Properties

Label 315.10.b.a.251.20
Level $315$
Weight $10$
Character 315.251
Analytic conductor $162.236$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(251,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.251");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.20
Character \(\chi\) \(=\) 315.251
Dual form 315.10.b.a.251.29

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.87231i q^{2} +414.537 q^{4} -625.000 q^{5} +(-1874.58 + 6069.56i) q^{7} -9147.07i q^{8} +6170.19i q^{10} +9091.98i q^{11} +193005. i q^{13} +(59920.6 + 18506.5i) q^{14} +121940. q^{16} +308913. q^{17} +692032. i q^{19} -259086. q^{20} +89758.8 q^{22} -1.05080e6i q^{23} +390625. q^{25} +1.90541e6 q^{26} +(-777085. + 2.51606e6i) q^{28} +1.04695e6i q^{29} -1.84445e6i q^{31} -5.88713e6i q^{32} -3.04969e6i q^{34} +(1.17161e6 - 3.79347e6i) q^{35} -1.21304e7 q^{37} +6.83195e6 q^{38} +5.71692e6i q^{40} -4.58376e6 q^{41} +1.45992e7 q^{43} +3.76897e6i q^{44} -1.03738e7 q^{46} +1.04158e7 q^{47} +(-3.33255e7 - 2.27558e7i) q^{49} -3.85637e6i q^{50} +8.00079e7i q^{52} +7.23056e7i q^{53} -5.68249e6i q^{55} +(5.55187e7 + 1.71469e7i) q^{56} +1.03358e7 q^{58} +2.66164e6 q^{59} -8.43983e7i q^{61} -1.82090e7 q^{62} +4.31393e6 q^{64} -1.20628e8i q^{65} -2.63873e8 q^{67} +1.28056e8 q^{68} +(-3.74504e7 - 1.15665e7i) q^{70} +2.96944e8i q^{71} -2.76294e8i q^{73} +1.19755e8i q^{74} +2.86873e8i q^{76} +(-5.51843e7 - 1.70437e7i) q^{77} +2.86106e7 q^{79} -7.62128e7 q^{80} +4.52523e7i q^{82} -3.83366e8 q^{83} -1.93071e8 q^{85} -1.44128e8i q^{86} +8.31649e7 q^{88} -7.43699e8 q^{89} +(-1.17146e9 - 3.61804e8i) q^{91} -4.35596e8i q^{92} -1.02828e8i q^{94} -4.32520e8i q^{95} +5.61411e8i q^{97} +(-2.24652e8 + 3.29000e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12288 q^{4} - 30000 q^{5} + 1824 q^{7} + 442908 q^{14} + 3258948 q^{16} + 7680000 q^{20} - 2860668 q^{22} + 18750000 q^{25} - 5432976 q^{26} - 3685092 q^{28} - 1140000 q^{35} + 7750344 q^{37} + 17423136 q^{38}+ \cdots - 2546372484 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.87231i 0.436299i −0.975915 0.218149i \(-0.929998\pi\)
0.975915 0.218149i \(-0.0700020\pi\)
\(3\) 0 0
\(4\) 414.537 0.809643
\(5\) −625.000 −0.447214
\(6\) 0 0
\(7\) −1874.58 + 6069.56i −0.295096 + 0.955468i
\(8\) 9147.07i 0.789545i
\(9\) 0 0
\(10\) 6170.19i 0.195119i
\(11\) 9091.98i 0.187237i 0.995608 + 0.0936184i \(0.0298434\pi\)
−0.995608 + 0.0936184i \(0.970157\pi\)
\(12\) 0 0
\(13\) 193005.i 1.87423i 0.349015 + 0.937117i \(0.386516\pi\)
−0.349015 + 0.937117i \(0.613484\pi\)
\(14\) 59920.6 + 18506.5i 0.416869 + 0.128750i
\(15\) 0 0
\(16\) 121940. 0.465166
\(17\) 308913. 0.897049 0.448525 0.893770i \(-0.351950\pi\)
0.448525 + 0.893770i \(0.351950\pi\)
\(18\) 0 0
\(19\) 692032.i 1.21825i 0.793076 + 0.609123i \(0.208478\pi\)
−0.793076 + 0.609123i \(0.791522\pi\)
\(20\) −259086. −0.362084
\(21\) 0 0
\(22\) 89758.8 0.0816912
\(23\) 1.05080e6i 0.782970i −0.920184 0.391485i \(-0.871961\pi\)
0.920184 0.391485i \(-0.128039\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) 1.90541e6 0.817726
\(27\) 0 0
\(28\) −777085. + 2.51606e6i −0.238923 + 0.773588i
\(29\) 1.04695e6i 0.274874i 0.990511 + 0.137437i \(0.0438865\pi\)
−0.990511 + 0.137437i \(0.956114\pi\)
\(30\) 0 0
\(31\) 1.84445e6i 0.358706i −0.983785 0.179353i \(-0.942600\pi\)
0.983785 0.179353i \(-0.0574004\pi\)
\(32\) 5.88713e6i 0.992496i
\(33\) 0 0
\(34\) 3.04969e6i 0.391381i
\(35\) 1.17161e6 3.79347e6i 0.131971 0.427298i
\(36\) 0 0
\(37\) −1.21304e7 −1.06406 −0.532030 0.846725i \(-0.678571\pi\)
−0.532030 + 0.846725i \(0.678571\pi\)
\(38\) 6.83195e6 0.531519
\(39\) 0 0
\(40\) 5.71692e6i 0.353095i
\(41\) −4.58376e6 −0.253335 −0.126667 0.991945i \(-0.540428\pi\)
−0.126667 + 0.991945i \(0.540428\pi\)
\(42\) 0 0
\(43\) 1.45992e7 0.651210 0.325605 0.945506i \(-0.394432\pi\)
0.325605 + 0.945506i \(0.394432\pi\)
\(44\) 3.76897e6i 0.151595i
\(45\) 0 0
\(46\) −1.03738e7 −0.341609
\(47\) 1.04158e7 0.311354 0.155677 0.987808i \(-0.450244\pi\)
0.155677 + 0.987808i \(0.450244\pi\)
\(48\) 0 0
\(49\) −3.33255e7 2.27558e7i −0.825837 0.563910i
\(50\) 3.85637e6i 0.0872597i
\(51\) 0 0
\(52\) 8.00079e7i 1.51746i
\(53\) 7.23056e7i 1.25872i 0.777112 + 0.629362i \(0.216684\pi\)
−0.777112 + 0.629362i \(0.783316\pi\)
\(54\) 0 0
\(55\) 5.68249e6i 0.0837349i
\(56\) 5.55187e7 + 1.71469e7i 0.754385 + 0.232992i
\(57\) 0 0
\(58\) 1.03358e7 0.119927
\(59\) 2.66164e6 0.0285967 0.0142983 0.999898i \(-0.495449\pi\)
0.0142983 + 0.999898i \(0.495449\pi\)
\(60\) 0 0
\(61\) 8.43983e7i 0.780458i −0.920718 0.390229i \(-0.872396\pi\)
0.920718 0.390229i \(-0.127604\pi\)
\(62\) −1.82090e7 −0.156503
\(63\) 0 0
\(64\) 4.31393e6 0.0321413
\(65\) 1.20628e8i 0.838183i
\(66\) 0 0
\(67\) −2.63873e8 −1.59977 −0.799886 0.600153i \(-0.795107\pi\)
−0.799886 + 0.600153i \(0.795107\pi\)
\(68\) 1.28056e8 0.726290
\(69\) 0 0
\(70\) −3.74504e7 1.15665e7i −0.186430 0.0575788i
\(71\) 2.96944e8i 1.38680i 0.720555 + 0.693398i \(0.243887\pi\)
−0.720555 + 0.693398i \(0.756113\pi\)
\(72\) 0 0
\(73\) 2.76294e8i 1.13872i −0.822087 0.569362i \(-0.807190\pi\)
