707778 + 0.706435i \(0.750302\pi\)
\(812\) 2.85608e11 5.31166e12i 0.0230552 0.428773i
\(813\) 0 0
\(814\) −1.98701e13 −1.58632
\(815\) −3.89630e12 −0.309345
\(816\) 0 0
\(817\) 6.96873e12i 0.547211i
\(818\) −2.02809e13 −1.58379
\(819\) 0 0
\(820\) −1.72308e12 −0.133089
\(821\) 1.96970e13i 1.51306i 0.653958 + 0.756530i \(0.273107\pi\)
−0.653958 + 0.756530i \(0.726893\pi\)
\(822\) 0 0
\(823\) −1.78396e13 −1.35546 −0.677728 0.735313i \(-0.737035\pi\)
−0.677728 + 0.735313i \(0.737035\pi\)
\(824\) −1.21909e13 −0.921218
\(825\) 0 0
\(826\) 1.48126e12 2.75480e13i 0.110719 2.05911i
\(827\) 1.78314e12i 0.132559i −0.997801 0.0662796i \(-0.978887\pi\)
0.997801 0.0662796i \(-0.0211129\pi\)
\(828\) 0 0
\(829\) 1.39879e13i 1.02862i −0.857603 0.514312i \(-0.828047\pi\)
0.857603 0.514312i \(-0.171953\pi\)
\(830\) 1.19609e13i 0.874806i
\(831\) 0 0
\(832\) 4.29862e12i 0.311010i
\(833\) 1.12731e13 + 1.21582e12i 0.811221 + 0.0874917i
\(834\) 0 0
\(835\) −7.60973e12 −0.541727
\(836\) 4.89690e12 0.346731
\(837\) 0 0
\(838\) 1.87219e13i 1.31145i
\(839\) 5.75101e12 0.400696 0.200348 0.979725i \(-0.435793\pi\)
0.200348 + 0.979725i \(0.435793\pi\)
\(840\) 0 0
\(841\) −3.42021e11 −0.0235760
\(842\) 8.83119e12i 0.605501i
\(843\) 0 0
\(844\) 1.11114e13 0.753747
\(845\) 9.02939e11 0.0609261
\(846\) 0 0
\(847\) −4.85250e12 2.60919e11i −0.323959 0.0174193i
\(848\) 2.47409e13i 1.64299i
\(849\) 0 0
\(850\) 2.96404e12i 0.194760i
\(851\) 8.48438e12i 0.554545i
\(852\) 0 0
\(853\) 2.24460e13i 1.45167i 0.687868 + 0.725836i \(0.258547\pi\)
−0.687868 + 0.725836i \(0.741453\pi\)
\(854\) 2.30650e12 + 1.24021e11i 0.148386 + 0.00797874i
\(855\) 0 0
\(856\) 7.29071e12 0.464128
\(857\) 1.11334e13 0.705039 0.352520 0.935804i \(-0.385325\pi\)
0.352520 + 0.935804i \(0.385325\pi\)
\(858\) 0 0
\(859\) 1.62152e13i 1.01614i 0.861315 + 0.508071i \(0.169641\pi\)
−0.861315 + 0.508071i \(0.830359\pi\)
\(860\) 2.34705e12 0.146312
\(861\) 0 0
\(862\) −2.82031e13 −1.73986
\(863\) 1.61385e13i 0.990411i 0.868776 + 0.495205i \(0.164907\pi\)
−0.868776 + 0.495205i \(0.835093\pi\)
\(864\) 0 0
\(865\) 7.67781e12 0.466300
\(866\) −9.28307e12 −0.560868
\(867\) 0 0
\(868\) −5.22527e11 + 9.71781e12i −0.0312443 + 0.581071i
\(869\) 2.97439e13i 1.76933i
\(870\) 0 0
\(871\) 9.52453e11i 0.0560741i
\(872\) 5.35846e12i 0.313846i
\(873\) 0 0
\(874\) 7.01751e12i 0.406801i
\(875\) −1.54865e12 8.32712e10i −0.0893137 0.00480240i
\(876\) 0 0
