Properties

Label 315.10.b.b.251.43
Level $315$
Weight $10$
Character 315.251
Analytic conductor $162.236$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(251,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.251");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.43
Character \(\chi\) \(=\) 315.251
Dual form 315.10.b.b.251.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+38.0944i q^{2} -939.186 q^{4} +625.000 q^{5} +(-1841.41 + 6079.71i) q^{7} -16273.4i q^{8} +23809.0i q^{10} -84202.7i q^{11} +42662.6i q^{13} +(-231603. - 70147.3i) q^{14} +139063. q^{16} +337476. q^{17} +852828. i q^{19} -586991. q^{20} +3.20765e6 q^{22} -1.66390e6i q^{23} +390625. q^{25} -1.62521e6 q^{26} +(1.72942e6 - 5.70997e6i) q^{28} -1.11114e6i q^{29} +1.50291e6i q^{31} -3.03446e6i q^{32} +1.28559e7i q^{34} +(-1.15088e6 + 3.79982e6i) q^{35} +1.30751e7 q^{37} -3.24880e7 q^{38} -1.01709e7i q^{40} +1.50066e7 q^{41} -1.55380e7 q^{43} +7.90820e7i q^{44} +6.33852e7 q^{46} +2.26851e7 q^{47} +(-3.35721e7 - 2.23904e7i) q^{49} +1.48806e7i q^{50} -4.00681e7i q^{52} +3.52198e7i q^{53} -5.26267e7i q^{55} +(9.89375e7 + 2.99659e7i) q^{56} +4.23284e7 q^{58} +1.20666e8 q^{59} +1.46514e8i q^{61} -5.72524e7 q^{62} +1.86796e8 q^{64} +2.66641e7i q^{65} -4.59585e7 q^{67} -3.16952e8 q^{68} +(-1.44752e8 - 4.38421e7i) q^{70} +2.61665e8i q^{71} +1.84075e7i q^{73} +4.98090e8i q^{74} -8.00964e8i q^{76} +(5.11928e8 + 1.55051e8i) q^{77} +5.41476e8 q^{79} +8.69142e7 q^{80} +5.71670e8i q^{82} +1.05895e8 q^{83} +2.10922e8 q^{85} -5.91910e8i q^{86} -1.37026e9 q^{88} -4.37433e8 q^{89} +(-2.59376e8 - 7.85591e7i) q^{91} +1.56271e9i q^{92} +8.64175e8i q^{94} +5.33017e8i q^{95} -2.49633e7i q^{97} +(8.52950e8 - 1.27891e9i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12288 q^{4} + 30000 q^{5} + 1824 q^{7} - 442908 q^{14} + 3258948 q^{16} - 7680000 q^{20} - 2860668 q^{22} + 18750000 q^{25} + 5432976 q^{26} - 3685092 q^{28} + 1140000 q^{35} + 7750344 q^{37} - 17423136 q^{38}+ \cdots + 2546372484 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 38.0944i 1.68355i 0.539827 + 0.841776i \(0.318490\pi\)
−0.539827 + 0.841776i \(0.681510\pi\)
\(3\) 0 0
\(4\) −939.186 −1.83435
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) −1841.41 + 6079.71i −0.289874 + 0.957065i
\(8\) 16273.4i 1.40467i
\(9\) 0 0
\(10\) 23809.0i 0.752907i
\(11\) 84202.7i 1.73404i −0.498274 0.867020i \(-0.666033\pi\)