0.822087 0.569362i \(-0.192810\pi\)
\(74\) 1.19755e8i 0.464248i
\(75\) 0 0
\(76\) 2.86873e8i 0.986345i
\(77\) −5.51843e7 1.70437e7i −0.178899 0.0552529i
\(78\) 0 0
\(79\) 2.86106e7 0.0826427 0.0413214 0.999146i \(-0.486843\pi\)
0.0413214 + 0.999146i \(0.486843\pi\)
\(80\) −7.62128e7 −0.208029
\(81\) 0 0
\(82\) 4.52523e7i 0.110530i
\(83\) −3.83366e8 −0.886671 −0.443335 0.896356i \(-0.646205\pi\)
−0.443335 + 0.896356i \(0.646205\pi\)
\(84\) 0 0
\(85\) −1.93071e8 −0.401173
\(86\) 1.44128e8i 0.284122i
\(87\) 0 0
\(88\) 8.31649e7 0.147832
\(89\) −7.43699e8 −1.25644 −0.628220 0.778036i \(-0.716216\pi\)
−0.628220 + 0.778036i \(0.716216\pi\)
\(90\) 0 0
\(91\) −1.17146e9 3.61804e8i −1.79077 0.553079i
\(92\) 4.35596e8i 0.633927i
\(93\) 0 0
\(94\) 1.02828e8i 0.135843i
\(95\) 4.32520e8i 0.544816i
\(96\) 0 0
\(97\) 5.61411e8i 0.643885i 0.946759 + 0.321943i \(0.104336\pi\)
−0.946759 + 0.321943i \(0.895664\pi\)
\(98\) −2.24652e8 + 3.29000e8i −0.246033 + 0.360311i
\(99\) 0 0
\(100\) 1.61929e8 0.161929
\(101\) 6.06932e8 0.580356 0.290178 0.956973i \(-0.406286\pi\)
0.290178 + 0.956973i \(0.406286\pi\)
\(102\) 0 0
\(103\) 1.76874e9i 1.54845i 0.632909 + 0.774226i \(0.281861\pi\)
−0.632909 + 0.774226i \(0.718139\pi\)
\(104\) 1.76543e9 1.47979
\(105\) 0 0
\(106\) 7.13823e8 0.549179
\(107\) 2.54973e9i 1.88047i −0.340524 0.940236i \(-0.610605\pi\)
0.340524 0.940236i \(-0.389395\pi\)
\(108\) 0 0
\(109\) 1.74908e9 1.18683 0.593417 0.804895i \(-0.297778\pi\)
0.593417 + 0.804895i \(0.297778\pi\)
\(110\) −5.60993e7 −0.0365334
\(111\) 0 0
\(112\) −2.28588e8 + 7.40125e8i −0.137269 + 0.444451i
\(113\) 5.46552e8i 0.315339i −0.987492 0.157670i \(-0.949602\pi\)
0.987492 0.157670i \(-0.0503981\pi\)
\(114\) 0 0
\(115\) 6.56751e8i 0.350155i
\(116\) 4.33999e8i 0.222550i
\(117\) 0 0
\(118\) 2.62765e7i 0.0124767i
\(119\) −5.79083e8 + 1.87497e9i −0.264716 + 0.857102i
\(120\) 0 0
\(121\) 2.27528e9 0.964942
\(122\) −8.33207e8 −0.340513
\(123\) 0 0
\(124\) 7.64592e8i 0.290424i
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) −3.32729e9 −1.13494 −0.567472 0.823393i \(-0.692079\pi\)
−0.567472 + 0.823393i \(0.692079\pi\)
\(128\) 3.05680e9i 1.00652i
\(129\) 0 0
\(130\) −1.19088e9 −0.365698
\(131\) −1.76600e9 −0.523927 −0.261963 0.965078i \(-0.584370\pi\)
−0.261963 + 0.965078i \(0.584370\pi\)
\(132\) 0 0
\(133\) −4.20033e9 1.29727e9i −1.16399 0.359500i
\(134\) 2.60503e9i 0.697978i
\(135\) 0 0
\(136\) 2.82565e9i 0.708261i
\(137\) 2.56645e9i 0.622429i 0.950340 + 0.311214i \(0.100736\pi\)
−0.950340 + 0.311214i \(0.899264\pi\)
\(138\) 0 0
\(139\) 5.31906e9i 1.20856i −0.796772 0.604280i \(-0.793461\pi\)
0.796772 0.604280i \(-0.206539\pi\)
\(140\) 4.85678e8 1.57254e9i 0.106849 0.345959i
\(141\) 0 0
\(142\) 2.93153e9 0.605057
\(143\) −1.75480e9 −0.350926
\(144\) 0 0
\(145\) 6.54342e8i 0.122927i
\(146\) −2.72766e9 −0.496823
\(147\) 0 0
\(148\) −5.02849e9 −0.861510
\(149\) 8.43692e8i 0.140231i −0.997539 0.0701157i \(-0.977663\pi\)
0.997539 0.0701157i \(-0.0223369\pi\)
\(150\) 0 0
\(151\) −1.60909e9 −0.251875 −0.125937 0.992038i \(-0.540194\pi\)
−0.125937 + 0.992038i \(0.540194\pi\)
\(152\) 6.33006e9 0.961860
\(153\) 0 0
\(154\) −1.68260e8 + 5.44797e8i −0.0241067 + 0.0780533i
\(155\) 1.15278e9i 0.160418i
\(156\) 0 0
\(157\) 7.22801e9i 0.949445i 0.880135 + 0.474723i \(0.157452\pi\)
−0.880135 + 0.474723i \(0.842548\pi\)
\(158\) 2.82453e8i 0.0360569i
\(159\) 0 0
\(160\) 3.67946e9i 0.443858i
\(161\) 6.37790e9 + 1.96981e9i 0.748103 + 0.231052i
\(162\) 0 0
\(163\) −6.22104e9 −0.690270 −0.345135 0.938553i \(-0.612167\pi\)
−0.345135 + 0.938553i \(0.612167\pi\)
\(164\) −1.90014e9 −0.205111
\(165\) 0 0
\(166\) 3.78471e9i 0.386853i
\(167\) 1.60345e10 1.59526 0.797632 0.603144i \(-0.206086\pi\)
0.797632 + 0.603144i \(0.206086\pi\)
\(168\) 0 0
\(169\) −2.66465e10 −2.51275
\(170\) 1.90605e9i 0.175031i
\(171\) 0 0
\(172\) 6.05191e9 0.527248
\(173\) −2.08146e10 −1.76669 −0.883346 0.468722i \(-0.844715\pi\)
−0.883346 + 0.468722i \(0.844715\pi\)
\(174\) 0 0
\(175\) −7.32259e8 + 2.37092e9i −0.0590192 + 0.191094i
\(176\) 1.10868e9i 0.0870962i
\(177\) 0 0
\(178\) 7.34202e9i 0.548183i
\(179\) 1.39947e10i 1.01888i −0.860506 0.509441i \(-0.829852\pi\)
0.860506 0.509441i \(-0.170148\pi\)
\(180\) 0 0
\(181\) 5.26759e9i 0.364803i 0.983224 + 0.182401i \(0.0583870\pi\)
−0.983224 + 0.182401i \(0.941613\pi\)
\(182\) −3.57184e9 + 1.15650e10i −0.241308 + 0.781311i
\(183\) 0 0
\(184\) −9.61175e9 −0.618190
\(185\) 7.58148e9 0.475862
\(186\) 0 0
\(187\) 2.80863e9i 0.167961i
\(188\) 4.31776e9 0.252085
\(189\) 0 0
\(190\) −4.26997e9 −0.237703
\(191\) 2.56251e10i 1.39321i 0.717456 + 0.696603i \(0.245306\pi\)
−0.717456 + 0.696603i \(0.754694\pi\)
\(192\) 0 0
\(193\) −1.95133e10 −1.01233 −0.506165 0.862437i \(-0.668937\pi\)
−0.506165 + 0.862437i \(0.668937\pi\)
\(194\) 5.54243e9 0.280926
\(195\) 0 0
\(196\) −1.38147e10 9.43313e9i −0.668633 0.456566i
\(197\) 3.83001e10i 1.81177i 0.423527 + 0.905884i \(0.360792\pi\)
−0.423527 + 0.905884i \(0.639208\pi\)
\(198\) 0 0
\(199\) 2.48464e9i 0.112312i 0.998422 + 0.0561559i \(0.0178844\pi\)