\(877\) −1.60083e12 −0.0913793 −0.0456896 0.998956i \(-0.514549\pi\)
−0.0456896 + 0.998956i \(0.514549\pi\)
\(878\) 2.54808e13 1.44707
\(879\) 0 0
\(880\) 1.13926e13i 0.640398i
\(881\) −2.64903e13 −1.48148 −0.740738 0.671794i \(-0.765524\pi\)
−0.740738 + 0.671794i \(0.765524\pi\)
\(882\) 0 0
\(883\) 6.32750e12 0.350275 0.175137 0.984544i \(-0.443963\pi\)
0.175137 + 0.984544i \(0.443963\pi\)
\(884\) 6.70215e12i 0.369130i
\(885\) 0 0
\(886\) 1.34607e13 0.733863
\(887\) −3.33242e12 −0.180761 −0.0903803 0.995907i \(-0.528808\pi\)
−0.0903803 + 0.995907i \(0.528808\pi\)
\(888\) 0 0
\(889\) 8.09684e12 + 4.35368e11i 0.434768 + 0.0233775i
\(890\) 1.53531e13i 0.820239i
\(891\) 0 0
\(892\) 2.72488e12i 0.144114i
\(893\) 2.29907e13i 1.20982i
\(894\) 0 0
\(895\) 1.46693e13i 0.764200i
\(896\) −1.18742e12 + 2.20833e13i −0.0615487 + 1.14466i
\(897\) 0 0
\(898\) 2.63795e13 1.35370
\(899\) 2.71669e13 1.38714
\(900\) 0 0
\(901\) 2.13121e13i 1.07737i
\(902\) −1.91467e13 −0.963087
\(903\) 0 0
\(904\) −4.25670e12 −0.211990
\(905\) 1.23574e13i 0.612360i
\(906\) 0 0
\(907\) −1.52610e13 −0.748773 −0.374387 0.927273i \(-0.622147\pi\)
−0.374387 + 0.927273i \(0.622147\pi\)
\(908\) 1.16331e13 0.567947
\(909\) 0 0
\(910\) 1.17524e13 + 6.31928e11i 0.568121 + 0.0305479i
\(911\) 1.20397e13i 0.579141i 0.957157 + 0.289570i \(0.0935125\pi\)
−0.957157 + 0.289570i \(0.906488\pi\)
\(912\) 0 0
\(913\) 3.96014e13i 1.88622i
\(914\) 3.78744e13i 1.79510i
\(915\) 0 0
\(916\) 2.29676e12i 0.107792i
\(917\) −2.94193e13 1.58188e12i −1.37395 0.0738774i
\(918\) 0 0
\(919\) 1.36607e11 0.00631762 0.00315881 0.999995i \(-0.498995\pi\)
0.00315881 + 0.999995i \(0.498995\pi\)
\(920\) 3.20527e12 0.147509
\(921\) 0 0
\(922\) 1.55192e13i 0.707264i
\(923\) −4.55368e13 −2.06516
\(924\) 0 0
\(925\) −5.14311e12 −0.230987
\(926\) 4.51825e13i 2.01939i
\(927\) 0 0
\(928\) −1.82423e13 −0.807448
\(929\) −3.71234e13 −1.63522 −0.817612 0.575769i \(-0.804703\pi\)
−0.817612 + 0.575769i \(0.804703\pi\)
\(930\) 0 0
\(931\) −1.74492e12 + 1.61788e13i −0.0761204 + 0.705786i
\(932\) 8.10196e12i 0.351738i
\(933\) 0 0
\(934\) 1.28916e13i 0.554300i
\(935\) 9.81367e12i 0.419932i
\(936\) 0 0
\(937\) 1.26403e13i 0.535708i −0.963460 0.267854i \(-0.913686\pi\)
0.963460 0.267854i \(-0.0863144\pi\)
\(938\) −7.99233e10 + 1.48639e12i −0.00337101 + 0.0626931i
\(939\) 0 0
\(940\) 7.74322e12 0.323479
\(941\) 1.20085e13 0.499269 0.249634 0.968340i \(-0.419690\pi\)
0.249634 + 0.968340i \(0.419690\pi\)