0.498274 0.867020i \(-0.333967\pi\)
\(12\) 0 0
\(13\) 42662.6i 0.414287i 0.978311 + 0.207144i \(0.0664168\pi\)
−0.978311 + 0.207144i \(0.933583\pi\)
\(14\) −231603. 70147.3i −1.61127 0.488017i
\(15\) 0 0
\(16\) 139063. 0.530482
\(17\) 337476. 0.979992 0.489996 0.871725i \(-0.336998\pi\)
0.489996 + 0.871725i \(0.336998\pi\)
\(18\) 0 0
\(19\) 852828.i 1.50131i 0.660695 + 0.750655i \(0.270262\pi\)
−0.660695 + 0.750655i \(0.729738\pi\)
\(20\) −586991. −0.820345
\(21\) 0 0
\(22\) 3.20765e6 2.91935
\(23\) 1.66390e6i 1.23980i −0.784682 0.619899i \(-0.787174\pi\)
0.784682 0.619899i \(-0.212826\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −1.62521e6 −0.697474
\(27\) 0 0
\(28\) 1.72942e6 5.70997e6i 0.531729 1.75559i
\(29\) 1.11114e6i 0.291729i −0.989305 0.145864i \(-0.953404\pi\)
0.989305 0.145864i \(-0.0465963\pi\)
\(30\) 0 0
\(31\) 1.50291e6i 0.292284i 0.989264 + 0.146142i \(0.0466856\pi\)
−0.989264 + 0.146142i \(0.953314\pi\)
\(32\) 3.03446e6i 0.511572i
\(33\) 0 0
\(34\) 1.28559e7i 1.64987i
\(35\) −1.15088e6 + 3.79982e6i −0.129635 + 0.428012i
\(36\) 0 0
\(37\) 1.30751e7 1.14693 0.573467 0.819229i \(-0.305598\pi\)
0.573467 + 0.819229i \(0.305598\pi\)
\(38\) −3.24880e7 −2.52753
\(39\) 0 0
\(40\) 1.01709e7i 0.628186i
\(41\) 1.50066e7 0.829385 0.414693 0.909962i \(-0.363889\pi\)
0.414693 + 0.909962i \(0.363889\pi\)
\(42\) 0 0
\(43\) −1.55380e7 −0.693085 −0.346542 0.938034i \(-0.612644\pi\)
−0.346542 + 0.938034i \(0.612644\pi\)
\(44\) 7.90820e7i 3.18083i
\(45\) 0 0
\(46\) 6.33852e7 2.08726
\(47\) 2.26851e7 0.678110 0.339055 0.940767i \(-0.389893\pi\)
0.339055 + 0.940767i \(0.389893\pi\)
\(48\) 0 0
\(49\) −3.35721e7 2.23904e7i −0.831947 0.554856i
\(50\) 1.48806e7i 0.336710i
\(51\) 0 0
\(52\) 4.00681e7i 0.759947i
\(53\) 3.52198e7i 0.613119i 0.951851 + 0.306560i \(0.0991779\pi\)
−0.951851 + 0.306560i \(0.900822\pi\)
\(54\) 0 0
\(55\) 5.26267e7i 0.775486i
\(56\) 9.89375e7 + 2.99659e7i 1.34436 + 0.407176i
\(57\) 0 0
\(58\) 4.23284e7 0.491140
\(59\) 1.20666e8 1.29643 0.648217 0.761456i \(-0.275515\pi\)
0.648217 + 0.761456i \(0.275515\pi\)
\(60\) 0 0
\(61\) 1.46514e8i 1.35486i 0.735586 + 0.677431i \(0.236907\pi\)
−0.735586 + 0.677431i \(0.763093\pi\)
\(62\) −5.72524e7 −0.492075
\(63\) 0 0
\(64\) 1.86796e8 1.39174
\(65\) 2.66641e7i 0.185275i
\(66\) 0 0
\(67\) −4.59585e7 −0.278631 −0.139315 0.990248i \(-0.544490\pi\)
−0.139315 + 0.990248i \(0.544490\pi\)