−0.998422 + 0.0561559i \(0.982116\pi\)
\(200\) 3.57307e9i 0.157909i
\(201\) 0 0
\(202\) 5.99183e9i 0.253208i
\(203\) −6.35451e9 1.96259e9i −0.262633 0.0811143i
\(204\) 0 0
\(205\) 2.86485e9 0.113295
\(206\) 1.74616e10 0.675587
\(207\) 0 0
\(208\) 2.35351e10i 0.871830i
\(209\) −6.29194e9 −0.228100
\(210\) 0 0
\(211\) −6.96172e9 −0.241794 −0.120897 0.992665i \(-0.538577\pi\)
−0.120897 + 0.992665i \(0.538577\pi\)
\(212\) 2.99734e10i 1.01912i
\(213\) 0 0
\(214\) −2.51717e10 −0.820447
\(215\) −9.12450e9 −0.291230
\(216\) 0 0
\(217\) 1.11950e10 + 3.45757e9i 0.342732 + 0.105853i
\(218\) 1.72675e10i 0.517814i
\(219\) 0 0
\(220\) 2.35560e9i 0.0677954i
\(221\) 5.96219e10i 1.68128i
\(222\) 0 0
\(223\) 1.87379e10i 0.507399i 0.967283 + 0.253700i \(0.0816474\pi\)
−0.967283 + 0.253700i \(0.918353\pi\)
\(224\) 3.57323e10 + 1.10359e10i 0.948298 + 0.292882i
\(225\) 0 0
\(226\) −5.39573e9 −0.137582
\(227\) 9.34142e9 0.233505 0.116753 0.993161i \(-0.462752\pi\)
0.116753 + 0.993161i \(0.462752\pi\)
\(228\) 0 0
\(229\) 2.26203e10i 0.543548i 0.962361 + 0.271774i \(0.0876103\pi\)
−0.962361 + 0.271774i \(0.912390\pi\)
\(230\) 6.48365e9 0.152772
\(231\) 0 0
\(232\) 9.57649e9 0.217025
\(233\) 2.06251e10i 0.458453i 0.973373 + 0.229227i \(0.0736197\pi\)
−0.973373 + 0.229227i \(0.926380\pi\)
\(234\) 0 0
\(235\) −6.50990e9 −0.139242
\(236\) 1.10335e9 0.0231531
\(237\) 0 0
\(238\) 1.85103e10 + 5.71689e9i 0.373952 + 0.115495i
\(239\) 2.62097e10i 0.519604i 0.965662 + 0.259802i \(0.0836572\pi\)
−0.965662 + 0.259802i \(0.916343\pi\)
\(240\) 0 0
\(241\) 4.08033e10i 0.779145i 0.920996 + 0.389572i \(0.127377\pi\)
−0.920996 + 0.389572i \(0.872623\pi\)
\(242\) 2.24623e10i 0.421003i
\(243\) 0 0
\(244\) 3.49863e10i 0.631893i
\(245\) 2.08284e10 + 1.42224e10i 0.369325 + 0.252188i
\(246\) 0 0
\(247\) −1.33566e11 −2.28328
\(248\) −1.68713e10 −0.283214
\(249\) 0 0
\(250\) 2.41023e9i 0.0390237i
\(251\) 5.39495e9 0.0857938 0.0428969 0.999080i \(-0.486341\pi\)
0.0428969 + 0.999080i \(0.486341\pi\)
\(252\) 0 0
\(253\) 9.55386e9 0.146601
\(254\) 3.28481e10i 0.495175i
\(255\) 0 0
\(256\) −2.79690e10 −0.407002
\(257\) −9.54415e10 −1.36470 −0.682352 0.731024i \(-0.739043\pi\)
−0.682352 + 0.731024i \(0.739043\pi\)
\(258\) 0 0
\(259\) 2.27394e10 7.36260e10i 0.314000 1.01668i
\(260\) 5.00049e10i 0.678629i
\(261\) 0 0
\(262\) 1.74345e10i 0.228589i
\(263\) 1.25967e11i 1.62351i 0.583996 + 0.811757i \(0.301489\pi\)
−0.583996 + 0.811757i \(0.698511\pi\)
\(264\) 0 0
\(265\) 4.51910e10i 0.562918i
\(266\) −1.28071e10 + 4.14669e10i −0.156849 + 0.507849i
\(267\) 0 0
\(268\) −1.09385e11 −1.29524
\(269\) 1.12140e11 1.30579 0.652895 0.757448i \(-0.273554\pi\)
0.652895 + 0.757448i \(0.273554\pi\)
\(270\) 0 0
\(271\) 4.67479e10i 0.526502i −0.964727 0.263251i \(-0.915205\pi\)
0.964727 0.263251i \(-0.0847948\pi\)
\(272\) 3.76690e10 0.417277
\(273\) 0 0
\(274\) 2.53368e10 0.271565
\(275\) 3.55155e9i 0.0374474i
\(276\) 0 0
\(277\) −5.38407e10 −0.549480 −0.274740 0.961519i \(-0.588592\pi\)
−0.274740 + 0.961519i \(0.588592\pi\)
\(278\) −5.25114e10 −0.527293
\(279\) 0 0
\(280\) −3.46992e10 1.07168e10i −0.337371 0.104197i
\(281\) 1.59057e11i 1.52186i −0.648835 0.760929i \(-0.724744\pi\)
0.648835 0.760929i \(-0.275256\pi\)
\(282\) 0 0
\(283\) 4.11793e10i 0.381628i 0.981626 + 0.190814i \(0.0611127\pi\)
−0.981626 + 0.190814i \(0.938887\pi\)
\(284\) 1.23095e11i 1.12281i
\(285\) 0 0
\(286\) 1.73239e10i 0.153108i
\(287\) 8.59264e9 2.78214e10i 0.0747581 0.242053i
\(288\) 0 0
\(289\) −2.31605e10 −0.195303
\(290\) −6.45987e9 −0.0536331
\(291\) 0 0
\(292\) 1.14534e11i 0.921960i
\(293\) 6.07795e10 0.481784 0.240892 0.970552i \(-0.422560\pi\)
0.240892 + 0.970552i \(0.422560\pi\)
\(294\) 0 0
\(295\) −1.66352e9 −0.0127888
\(296\) 1.10957e11i 0.840124i
\(297\) 0 0
\(298\) −8.32919e9 −0.0611828
\(299\) 2.02810e11 1.46747
\(300\) 0 0
\(301\) −2.73674e10 + 8.86107e10i −0.192169 + 0.622210i
\(302\) 1.58854e10i 0.109893i
\(303\) 0 0
\(304\) 8.43867e10i 0.566687i
\(305\) 5.27490e10i 0.349031i
\(306\) 0 0
\(307\) 1.87074e11i 1.20196i 0.799263 + 0.600981i \(0.205223\pi\)
−0.799263 + 0.600981i \(0.794777\pi\)
\(308\) −2.28760e10 7.06524e9i −0.144844 0.0447351i
\(309\) 0 0
\(310\) 1.13806e10 0.0699902
\(311\) −1.10552e11 −0.670109 −0.335055 0.942199i \(-0.608755\pi\)
−0.335055 + 0.942199i \(0.608755\pi\)
\(312\) 0 0
\(313\) 2.81748e11i 1.65925i 0.558323 + 0.829623i \(0.311445\pi\)
−0.558323 + 0.829623i \(0.688555\pi\)
\(314\) 7.13571e10 0.414242
\(315\) 0 0
\(316\) 1.18602e10 0.0669112
\(317\) 1.50058e11i 0.834629i −0.908762 0.417314i \(-0.862971\pi\)
0.908762 0.417314i \(-0.137029\pi\)
\(318\) 0 0
\(319\) −9.51882e9 −0.0514665
\(320\) −2.69620e9 −0.0143740
\(321\) 0 0
\(322\) 1.94466e10 6.29646e10i 0.100807 0.326396i
\(323\) 2.13778e11i 1.09283i
\(324\) 0 0
\(325\) 7.53927e10i 0.374847i
\(326\) 6.14161e10i 0.301164i
\(327\) 0 0
\(328\) 4.19280e10i 0.200019i
\(329\) −1.95254e10 + 6.32196e10i −0.0918793 + 0.297488i
\(330\) 0 0
\(331\) −2.19661e11 −1.00583 −0.502917 0.864335i \(-0.667740\pi\)
−0.502917 + 0.864335i \(0.667740\pi\)