\(942\) 0 0
\(943\) 8.17550e12i 0.336676i
\(944\) −5.24545e13 −2.14985
\(945\) 0 0
\(946\) 2.60803e13 1.05877
\(947\) 2.20936e13i 0.892672i −0.894865 0.446336i \(-0.852729\pi\)
0.894865 0.446336i \(-0.147271\pi\)
\(948\) 0 0
\(949\) 3.22651e13 1.29132
\(950\) 4.25392e12 0.169447
\(951\) 0 0
\(952\) 7.62703e11 1.41845e13i 0.0300947 0.559691i
\(953\) 3.66500e13i 1.43931i 0.694329 + 0.719657i \(0.255701\pi\)
−0.694329 + 0.719657i \(0.744299\pi\)
\(954\) 0 0
\(955\) 1.86760e13i 0.726555i
\(956\) 4.18422e12i 0.162014i
\(957\) 0 0
\(958\) 4.79412e12i 0.183893i
\(959\) 4.44470e11 8.26611e12i 0.0169691 0.315586i
\(960\) 0 0
\(961\) −2.32629e13 −0.879850
\(962\) 3.90300e13 1.46930
\(963\) 0 0
\(964\) 1.24062e13i 0.462691i
\(965\) −3.46120e12 −0.128485
\(966\) 0 0
\(967\) −2.44347e13 −0.898645 −0.449323 0.893370i \(-0.648335\pi\)
−0.449323 + 0.893370i \(0.648335\pi\)
\(968\) 6.08809e12i 0.222865i
\(969\) 0 0
\(970\) 2.02135e13 0.733111
\(971\) −1.63686e12 −0.0590913 −0.0295457 0.999563i \(-0.509406\pi\)
−0.0295457 + 0.999563i \(0.509406\pi\)
\(972\) 0 0
\(973\) 1.89761e12 3.52912e13i 0.0678734 1.26229i
\(974\) 4.97715e12i 0.177201i
\(975\) 0 0
\(976\) 4.39184e12i 0.154925i
\(977\) 3.85081e13i 1.35215i −0.736831 0.676077i \(-0.763679\pi\)
0.736831 0.676077i \(-0.236321\pi\)
\(978\) 0 0
\(979\) 5.08326e13i 1.76856i
\(980\) 5.44899e12 + 5.87684e11i 0.188712 + 0.0203529i
\(981\) 0 0
\(982\) −4.08376e13 −1.40139
\(983\) 2.19840e13 0.750957 0.375479 0.926831i \(-0.377478\pi\)
0.375479 + 0.926831i \(0.377478\pi\)
\(984\) 0 0
\(985\) 1.00108e12i 0.0338847i
\(986\) 2.92399e13 0.985211
\(987\) 0 0
\(988\) −9.61876e12 −0.321154
\(989\) 1.11361e13i 0.370126i
\(990\) 0 0
\(991\) −7.87267e12 −0.259293 −0.129646 0.991560i \(-0.541384\pi\)
−0.129646 + 0.991560i \(0.541384\pi\)
\(992\) 3.33748e13 1.09425
\(993\) 0 0
\(994\) −7.10643e13 3.82113e12i −2.30894 0.124152i
\(995\) 1.01043e13i 0.326815i
\(996\) 0 0
\(997\) 3.28270e13i 1.05221i 0.850419 + 0.526106i \(0.176349\pi\)
−0.850419 + 0.526106i \(0.823651\pi\)
\(998\) 2.94644e13i 0.940177i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.b.a.251.12 48
3.2 odd 2 315.10.b.b.251.37 yes 48
7.6 odd 2 315.10.b.b.251.12 yes 48
21.20 even 2 inner 315.10.b.a.251.37 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.10.b.a.251.12 48 1.1 even 1 trivial
315.10.b.a.251.37 yes 48 21.20 even 2 inner
315.10.b.b.251.12 yes 48 7.6 odd 2
315.10.b.b.251.37 yes 48 3.2 odd 2