\(68\) −3.16952e8 −1.79765
\(69\) 0 0
\(70\) −1.44752e8 4.38421e7i −0.720581 0.218248i
\(71\) 2.61665e8i 1.22203i 0.791617 + 0.611017i \(0.209239\pi\)
−0.791617 + 0.611017i \(0.790761\pi\)
\(72\) 0 0
\(73\) 1.84075e7i 0.0758653i 0.999280 + 0.0379326i \(0.0120772\pi\)
−0.999280 + 0.0379326i \(0.987923\pi\)
\(74\) 4.98090e8i 1.93092i
\(75\) 0 0
\(76\) 8.00964e8i 2.75392i
\(77\) 5.11928e8 + 1.55051e8i 1.65959 + 0.502652i
\(78\) 0 0
\(79\) 5.41476e8 1.56407 0.782037 0.623232i \(-0.214181\pi\)
0.782037 + 0.623232i \(0.214181\pi\)
\(80\) 8.69142e7 0.237239
\(81\) 0 0
\(82\) 5.71670e8i 1.39631i
\(83\) 1.05895e8 0.244920 0.122460 0.992473i \(-0.460922\pi\)
0.122460 + 0.992473i \(0.460922\pi\)
\(84\) 0 0
\(85\) 2.10922e8 0.438266
\(86\) 5.91910e8i 1.16684i
\(87\) 0 0
\(88\) −1.37026e9 −2.43575
\(89\) −4.37433e8 −0.739020 −0.369510 0.929227i \(-0.620475\pi\)
−0.369510 + 0.929227i \(0.620475\pi\)
\(90\) 0 0
\(91\) −2.59376e8 7.85591e7i −0.396500 0.120091i
\(92\) 1.56271e9i 2.27422i
\(93\) 0 0
\(94\) 8.64175e8i 1.14163i
\(95\) 5.33017e8i 0.671406i
\(96\) 0 0
\(97\) 2.49633e7i 0.0286305i −0.999898 0.0143153i \(-0.995443\pi\)
0.999898 0.0143153i \(-0.00455685\pi\)
\(98\) 8.52950e8 1.27891e9i 0.934128 1.40063i
\(99\) 0 0
\(100\) −3.66869e8 −0.366869
\(101\) 5.12779e7 0.0490325 0.0245163 0.999699i \(-0.492195\pi\)
0.0245163 + 0.999699i \(0.492195\pi\)
\(102\) 0 0
\(103\) 1.53085e9i 1.34019i 0.742277 + 0.670093i \(0.233746\pi\)
−0.742277 + 0.670093i \(0.766254\pi\)
\(104\) 6.94265e8 0.581936
\(105\) 0 0
\(106\) −1.34168e9 −1.03222
\(107\) 4.51557e8i 0.333032i −0.986039 0.166516i \(-0.946748\pi\)
0.986039 0.166516i \(-0.0532517\pi\)
\(108\) 0 0
\(109\) −1.72072e9 −1.16759 −0.583797 0.811899i \(-0.698434\pi\)
−0.583797 + 0.811899i \(0.698434\pi\)
\(110\) 2.00478e9 1.30557
\(111\) 0 0
\(112\) −2.56071e8 + 8.45461e8i −0.153773 + 0.507706i
\(113\) 1.77082e9i 1.02170i 0.859671 + 0.510848i \(0.170669\pi\)
−0.859671 + 0.510848i \(0.829331\pi\)
\(114\) 0 0
\(115\) 1.03993e9i 0.554454i
\(116\) 1.04357e9i 0.535132i
\(117\) 0 0
\(118\) 4.59670e9i 2.18261i
\(119\) −6.21430e8 + 2.05175e9i −0.284074 + 0.937916i
\(120\) 0 0
\(121\) −4.73215e9 −2.00689
\(122\) −5.58137e9 −2.28098
\(123\) 0 0
\(124\) 1.41151e9i 0.536150i
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) −4.13404e9 −1.41012 −0.705062 0.709145i \(-0.749081\pi\)
−0.705062 + 0.709145i \(0.749081\pi\)