\(332\) −1.58920e11 −0.717887
\(333\) 0 0
\(334\) 1.58298e11i 0.696012i
\(335\) 1.64920e11 0.715439
\(336\) 0 0
\(337\) −3.66810e11 −1.54920 −0.774599 0.632453i \(-0.782048\pi\)
−0.774599 + 0.632453i \(0.782048\pi\)
\(338\) 2.63063e11i 1.09631i
\(339\) 0 0
\(340\) −8.00351e10 −0.324807
\(341\) 1.67697e10 0.0671629
\(342\) 0 0
\(343\) 2.00589e11 1.59613e11i 0.782498 0.622653i
\(344\) 1.33540e11i 0.514159i
\(345\) 0 0
\(346\) 2.05488e11i 0.770805i
\(347\) 1.77869e11i 0.658594i 0.944226 + 0.329297i \(0.106812\pi\)
−0.944226 + 0.329297i \(0.893188\pi\)
\(348\) 0 0
\(349\) 2.07302e11i 0.747977i 0.927433 + 0.373988i \(0.122010\pi\)
−0.927433 + 0.373988i \(0.877990\pi\)
\(350\) 2.34065e10 + 7.22909e9i 0.0833738 + 0.0257500i
\(351\) 0 0
\(352\) 5.35257e10 0.185832
\(353\) 4.14378e11 1.42040 0.710200 0.704000i \(-0.248604\pi\)
0.710200 + 0.704000i \(0.248604\pi\)
\(354\) 0 0
\(355\) 1.85590e11i 0.620194i
\(356\) −3.08291e11 −1.01727
\(357\) 0 0
\(358\) −1.38160e11 −0.444537
\(359\) 3.50290e11i 1.11302i −0.830841 0.556510i \(-0.812140\pi\)
0.830841 0.556510i \(-0.187860\pi\)
\(360\) 0 0
\(361\) −1.56220e11 −0.484123
\(362\) 5.20033e10 0.159163
\(363\) 0 0
\(364\) −4.85613e11 1.49981e11i −1.44989 0.447797i
\(365\) 1.72684e11i 0.509252i
\(366\) 0 0
\(367\) 1.48569e11i 0.427495i −0.976889 0.213747i \(-0.931433\pi\)
0.976889 0.213747i \(-0.0685669\pi\)
\(368\) 1.28135e11i 0.364211i
\(369\) 0 0
\(370\) 7.48468e10i 0.207618i
\(371\) −4.38863e11 1.35543e11i −1.20267 0.371444i
\(372\) 0 0
\(373\) 3.24299e11 0.867474 0.433737 0.901040i \(-0.357195\pi\)
0.433737 + 0.901040i \(0.357195\pi\)
\(374\) 2.77277e10 0.0732810
\(375\) 0 0
\(376\) 9.52744e10i 0.245828i
\(377\) −2.02066e11 −0.515178
\(378\) 0 0
\(379\) −6.60230e11 −1.64369 −0.821843 0.569714i \(-0.807054\pi\)
−0.821843 + 0.569714i \(0.807054\pi\)
\(380\) 1.79296e11i 0.441107i
\(381\) 0 0
\(382\) 2.52979e11 0.607854
\(383\) −7.42061e11 −1.76216 −0.881079 0.472969i \(-0.843182\pi\)
−0.881079 + 0.472969i \(0.843182\pi\)
\(384\) 0 0
\(385\) 3.44902e10 + 1.06523e10i 0.0800059 + 0.0247098i
\(386\) 1.92641e11i 0.441678i
\(387\) 0 0
\(388\) 2.32726e11i 0.521317i
\(389\) 4.88598e11i 1.08188i −0.841062 0.540939i \(-0.818069\pi\)
0.841062 0.540939i \(-0.181931\pi\)
\(390\) 0 0
\(391\) 3.24606e11i 0.702363i
\(392\) −2.08149e11 + 3.04830e11i −0.445232 + 0.652035i
\(393\) 0 0
\(394\) 3.78111e11 0.790472
\(395\) −1.78816e10 −0.0369590
\(396\) 0 0
\(397\) 4.92713e11i 0.995491i −0.867323 0.497745i \(-0.834161\pi\)
0.867323 0.497745i \(-0.165839\pi\)
\(398\) 2.45292e10 0.0490015
\(399\) 0 0
\(400\) 4.76330e10 0.0930332
\(401\) 4.50235e11i 0.869541i −0.900541 0.434770i \(-0.856830\pi\)
0.900541 0.434770i \(-0.143170\pi\)
\(402\) 0 0
\(403\) 3.55988e11 0.672299
\(404\) 2.51596e11 0.469881
\(405\) 0 0
\(406\) −1.93753e10 + 6.27337e10i −0.0353900 + 0.114587i
\(407\) 1.10289e11i 0.199231i
\(408\) 0 0
\(409\) 2.52843e11i 0.446783i 0.974729 + 0.223392i \(0.0717129\pi\)
−0.974729 + 0.223392i \(0.928287\pi\)
\(410\) 2.82827e10i 0.0494303i
\(411\) 0 0
\(412\) 7.33211e11i 1.25369i
\(413\) −4.98946e9 + 1.61550e10i −0.00843876 + 0.0273232i
\(414\) 0 0
\(415\) 2.39604e11 0.396531
\(416\) 1.13625e12 1.86017
\(417\) 0 0
\(418\) 6.21160e10i 0.0995199i
\(419\) −2.27387e11 −0.360414 −0.180207 0.983629i \(-0.557677\pi\)
−0.180207 + 0.983629i \(0.557677\pi\)
\(420\) 0 0
\(421\) −9.22990e10 −0.143195 −0.0715975 0.997434i \(-0.522810\pi\)
−0.0715975 + 0.997434i \(0.522810\pi\)
\(422\) 6.87283e10i 0.105494i
\(423\) 0 0
\(424\) 6.61384e11 0.993819
\(425\) 1.20669e11 0.179410
\(426\) 0 0
\(427\) 5.12261e11 + 1.58212e11i 0.745702 + 0.230310i
\(428\) 1.05696e12i 1.52251i
\(429\) 0 0
\(430\) 9.00799e10i 0.127063i
\(431\) 9.57397e11i 1.33642i −0.743971 0.668212i \(-0.767060\pi\)
0.743971 0.668212i \(-0.232940\pi\)
\(432\) 0 0
\(433\) 1.76256e11i 0.240962i −0.992716 0.120481i \(-0.961556\pi\)
0.992716 0.120481i \(-0.0384437\pi\)
\(434\) 3.41342e10 1.10520e11i 0.0461834 0.149533i
\(435\) 0 0
\(436\) 7.25059e11 0.960913
\(437\) 7.27188e11 0.953850
\(438\) 0 0
\(439\) 5.96656e11i 0.766714i −0.923600 0.383357i \(-0.874768\pi\)
0.923600 0.383357i \(-0.125232\pi\)
\(440\) −5.19781e10 −0.0661124
\(441\) 0 0
\(442\) 5.88605e11 0.733540
\(443\) 6.18899e11i 0.763490i −0.924268 0.381745i \(-0.875323\pi\)
0.924268 0.381745i \(-0.124677\pi\)
\(444\) 0 0
\(445\) 4.64812e11 0.561897
\(446\) 1.84987e11 0.221378
\(447\) 0 0
\(448\) −8.08682e9 + 2.61836e10i −0.00948476 + 0.0307099i
\(449\) 2.65606e11i 0.308410i −0.988039 0.154205i \(-0.950718\pi\)
0.988039 0.154205i \(-0.0492817\pi\)
\(450\) 0 0
\(451\) 4.16755e10i 0.0474336i
\(452\) 2.26566e11i 0.255313i
\(453\) 0 0
\(454\) 9.22214e10i 0.101878i
\(455\) 7.32160e11 + 2.26128e11i 0.800857 + 0.247345i
\(456\) 0 0
\(457\) 6.13817e11 0.658288 0.329144 0.944280i \(-0.393240\pi\)
0.329144 + 0.944280i \(0.393240\pi\)
\(458\) 2.23314e11 0.237149
\(459\) 0 0
\(460\) 2.72248e11i 0.283501i
\(461\) −1.66916e12 −1.72125 −0.860624 0.509241i \(-0.829926\pi\)
−0.860624 + 0.509241i \(0.829926\pi\)
\(462\) 0 0
\(463\) 6.65897e11 0.673430 0.336715 0.941607i \(-0.390684\pi\)
0.336715 + 0.941607i \(0.390684\pi\)
\(464\) 1.27665e11i 0.127862i
\(465\) 0 0
\(466\) 2.03618e11 0.200023
\(467\) 1.25130e11 0.121740 0.0608701 0.998146i \(-0.480612\pi\)
0.0608701 + 0.998146i \(0.480612\pi\)
\(468\) 0 0
\(469\) 4.94651e11 1.60159e12i 0.472086 1.52853i
\(470\) 6.42678e10i 0.0607509i
\(471\) 0 0
\(472\) 2.43462e10i 0.0225783i
\(473\) 1.32736e11i 0.121930i
\(474\) 0 0
\(475\) 2.70325e11i 0.243649i
\(476\) −2.40052e11 + 7.77244e11i −0.214325 + 0.693947i
\(477\) 0 0
\(478\) 2.58751e11 0.226702
\(479\) −2.13896e12 −1.85649 −0.928245 0.371969i \(-0.878683\pi\)
−0.928245 + 0.371969i \(0.878683\pi\)
\(480\) 0 0
\(481\) 2.34122e12i 1.99430i
\(482\) 4.02823e11 0.339940
\(483\) 0 0
\(484\) 9.43190e11 0.781259
\(485\) 3.50882e11i 0.287954i
\(486\) 0 0
\(487\) 3.36595e11 0.271161 0.135581 0.990766i \(-0.456710\pi\)
0.135581 + 0.990766i \(0.456710\pi\)
\(488\) −7.71997e11 −0.616207
\(489\) 0 0
\(490\) 1.40408e11 2.05625e11i 0.110029 0.161136i
\(491\) 4.00595e9i 0.00311056i 0.999999 + 0.00155528i \(0.000495062\pi\)
−0.999999 + 0.00155528i \(0.999505\pi\)
\(492\) 0 0
\(493\) 3.23416e11i 0.246576i
\(494\) 1.31860e12i 0.996191i
\(495\) 0 0
\(496\) 2.24913e11i 0.166858i
\(497\) −1.80232e12 5.56647e11i −1.32504 0.409238i
\(498\) 0 0
\(499\) 1.22179e12 0.882155 0.441078 0.897469i \(-0.354596\pi\)
0.441078 + 0.897469i \(0.354596\pi\)
\(500\) −1.01205e11 −0.0724167
\(501\) 0 0
\(502\) 5.32606e10i 0.0374317i
\(503\) 1.49348e12 1.04027 0.520133 0.854085i \(-0.325882\pi\)
0.520133 + 0.854085i \(0.325882\pi\)
\(504\) 0 0
\(505\) −3.79333e11 −0.259543
\(506\) 9.43187e10i 0.0639618i
\(507\) 0 0
\(508\) −1.37929e12 −0.918900
\(509\) 7.49531e11 0.494948 0.247474 0.968895i \(-0.420399\pi\)
0.247474 + 0.968895i \(0.420399\pi\)
\(510\) 0 0
\(511\) 1.67698e12 + 5.17936e11i 1.08801 + 0.336033i
\(512\) 1.28896e12i 0.828945i
\(513\) 0 0
\(514\) 9.42228e11i 0.595418i
\(515\) 1.10547e12i 0.692489i
\(516\) 0 0
\(517\) 9.47006e10i 0.0582969i
\(518\) −7.26859e11 2.24490e11i −0.443574 0.136998i
\(519\) 0 0
\(520\) −1.10339e12 −0.661783
\(521\) 2.62961e12 1.56358 0.781792 0.623540i \(-0.214306\pi\)
0.781792 + 0.623540i \(0.214306\pi\)
\(522\) 0 0
\(523\) 2.02241e12i 1.18199i 0.806677 + 0.590993i \(0.201264\pi\)
−0.806677 + 0.590993i \(0.798736\pi\)
\(524\) −7.32075e11 −0.424194
\(525\) 0 0
\(526\) 1.24359e12 0.708337
\(527\) 5.69774e11i 0.321777i
\(528\) 0 0
\(529\) 6.96970e11 0.386957
\(530\) −4.46140e11 −0.245601
\(531\) 0 0
\(532\) −1.74119e12 5.37768e11i −0.942420 0.291066i
\(533\) 8.84690e11i 0.474809i
\(534\) 0 0
\(535\) 1.59358e12i 0.840972i
\(536\) 2.41366e12i 1.26309i
\(537\) 0 0
\(538\) 1.10708e12i 0.569715i
\(539\) 2.06895e11 3.02995e11i 0.105585 0.154627i
\(540\) 0 0
\(541\) −2.03050e12 −1.01910 −0.509548 0.860442i \(-0.670187\pi\)
−0.509548 + 0.860442i \(0.670187\pi\)
\(542\) −4.61510e11 −0.229712
\(543\) 0 0
\(544\) 1.81861e12i 0.890318i
\(545\) −1.09317e12 −0.530768
\(546\) 0 0
\(547\) 2.87309e12 1.37217 0.686083 0.727523i \(-0.259329\pi\)
0.686083 + 0.727523i \(0.259329\pi\)
\(548\) 1.06389e12i 0.503945i
\(549\) 0 0
\(550\) 3.50620e10 0.0163382
\(551\) −7.24521e11 −0.334864
\(552\) 0 0
\(553\) −5.36329e10 + 1.73654e11i −0.0243876 + 0.0789625i
\(554\) 5.31532e11i 0.239737i
\(555\) 0 0
\(556\) 2.20495e12i 0.978503i
\(557\) 6.65951e11i 0.293153i −0.989199 0.146576i \(-0.953175\pi\)
0.989199 0.146576i \(-0.0468254\pi\)
\(558\) 0 0
\(559\) 2.81772e12i 1.22052i
\(560\) 1.42867e11 4.62578e11i 0.0613884 0.198765i
\(561\) 0 0
\(562\) −1.57026e12 −0.663985
\(563\) 4.17795e12 1.75257 0.876286 0.481791i \(-0.160014\pi\)
0.876286 + 0.481791i \(0.160014\pi\)
\(564\) 0 0
\(565\) 3.41595e11i 0.141024i
\(566\) 4.06535e11 0.166504
\(567\) 0 0
\(568\) 2.71617e12 1.09494
\(569\) 2.53247e12i 1.01284i 0.862288 + 0.506419i \(0.169031\pi\)
−0.862288 + 0.506419i \(0.830969\pi\)
\(570\) 0 0
\(571\) 2.78435e12 1.09613 0.548065 0.836436i \(-0.315365\pi\)
0.548065 + 0.836436i \(0.315365\pi\)
\(572\) −7.27430e11 −0.284125
\(573\) 0 0
\(574\) −2.74662e11 8.48292e10i −0.105607 0.0326169i
\(575\) 4.10469e11i 0.156594i
\(576\) 0 0
\(577\) 1.57510e12i 0.591584i −0.955252 0.295792i \(-0.904416\pi\)
0.955252 0.295792i \(-0.0955836\pi\)
\(578\) 2.28648e11i 0.0852102i
\(579\) 0 0
\(580\) 2.71249e11i 0.0995274i
\(581\) 7.18652e11 2.32686e12i 0.261653 0.847185i
\(582\) 0 0
\(583\) −6.57401e11 −0.235679
\(584\) −2.52728e12 −0.899073
\(585\) 0 0
\(586\) 6.00034e11i 0.210202i
\(587\) −5.32861e11 −0.185243 −0.0926217 0.995701i \(-0.529525\pi\)
−0.0926217 + 0.995701i \(0.529525\pi\)
\(588\) 0 0
\(589\) 1.27642e12 0.436992
\(590\) 1.64228e10i 0.00557974i
\(591\) 0 0
\(592\) −1.47918e12 −0.494965
\(593\) −4.46126e12 −1.48153 −0.740767 0.671762i \(-0.765538\pi\)
−0.740767 + 0.671762i \(0.765538\pi\)
\(594\) 0 0
\(595\) 3.61927e11 1.17185e12i 0.118384 0.383307i
\(596\) 3.49742e11i 0.113538i
\(597\) 0 0
\(598\) 2.00220e12i 0.640255i
\(599\) 2.53748e12i 0.805345i −0.915344 0.402672i \(-0.868081\pi\)
0.915344 0.402672i \(-0.131919\pi\)
\(600\) 0 0