\(128\) 5.56225e9i 1.83150i
\(129\) 0 0
\(130\) −1.01575e9 −0.311920
\(131\) −8.73121e8 −0.259032 −0.129516 0.991577i \(-0.541342\pi\)
−0.129516 + 0.991577i \(0.541342\pi\)
\(132\) 0 0
\(133\) −5.18494e9 1.57040e9i −1.43685 0.435190i
\(134\) 1.75076e9i 0.469089i
\(135\) 0 0
\(136\) 5.49188e9i 1.37656i
\(137\) 2.57450e9i 0.624382i −0.950019 0.312191i \(-0.898937\pi\)
0.950019 0.312191i \(-0.101063\pi\)
\(138\) 0 0
\(139\) 6.52630e9i 1.48286i 0.671030 + 0.741430i \(0.265852\pi\)
−0.671030 + 0.741430i \(0.734148\pi\)
\(140\) 1.08089e9 3.56873e9i 0.237796 0.785123i
\(141\) 0 0
\(142\) −9.96799e9 −2.05736
\(143\) 3.59230e9 0.718391
\(144\) 0 0
\(145\) 6.94465e8i 0.130465i
\(146\) −7.01225e8 −0.127723
\(147\) 0 0
\(148\) −1.22800e10 −2.10387
\(149\) 9.44902e8i 0.157054i 0.996912 + 0.0785269i \(0.0250216\pi\)
−0.996912 + 0.0785269i \(0.974978\pi\)
\(150\) 0 0
\(151\) −1.32097e9 −0.206775 −0.103388 0.994641i \(-0.532968\pi\)
−0.103388 + 0.994641i \(0.532968\pi\)
\(152\) 1.38784e10 2.10884
\(153\) 0 0
\(154\) −5.90660e9 + 1.95016e10i −0.846241 + 2.79400i
\(155\) 9.39317e8i 0.130713i
\(156\) 0 0
\(157\) 1.12248e10i 1.47445i −0.675645 0.737227i \(-0.736135\pi\)
0.675645 0.737227i \(-0.263865\pi\)
\(158\) 2.06272e10i 2.63320i
\(159\) 0 0
\(160\) 1.89654e9i 0.228782i
\(161\) 1.01160e10 + 3.06391e9i 1.18657 + 0.359384i
\(162\) 0 0
\(163\) 1.49926e10 1.66353 0.831767 0.555125i \(-0.187330\pi\)
0.831767 + 0.555125i \(0.187330\pi\)
\(164\) −1.40940e10 −1.52138
\(165\) 0 0
\(166\) 4.03400e9i 0.412335i
\(167\) 3.60836e9 0.358993 0.179496 0.983759i \(-0.442553\pi\)
0.179496 + 0.983759i \(0.442553\pi\)
\(168\) 0 0
\(169\) 8.78441e9 0.828366
\(170\) 8.03497e9i 0.737843i
\(171\) 0 0
\(172\) 1.45930e10 1.27136
\(173\) −1.98627e10 −1.68590 −0.842949 0.537993i \(-0.819183\pi\)
−0.842949 + 0.537993i \(0.819183\pi\)
\(174\) 0 0
\(175\) −7.19299e8 + 2.37489e9i −0.0579747 + 0.191413i
\(176\) 1.17095e10i 0.919877i
\(177\) 0 0
\(178\) 1.66638e10i 1.24418i
\(179\) 1.27350e10i 0.927174i −0.886051 0.463587i \(-0.846562\pi\)
0.886051 0.463587i \(-0.153438\pi\)
\(180\) 0 0
\(181\) 7.85158e8i 0.0543756i −0.999630 0.0271878i \(-0.991345\pi\)
0.999630 0.0271878i \(-0.00865521\pi\)
\(182\) 2.99266e9 9.88077e9i 0.202179 0.667528i
\(183\) 0 0
\(184\) −2.70772e10 −1.74150
\(185\) 8.17196e9 0.512924
\(186\) 0 0
\(187\) 2.84164e10i 1.69934i
\(188\) −2.13055e10 −1.24389
\(189\) 0 0