\(601\) 4.08771e12i 1.27804i −0.769189 0.639021i \(-0.779340\pi\)
0.769189 0.639021i \(-0.220660\pi\)
\(602\) 8.74792e11 + 2.70180e11i 0.271469 + 0.0838433i
\(603\) 0 0
\(604\) −6.67029e11 −0.203929
\(605\) −1.42205e12 −0.431535
\(606\) 0 0
\(607\) 1.95721e12i 0.585180i 0.956238 + 0.292590i \(0.0945170\pi\)
−0.956238 + 0.292590i \(0.905483\pi\)
\(608\) 4.07408e12 1.20910
\(609\) 0 0
\(610\) 5.20754e11 0.152282
\(611\) 2.01031e12i 0.583550i
\(612\) 0 0
\(613\) 3.05561e12 0.874030 0.437015 0.899454i \(-0.356036\pi\)
0.437015 + 0.899454i \(0.356036\pi\)
\(614\) 1.84685e12 0.524414
\(615\) 0 0
\(616\) −1.55900e11 + 5.04774e11i −0.0436246 + 0.141249i
\(617\) 6.50182e12i 1.80614i 0.429492 + 0.903071i \(0.358693\pi\)
−0.429492 + 0.903071i \(0.641307\pi\)
\(618\) 0 0
\(619\) 6.96244e12i 1.90614i 0.302757 + 0.953068i \(0.402093\pi\)
−0.302757 + 0.953068i \(0.597907\pi\)
\(620\) 4.77870e11i 0.129882i
\(621\) 0 0
\(622\) 1.09141e12i 0.292368i
\(623\) 1.39412e12 4.51392e12i 0.370771 1.20049i
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 2.78150e12 0.723927
\(627\) 0 0
\(628\) 2.99628e12i 0.768712i
\(629\) −3.74723e12 −0.954515
\(630\) 0 0
\(631\) −4.36566e12 −1.09627 −0.548135 0.836390i \(-0.684662\pi\)
−0.548135 + 0.836390i \(0.684662\pi\)
\(632\) 2.61703e11i 0.0652502i
\(633\) 0 0
\(634\) −1.48142e12 −0.364147
\(635\) 2.07956e12 0.507562
\(636\) 0 0
\(637\) 4.39198e12 6.43199e12i 1.05690 1.54781i
\(638\) 9.39727e10i 0.0224548i
\(639\) 0 0
\(640\) 1.91050e12i 0.450129i
\(641\) 2.77432e12i 0.649075i −0.945873 0.324538i \(-0.894791\pi\)
0.945873 0.324538i \(-0.105209\pi\)
\(642\) 0 0
\(643\) 4.14311e12i 0.955822i 0.878408 + 0.477911i \(0.158606\pi\)
−0.878408 + 0.477911i \(0.841394\pi\)
\(644\) 2.64388e12 + 8.16562e11i 0.605697 + 0.187069i
\(645\) 0 0
\(646\) 2.11048e12 0.476799
\(647\) −8.28816e11 −0.185947 −0.0929735 0.995669i \(-0.529637\pi\)
−0.0929735 + 0.995669i \(0.529637\pi\)
\(648\) 0 0
\(649\) 2.41996e10i 0.00535435i
\(650\) 7.44300e11 0.163545
\(651\) 0 0
\(652\) −2.57885e12 −0.558872
\(653\) 5.49378e12i 1.18239i −0.806527 0.591197i \(-0.798656\pi\)
0.806527 0.591197i \(-0.201344\pi\)
\(654\) 0 0
\(655\) 1.10375e12 0.234307
\(656\) −5.58946e11 −0.117843
\(657\) 0 0
\(658\) 6.24123e11 + 1.92760e11i 0.129794 + 0.0400868i
\(659\) 5.86097e12i 1.21056i −0.796014 0.605278i \(-0.793062\pi\)
0.796014 0.605278i \(-0.206938\pi\)
\(660\) 0 0
\(661\) 4.93386e12i 1.00526i −0.864500 0.502632i \(-0.832365\pi\)
0.864500 0.502632i \(-0.167635\pi\)
\(662\) 2.16856e12i 0.438844i
\(663\) 0 0
\(664\) 3.50668e12i 0.700067i
\(665\) 2.62521e12 + 8.10794e11i 0.520554 + 0.160773i
\(666\) 0 0
\(667\) 1.10013e12 0.215218
\(668\) 6.64692e12 1.29160
\(669\) 0 0
\(670\) 1.62815e12i 0.312145i
\(671\) 7.67348e11 0.146130
\(672\) 0 0
\(673\) −8.89144e12 −1.67072 −0.835361 0.549701i \(-0.814742\pi\)
−0.835361 + 0.549701i \(0.814742\pi\)
\(674\) 3.62127e12i 0.675913i
\(675\) 0 0
\(676\) −1.10460e13 −2.03444
\(677\) −2.23287e12 −0.408521 −0.204260 0.978917i \(-0.565479\pi\)
−0.204260 + 0.978917i \(0.565479\pi\)
\(678\) 0 0
\(679\) −3.40752e12 1.05241e12i −0.615211 0.190008i
\(680\) 1.76603e12i 0.316744i
\(681\) 0 0
\(682\) 1.65555e11i 0.0293031i
\(683\) 3.70327e12i 0.651166i −0.945513 0.325583i \(-0.894439\pi\)
0.945513 0.325583i \(-0.105561\pi\)
\(684\) 0 0
\(685\) 1.60403e12i 0.278359i
\(686\) −1.57575e12 1.98028e12i −0.271662 0.341403i
\(687\) 0 0
\(688\) 1.78023e12 0.302921
\(689\) −1.39554e13 −2.35914
\(690\) 0 0
\(691\) 2.70215e12i 0.450877i 0.974257 + 0.225438i \(0.0723814\pi\)
−0.974257 + 0.225438i \(0.927619\pi\)
\(692\) −8.62843e12 −1.43039
\(693\) 0 0
\(694\) 1.75598e12 0.287344
\(695\) 3.32441e12i 0.540485i
\(696\) 0 0
\(697\) −1.41598e12 −0.227254
\(698\) 2.04655e12 0.326341
\(699\) 0 0
\(700\) −3.03549e11 + 9.82836e11i −0.0477845 + 0.154718i
\(701\) 4.58407e12i 0.717002i 0.933529 + 0.358501i \(0.116712\pi\)
−0.933529 + 0.358501i \(0.883288\pi\)
\(702\) 0 0
\(703\) 8.39460e12i 1.29629i
\(704\) 3.92221e10i 0.00601803i
\(705\) 0 0
\(706\) 4.09087e12i 0.619719i
\(707\) −1.13775e12 + 3.68381e12i −0.171261 + 0.554511i
\(708\) 0 0
\(709\) −7.74026e12 −1.15040 −0.575198 0.818014i \(-0.695075\pi\)
−0.575198 + 0.818014i \(0.695075\pi\)
\(710\) −1.83220e12 −0.270590
\(711\) 0 0
\(712\) 6.80266e12i 0.992016i
\(713\) −1.93815e12 −0.280856
\(714\) 0 0
\(715\) 1.09675e12 0.156939
\(716\) 5.80131e12i 0.824931i
\(717\) 0 0
\(718\) −3.45818e12 −0.485610
\(719\) −2.51152e12 −0.350474 −0.175237 0.984526i \(-0.556069\pi\)
−0.175237 + 0.984526i \(0.556069\pi\)
\(720\) 0 0
\(721\) −1.07355e13 3.31566e12i −1.47950 0.456942i
\(722\) 1.54226e12i 0.211222i
\(723\) 0 0
\(724\) 2.18361e12i 0.295360i
\(725\) 4.08964e11i 0.0549748i
\(726\) 0 0
\(727\) 7.04621e11i 0.0935515i 0.998905 + 0.0467757i \(0.0148946\pi\)
−0.998905 + 0.0467757i \(0.985105\pi\)
\(728\) −3.30945e12 + 1.07154e13i −0.436681 + 1.41389i
\(729\) 0 0
\(730\) 1.70479e12 0.222186
\(731\) 4.50989e12 0.584167
\(732\) 0 0
\(733\) 9.82007e12i 1.25645i 0.778030 + 0.628227i \(0.216219\pi\)
−0.778030 + 0.628227i \(0.783781\pi\)
\(734\) −1.46672e12 −0.186515
\(735\) 0 0
\(736\) −6.18621e12 −0.777095
\(737\) 2.39912e12i 0.299536i
\(738\) 0 0
\(739\) 1.54546e12 0.190616 0.0953080 0.995448i \(-0.469616\pi\)
0.0953080 + 0.995448i \(0.469616\pi\)
\(740\) 3.14281e12 0.385279
\(741\) 0 0
\(742\) −1.33812e12 + 4.33259e12i −0.162061 + 0.524723i
\(743\) 9.57090e12i 1.15213i 0.817403 + 0.576067i \(0.195413\pi\)
−0.817403 + 0.576067i \(0.804587\pi\)
\(744\) 0 0
\(745\) 5.27307e11i 0.0627134i
\(746\) 3.20158e12i 0.378478i
\(747\) 0 0
\(748\) 1.16428e12i 0.135988i
\(749\) 1.54757e13 + 4.77968e12i 1.79673 + 0.554920i
\(750\) 0 0
\(751\) 7.91742e12 0.908247 0.454124 0.890939i \(-0.349952\pi\)
0.454124 + 0.890939i \(0.349952\pi\)
\(752\) 1.27011e12 0.144831
\(753\) 0 0
\(754\) 1.99486e12i 0.224772i
\(755\) 1.00568e12 0.112642
\(756\) 0 0
\(757\) −7.97671e12 −0.882861 −0.441430 0.897296i \(-0.645529\pi\)
−0.441430 + 0.897296i \(0.645529\pi\)
\(758\) 6.51800e12i 0.717138i
\(759\) 0 0
\(760\) −3.95629e12 −0.430157
\(761\) 2.41105e12 0.260601 0.130300 0.991475i \(-0.458406\pi\)
0.130300 + 0.991475i \(0.458406\pi\)
\(762\) 0 0
\(763\) −3.27879e12 + 1.06161e13i −0.350230 + 1.13398i
\(764\) 1.06226e13i 1.12800i
\(765\) 0 0
\(766\) 7.32585e12i 0.768827i
\(767\) 5.13710e11i 0.0535968i
\(768\) 0 0
\(769\) 3.47089e12i 0.357908i 0.983857 + 0.178954i \(0.0572714\pi\)
−0.983857 + 0.178954i \(0.942729\pi\)
\(770\) 1.05163e11 3.40498e11i 0.0107809 0.0349065i
\(771\) 0 0
\(772\) −8.08898e12 −0.819626
\(773\) 1.79684e13 1.81010 0.905048 0.425310i \(-0.139835\pi\)
0.905048 + 0.425310i \(0.139835\pi\)
\(774\) 0 0
\(775\) 7.20487e11i 0.0717412i
\(776\) 5.13527e12 0.508376
\(777\) 0 0
\(778\) −4.82359e12 −0.472022
\(779\) 3.17211e12i 0.308624i
\(780\) 0 0
\(781\) −2.69981e12 −0.259659
\(782\) −3.20462e12 −0.306440
\(783\) 0 0
\(784\) −4.06373e12 2.77485e12i −0.384151 0.262312i
\(785\) 4.51750e12i 0.424605i
\(786\) 0 0
\(787\) 2.01598e12i 0.187327i −0.995604 0.0936634i \(-0.970142\pi\)
0.995604 0.0936634i \(-0.0298578\pi\)
\(788\) 1.58768e13i 1.46689i
\(789\) 0 0
\(790\) 1.76533e11i 0.0161251i
\(791\) 3.31733e12 + 1.02456e12i 0.301297 + 0.0930555i
\(792\) 0 0
\(793\) 1.62893e13 1.46276
\(794\) −4.86422e12 −0.434331
\(795\) 0 0
\(796\) 1.02998e12i 0.0909325i
\(797\) −6.10534e12 −0.535979 −0.267989 0.963422i \(-0.586359\pi\)
−0.267989 + 0.963422i \(0.586359\pi\)
\(798\) 0 0
\(799\) 3.21759e12 0.279300
\(800\) 2.29966e12i 0.198499i
\(801\) 0 0
\(802\) −4.44486e12 −0.379379
\(803\) 2.51206e12 0.213211
\(804\) 0 0
\(805\) −3.98619e12 1.23113e12i −0.334562 0.103329i
\(806\) 3.51442e12i 0.293323i
\(807\) 0 0
\(808\) 5.55165e12i 0.458217i
\(809\) 2.90954e12i 0.238812i 0.992846 + 0.119406i \(0.0380990\pi\)
−0.992846 + 0.119406i \(0.961901\pi\)
\(810\) 0 0
\(811\) 6.95479e12i 0.564534i −0.959336 0.282267i \(-0.908914\pi\)
0.959336 0.282267i \(-0.0910865\pi\)
\(812\) −2.63418e12 8.13567e11i −0.212639 0.0656736i
\(813\) 0 0
\(814\) −1.08881e12 −0.0869244
\(815\) 3.88815e12 0.308698
\(816\) 0 0
\(817\) 1.01031e13i 0.793334i
\(818\) 2.49615e12 0.194931
\(819\) 0 0
\(820\) 1.18759e12 0.0917283
\(821\) 6.37371e12i 0.489608i 0.969573 + 0.244804i \(0.0787236\pi\)
−0.969573 + 0.244804i \(0.921276\pi\)
\(822\) 0 0
\(823\) −1.65168e13 −1.25495 −0.627474 0.778638i \(-0.715911\pi\)
−0.627474 + 0.778638i \(0.715911\pi\)
\(824\) 1.61788e13 1.22257
\(825\) 0 0
\(826\) 1.59487e11 + 4.92575e10i 0.0119211 + 0.00368182i
\(827\) 5.22858e12i 0.388695i 0.980933 + 0.194348i \(0.0622590\pi\)
−0.980933 + 0.194348i \(0.937741\pi\)
\(828\) 0 0
\(829\) 7.30826e9i 0.000537426i 1.00000 0.000268713i \(8.55340e-5\pi\)
−1.00000 0.000268713i \(0.999914\pi\)
\(830\) 2.36544e12i 0.173006i
\(831\) 0 0
\(832\) 8.32610e11i 0.0602403i
\(833\) −1.02947e13 7.02956e12i −0.740816 0.505855i
\(834\) 0 0
\(835\) −1.00216e13 −0.713424
\(836\) −2.60824e12 −0.184680
\(837\) 0 0
\(838\) 2.24483e12i 0.157248i
\(839\) −2.43555e13 −1.69694 −0.848472 0.529240i \(-0.822477\pi\)
−0.848472 + 0.529240i \(0.822477\pi\)
\(840\) 0 0
\(841\) 1.34110e13 0.924444
\(842\) 9.11205e11i 0.0624757i
\(843\) 0 0
\(844\) −2.88589e12 −0.195767
\(845\) 1.66541e13 1.12374
\(846\) 0 0
\(847\) −4.26521e12 + 1.38100e13i −0.284751 + 0.921971i
\(848\) 8.81698e12i 0.585516i
\(849\) 0 0
\(850\) 1.19128e12i 0.0782763i
\(851\) 1.27466e13i 0.833128i
\(852\) 0 0
\(853\) 2.56288e12i 0.165752i −0.996560 0.0828758i \(-0.973590\pi\)
0.996560 0.0828758i \(-0.0264105\pi\)
\(854\) 1.56191e12 5.05720e12i 0.100484 0.325349i
\(855\) 0 0
\(856\) −2.33225e13 −1.48472
\(857\) −9.94658e12 −0.629883 −0.314942 0.949111i \(-0.601985\pi\)
−0.314942 + 0.949111i \(0.601985\pi\)
\(858\) 0 0
\(859\) 8.41384e12i 0.527260i −0.964624 0.263630i \(-0.915080\pi\)
0.964624 0.263630i \(-0.0849198\pi\)
\(860\) −3.78245e12 −0.235792
\(861\) 0 0
\(862\) −9.45172e12 −0.583080
\(863\) 5.22459e12i 0.320630i −0.987066 0.160315i \(-0.948749\pi\)
0.987066 0.160315i \(-0.0512510\pi\)
\(864\) 0 0
\(865\) 1.30091e13 0.790089
\(866\) −1.74005e12 −0.105131
\(867\) 0 0
\(868\) 4.64074e12 + 1.43329e12i 0.277491 + 0.0857030i
\(869\) 2.60127e11i 0.0154738i