\(190\) −2.03050e10 −1.13035
\(191\) 2.37307e10i 1.29021i −0.764093 0.645106i \(-0.776813\pi\)
0.764093 0.645106i \(-0.223187\pi\)
\(192\) 0 0
\(193\) 1.38650e9 0.0719306 0.0359653 0.999353i \(-0.488549\pi\)
0.0359653 + 0.999353i \(0.488549\pi\)
\(194\) 9.50964e8 0.0482010
\(195\) 0 0
\(196\) 3.15304e10 + 2.10288e10i 1.52608 + 1.01780i
\(197\) 1.95840e10i 0.926411i 0.886251 + 0.463205i \(0.153301\pi\)
−0.886251 + 0.463205i \(0.846699\pi\)
\(198\) 0 0
\(199\) 1.54831e10i 0.699875i 0.936773 + 0.349937i \(0.113797\pi\)
−0.936773 + 0.349937i \(0.886203\pi\)
\(200\) 6.35680e9i 0.280933i
\(201\) 0 0
\(202\) 1.95340e9i 0.0825488i
\(203\) 6.75543e9 + 2.04607e9i 0.279203 + 0.0845644i
\(204\) 0 0
\(205\) 9.37915e9 0.370912
\(206\) −5.83169e10 −2.25627
\(207\) 0 0
\(208\) 5.93277e9i 0.219772i
\(209\) 7.18104e10 2.60333
\(210\) 0 0
\(211\) 4.15394e10 1.44274 0.721371 0.692549i \(-0.243512\pi\)
0.721371 + 0.692549i \(0.243512\pi\)
\(212\) 3.30779e10i 1.12467i
\(213\) 0 0
\(214\) 1.72018e10 0.560676
\(215\) −9.71123e9 −0.309957
\(216\) 0 0
\(217\) −9.13724e9 2.76746e9i −0.279735 0.0847253i
\(218\) 6.55500e10i 1.96571i
\(219\) 0 0
\(220\) 4.94262e10i 1.42251i
\(221\) 1.43976e10i 0.405998i
\(222\) 0 0
\(223\) 4.08884e10i 1.10720i 0.832781 + 0.553602i \(0.186747\pi\)
−0.832781 + 0.553602i \(0.813253\pi\)
\(224\) 1.84486e10 + 5.58768e9i 0.489608 + 0.148291i
\(225\) 0 0
\(226\) −6.74584e10 −1.72008
\(227\) −3.06705e9 −0.0766664 −0.0383332 0.999265i \(-0.512205\pi\)
−0.0383332 + 0.999265i \(0.512205\pi\)
\(228\) 0 0
\(229\) 7.70544e10i 1.85156i 0.378062 + 0.925780i \(0.376591\pi\)
−0.378062 + 0.925780i \(0.623409\pi\)
\(230\) 3.96157e10 0.933453
\(231\) 0 0
\(232\) −1.80821e10 −0.409782
\(233\) 1.35023e10i 0.300127i 0.988676 + 0.150064i \(0.0479478\pi\)
−0.988676 + 0.150064i \(0.952052\pi\)
\(234\) 0 0
\(235\) 1.41782e10 0.303260
\(236\) −1.13328e11 −2.37811
\(237\) 0 0
\(238\) −7.81604e10 2.36730e10i −1.57903 0.478253i
\(239\) 3.98522e10i 0.790064i −0.918667 0.395032i \(-0.870734\pi\)
0.918667 0.395032i \(-0.129266\pi\)
\(240\) 0 0
\(241\) 1.02086e11i 1.94936i −0.223612 0.974678i \(-0.571785\pi\)
0.223612 0.974678i \(-0.428215\pi\)
\(242\) 1.80268e11i 3.37871i
\(243\) 0 0
\(244\) 1.37604e11i 2.48529i
\(245\) −2.09825e10 1.39940e10i −0.372058 0.248139i
\(246\) 0 0
\(247\) −3.63838e10 −0.621974
\(248\) 2.44574e10 0.410561
\(249\) 0 0
\(250\) 9.30040e9i 0.150581i
\(251\) −6.84821e10 −1.08904 −0.544522 0.838747i \(-0.683289\pi\)
−0.544522 + 0.838747i \(0.683289\pi\)
\(252\) 0 0
\(253\) −1.40105e11 −2.14986
\(254\) 1.57484e11i 2.37402i
\(255\) 0 0
\(256\) −1.16251e11 −1.69168
\(257\) −1.34746e11 −1.92671 −0.963354 0.268234i \(-0.913560\pi\)
−0.963354 + 0.268234i \(0.913560\pi\)
\(258\) 0 0
\(259\) −2.40766e10 + 7.94929e10i −0.332466 + 1.09769i
\(260\) 2.50425e10i 0.339859i
\(261\) 0 0
\(262\) 3.32610e10i 0.436094i
\(263\) 9.76583e10i 1.25866i −0.777138 0.629330i \(-0.783329\pi\)
0.777138 0.629330i \(-0.216671\pi\)
\(264\) 0 0
\(265\) 2.20124e10i 0.274195i
\(266\) 5.98236e10 1.97517e11i 0.732665 2.41901i
\(267\) 0 0
\(268\) 4.31635e10 0.511105
\(269\) 1.40523e11 1.63629 0.818147 0.575009i \(-0.195001\pi\)
0.818147 + 0.575009i \(0.195001\pi\)
\(270\) 0 0
\(271\) 5.84926e8i 0.00658778i 0.999995 + 0.00329389i \(0.00104848\pi\)
−0.999995 + 0.00329389i \(0.998952\pi\)
\(272\) 4.69303e10 0.519868
\(273\) 0 0
\(274\) 9.80740e10 1.05118
\(275\) 3.28917e10i 0.346808i
\(276\) 0 0
\(277\) −4.68309e10 −0.477941 −0.238970 0.971027i \(-0.576810\pi\)
−0.238970 + 0.971027i \(0.576810\pi\)
\(278\) −2.48616e11 −2.49647
\(279\) 0 0
\(280\) 6.18359e10 + 1.87287e10i 0.601215 + 0.182095i
\(281\) 5.07549e10i 0.485623i 0.970073 + 0.242812i \(0.0780697\pi\)
−0.970073 + 0.242812i \(0.921930\pi\)
\(282\) 0 0
\(283\) 6.30599e10i 0.584406i −0.956356 0.292203i \(-0.905612\pi\)
0.956356 0.292203i \(-0.0943883\pi\)
\(284\) 2.45752e11i 2.24164i
\(285\) 0 0
\(286\) 1.36847e11i 1.20945i
\(287\) −2.76333e10 + 9.12360e10i −0.240417 + 0.793775i
\(288\) 0 0
\(289\) −4.69796e9 −0.0396159
\(290\) 2.64552e10 0.219645
\(291\) 0 0
\(292\) 1.72881e10i 0.139163i
\(293\) −1.90956e11 −1.51366 −0.756831 0.653611i \(-0.773253\pi\)
−0.756831 + 0.653611i \(0.773253\pi\)
\(294\) 0 0
\(295\) 7.54162e10 0.579783
\(296\) 2.12777e11i 1.61106i
\(297\) 0 0
\(298\) −3.59955e10 −0.264408
\(299\) 7.09860e10 0.513633
\(300\) 0 0
\(301\) 2.86117e10 9.44663e10i 0.200907 0.663327i
\(302\) 5.03218e10i 0.348117i
\(303\) 0 0
\(304\) 1.18597e11i 0.796418i
\(305\) 9.15713e10i 0.605913i
\(306\) 0 0
\(307\) 2.40435e11i 1.54481i 0.635131 + 0.772404i \(0.280946\pi\)
−0.635131 + 0.772404i \(0.719054\pi\)
\(308\) −4.80795e11 1.45622e11i −3.04426 0.922038i
\(309\) 0 0
\(310\) −3.57828e10 −0.220063
\(311\) 2.26474e11 1.37277 0.686384 0.727239i \(-0.259197\pi\)