\(870\) 0 0
\(871\) 5.09288e13i 2.99835i
\(872\) 1.59989e13i 0.937059i
\(873\) 0 0
\(874\) 7.17903e12i 0.416164i
\(875\) 4.57662e11 1.48183e12i 0.0263942 0.0854596i
\(876\) 0 0
\(877\) 1.09318e13 0.624010 0.312005 0.950080i \(-0.398999\pi\)
0.312005 + 0.950080i \(0.398999\pi\)
\(878\) −5.89037e12 −0.334516
\(879\) 0 0
\(880\) 6.92925e11i 0.0389506i
\(881\) 7.78847e12 0.435573 0.217786 0.975996i \(-0.430116\pi\)
0.217786 + 0.975996i \(0.430116\pi\)
\(882\) 0 0
\(883\) 2.98937e13 1.65484 0.827420 0.561584i \(-0.189808\pi\)
0.827420 + 0.561584i \(0.189808\pi\)
\(884\) 2.47155e13i 1.36124i
\(885\) 0 0
\(886\) −6.10996e12 −0.333109
\(887\) −6.46135e12 −0.350483 −0.175241 0.984525i \(-0.556071\pi\)
−0.175241 + 0.984525i \(0.556071\pi\)
\(888\) 0 0
\(889\) 6.23729e12 2.01952e13i 0.334918 1.08440i
\(890\) 4.58877e12i 0.245155i
\(891\) 0 0
\(892\) 7.76757e12i 0.410812i
\(893\) 7.20809e12i 0.379305i
\(894\) 0 0
\(895\) 8.74667e12i 0.455658i
\(896\) 1.85534e13 + 5.73023e12i 0.961697 + 0.297020i
\(897\) 0 0
\(898\) −2.62214e12 −0.134559
\(899\) 1.93104e12 0.0985989
\(900\) 0 0
\(901\) 2.23361e13i 1.12914i
\(902\) −4.11433e11 −0.0206952
\(903\) 0 0
\(904\) −4.99935e12 −0.248975
\(905\) 3.29224e12i 0.163145i
\(906\) 0 0
\(907\) 2.86046e13 1.40347 0.701734 0.712439i \(-0.252409\pi\)
0.701734 + 0.712439i \(0.252409\pi\)
\(908\) 3.87237e12 0.189056
\(909\) 0 0
\(910\) 2.23240e12 7.22811e12i 0.107916 0.349413i
\(911\) 2.18144e13i 1.04933i −0.851309 0.524664i \(-0.824191\pi\)
0.851309 0.524664i \(-0.175809\pi\)
\(912\) 0 0
\(913\) 3.48556e12i 0.166017i
\(914\) 6.05979e12i 0.287210i
\(915\) 0 0
\(916\) 9.37695e12i 0.440080i
\(917\) 3.31052e12 1.07189e13i 0.154609 0.500595i
\(918\) 0 0
\(919\) −1.86500e13 −0.862500 −0.431250 0.902232i \(-0.641927\pi\)
−0.431250 + 0.902232i \(0.641927\pi\)
\(920\) 6.00734e12 0.276463
\(921\) 0 0
\(922\) 1.64785e13i 0.750978i
\(923\) −5.73118e13 −2.59918
\(924\) 0 0
\(925\) −4.73843e12 −0.212812
\(926\) 6.57394e12i 0.293817i
\(927\) 0 0
\(928\) 6.16352e12 0.272811
\(929\) 1.90907e13 0.840912 0.420456 0.907313i \(-0.361870\pi\)
0.420456 + 0.907313i \(0.361870\pi\)
\(930\) 0 0
\(931\) 1.57477e13 2.30623e13i 0.686980 1.00607i
\(932\) 8.54989e12i 0.371184i
\(933\) 0 0
\(934\) 1.23532e12i 0.0531151i
\(935\) 1.75539e12i 0.0751143i
\(936\) 0 0
\(937\) 5.62619e12i 0.238444i 0.992868 + 0.119222i \(0.0380400\pi\)
−0.992868 + 0.119222i \(0.961960\pi\)
\(938\) −1.58114e13 4.88335e12i −0.666895 0.205971i
\(939\) 0 0
\(940\) −2.69860e12 −0.112736
\(941\) 3.77421e13 1.56918 0.784590 0.620015i \(-0.212874\pi\)
0.784590 + 0.620015i \(0.212874\pi\)
\(942\) 0 0
\(943\) 4.81662e12i 0.198354i
\(944\) 3.24562e11 0.0133022
\(945\) 0 0
\(946\) 1.31041e12 0.0531981
\(947\) 3.22230e13i 1.30194i 0.759104 + 0.650970i \(0.225638\pi\)
−0.759104 + 0.650970i \(0.774362\pi\)
\(948\) 0 0
\(949\) 5.33261e13 2.13423
\(950\) 2.66873e12 0.106304
\(951\) 0 0
\(952\) 1.71504e13 + 5.29691e12i 0.676720 + 0.209005i
\(953\) 4.85657e13i 1.90727i −0.300970 0.953634i \(-0.597310\pi\)
0.300970 0.953634i \(-0.402690\pi\)
\(954\) 0 0
\(955\) 1.60157e13i 0.623061i
\(956\) 1.08649e13i 0.420694i
\(957\) 0 0
\(958\) 2.11165e13i 0.809984i
\(959\) −1.55772e13 4.81102e12i −0.594711 0.183676i
\(960\) 0 0
\(961\) 2.30376e13 0.871330
\(962\) −2.31133e13 −0.870110
\(963\) 0 0
\(964\) 1.69145e13i 0.630830i
\(965\) 1.21958e13 0.452728
\(966\) 0 0
\(967\) 4.61088e13 1.69576 0.847880 0.530188i \(-0.177879\pi\)
0.847880 + 0.530188i \(0.177879\pi\)
\(968\) 2.08122e13i 0.761865i
\(969\) 0 0
\(970\) −3.46402e12 −0.125634
\(971\) 2.36455e13 0.853615 0.426807 0.904343i \(-0.359638\pi\)
0.426807 + 0.904343i \(0.359638\pi\)
\(972\) 0 0
\(973\) 3.22844e13 + 9.97102e12i 1.15474 + 0.356641i
\(974\) 3.32297e12i 0.118307i
\(975\) 0 0
\(976\) 1.02916e13i 0.363043i
\(977\) 3.41278e13i 1.19835i 0.800619 + 0.599173i \(0.204504\pi\)
−0.800619 + 0.599173i \(0.795496\pi\)
\(978\) 0 0
\(979\) 6.76169e12i 0.235252i
\(980\) 8.63416e12 + 5.89570e12i 0.299022 + 0.204182i
\(981\) 0 0
\(982\) 3.95480e10 0.00135713
\(983\) −1.43069e13 −0.488715 −0.244357 0.969685i \(-0.578577\pi\)
−0.244357 + 0.969685i \(0.578577\pi\)
\(984\) 0 0
\(985\) 2.39376e13i 0.810247i
\(986\) 3.19286e12 0.107581
\(987\) 0 0
\(988\) −5.53680e13 −1.84864
\(989\) 1.53409e13i 0.509878i
\(990\) 0 0
\(991\) −3.24032e12 −0.106723 −0.0533614 0.998575i \(-0.516994\pi\)
−0.0533614 + 0.998575i \(0.516994\pi\)
\(992\) −1.08585e13 −0.356014
\(993\) 0 0
\(994\) −5.49539e12 + 1.77931e13i −0.178550 + 0.578113i
\(995\) 1.55290e12i 0.0502274i
\(996\) 0 0
\(997\) 2.28403e13i 0.732105i 0.930594 + 0.366053i \(0.119291\pi\)
−0.930594 + 0.366053i \(0.880709\pi\)
\(998\) 1.20619e13i 0.384883i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.b.a.251.20 48
3.2 odd 2 315.10.b.b.251.29 yes 48
7.6 odd 2 315.10.b.b.251.20 yes 48
21.20 even 2 inner 315.10.b.a.251.29 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.10.b.a.251.20 48 1.1 even 1 trivial
315.10.b.a.251.29 yes 48 21.20 even 2 inner
315.10.b.b.251.20 yes 48 7.6 odd 2
315.10.b.b.251.29 yes 48 3.2 odd 2