0.686384 + 0.727239i \(0.259197\pi\)
\(312\) 0 0
\(313\) 7.18510e10i 0.423140i −0.977363 0.211570i \(-0.932142\pi\)
0.977363 0.211570i \(-0.0678576\pi\)
\(314\) 4.27603e11 2.48232
\(315\) 0 0
\(316\) −5.08547e11 −2.86906
\(317\) 2.51383e11i 1.39820i 0.715024 + 0.699100i \(0.246416\pi\)
−0.715024 + 0.699100i \(0.753584\pi\)
\(318\) 0 0
\(319\) −9.35613e10 −0.505869
\(320\) 1.16748e11 0.622405
\(321\) 0 0
\(322\) −1.16718e11 + 3.85363e11i −0.605042 + 1.99765i
\(323\) 2.87809e11i 1.47127i
\(324\) 0 0
\(325\) 1.66651e10i 0.0828575i
\(326\) 5.71133e11i 2.80065i
\(327\) 0 0
\(328\) 2.44209e11i 1.16501i
\(329\) −4.17725e10 + 1.37919e11i −0.196566 + 0.648995i
\(330\) 0 0
\(331\) 3.02578e11 1.38552 0.692758 0.721170i \(-0.256396\pi\)
0.692758 + 0.721170i \(0.256396\pi\)
\(332\) −9.94549e10 −0.449267
\(333\) 0 0
\(334\) 1.37458e11i 0.604383i
\(335\) −2.87240e10 −0.124607
\(336\) 0 0
\(337\) 9.07356e9 0.0383216 0.0191608 0.999816i \(-0.493901\pi\)
0.0191608 + 0.999816i \(0.493901\pi\)
\(338\) 3.34637e11i 1.39460i
\(339\) 0 0
\(340\) −1.98095e11 −0.803931
\(341\) 1.26549e11 0.506832
\(342\) 0 0
\(343\) 1.97947e11 1.62878e11i 0.772192 0.635389i
\(344\) 2.52856e11i 0.973553i
\(345\) 0 0
\(346\) 7.56659e11i 2.83830i
\(347\) 1.76345e11i 0.652953i 0.945205 + 0.326476i \(0.105861\pi\)
−0.945205 + 0.326476i \(0.894139\pi\)
\(348\) 0 0
\(349\) 4.88457e11i 1.76243i 0.472716 + 0.881215i \(0.343274\pi\)
−0.472716 + 0.881215i \(0.656726\pi\)
\(350\) −9.04699e10 2.74013e10i −0.322254 0.0976034i
\(351\) 0 0
\(352\) −2.55510e11 −0.887086
\(353\) 1.41645e11 0.485530 0.242765 0.970085i \(-0.421946\pi\)
0.242765 + 0.970085i \(0.421946\pi\)
\(354\) 0 0
\(355\) 1.63541e11i 0.546511i
\(356\) 4.10831e11 1.35562
\(357\) 0 0
\(358\) 4.85134e11 1.56095
\(359\) 2.96641e11i 0.942555i 0.881985 + 0.471278i \(0.156207\pi\)
−0.881985 + 0.471278i \(0.843793\pi\)
\(360\) 0 0
\(361\) −4.04628e11 −1.25393
\(362\) 2.99102e10 0.0915441
\(363\) 0 0
\(364\) 2.43602e11 + 7.37816e10i 0.727319 + 0.220288i
\(365\) 1.15047e10i 0.0339280i
\(366\) 0 0
\(367\) 4.07579e11i 1.17277i −0.810031 0.586387i \(-0.800550\pi\)
0.810031 0.586387i \(-0.199450\pi\)
\(368\) 2.31386e11i 0.657691i
\(369\) 0 0
\(370\) 3.11306e11i 0.863535i
\(371\) −2.14126e11 6.48539e10i −0.586795 0.177727i
\(372\) 0 0
\(373\) −2.59429e11 −0.693951 −0.346975 0.937874i \(-0.612791\pi\)
−0.346975 + 0.937874i \(0.612791\pi\)
\(374\) 1.08251e12 2.86093
\(375\) 0 0
\(376\) 3.69163e11i 0.952518i
\(377\) 4.74042e10 0.120860
\(378\) 0 0
\(379\) −5.97278e11 −1.48696 −0.743481 0.668757i \(-0.766827\pi\)
−0.743481 + 0.668757i \(0.766827\pi\)
\(380\) 5.00602e11i 1.23159i
\(381\) 0 0
\(382\) 9.04009e11 2.17214
\(383\) −1.37020e11 −0.325378 −0.162689 0.986677i \(-0.552017\pi\)
−0.162689 + 0.986677i \(0.552017\pi\)
\(384\) 0 0
\(385\) 3.19955e11 + 9.69071e10i 0.742190 + 0.224793i
\(386\) 5.28181e10i 0.121099i
\(387\) 0 0
\(388\) 2.34452e10i 0.0525184i
\(389\) 5.41587e11i 1.19921i −0.800296 0.599605i \(-0.795324\pi\)
0.800296 0.599605i \(-0.204676\pi\)
\(390\) 0 0
\(391\) 5.61524e11i 1.21499i
\(392\) −3.64368e11 + 5.46331e11i −0.779387 + 1.16861i
\(393\) 0 0
\(394\) −7.46042e11 −1.55966
\(395\) 3.38423e11 0.699475
\(396\) 0 0
\(397\) 6.47113e11i 1.30744i 0.756735 + 0.653722i \(0.226793\pi\)
−0.756735 + 0.653722i \(0.773207\pi\)
\(398\) −5.89821e11 −1.17828
\(399\) 0 0
\(400\) 5.43214e10 0.106096
\(401\) 7.73138e11i 1.49316i 0.665294 + 0.746582i \(0.268306\pi\)
−0.665294 + 0.746582i \(0.731694\pi\)
\(402\) 0 0
\(403\) −6.41179e10 −0.121089
\(404\) −4.81595e10 −0.0899427
\(405\) 0 0
\(406\) −7.79438e10 + 2.57344e11i −0.142369 + 0.470053i
\(407\) 1.10096e12i 1.98883i
\(408\) 0 0
\(409\) 2.62991e11i 0.464715i −0.972631 0.232357i \(-0.925356\pi\)
0.972631 0.232357i \(-0.0746438\pi\)
\(410\) 3.57294e11i 0.624450i
\(411\) 0 0
\(412\) 1.43775e12i 2.45837i
\(413\) −2.22195e11 + 7.33613e11i −0.375802 + 1.24077i
\(414\) 0 0
\(415\) 6.61843e10 0.109531
\(416\) 1.29458e11 0.211938
\(417\) 0 0
\(418\) 2.73558e12i 4.38284i
\(419\) −1.26307e11 −0.200200 −0.100100 0.994977i \(-0.531916\pi\)
−0.100100 + 0.994977i \(0.531916\pi\)
\(420\) 0 0
\(421\) −9.03070e11 −1.40104 −0.700522 0.713631i \(-0.747049\pi\)
−0.700522 + 0.713631i \(0.747049\pi\)
\(422\) 1.58242e12i 2.42893i
\(423\) 0 0
\(424\) 5.73145e11 0.861228
\(425\) 1.31826e11 0.195998
\(426\) 0 0
\(427\) −8.90762e11 2.69792e11i −1.29669 0.392739i
\(428\) 4.24096e11i 0.610896i
\(429\) 0 0
\(430\) 3.69944e11i 0.521828i
\(431\) 7.50217e11i 1.04722i 0.851957 + 0.523612i \(0.175416\pi\)
−0.851957 + 0.523612i \(0.824584\pi\)
\(432\) 0 0
\(433\) 1.05920e12i 1.44805i −0.689775 0.724024i \(-0.742290\pi\)
0.689775 0.724024i \(-0.257710\pi\)
\(434\) 1.05425e11 3.48078e11i 0.142639 0.470948i
\(435\) 0 0
\(436\) 1.61608e12 2.14177
\(437\) 1.41902e12 1.86132
\(438\) 0 0
\(439\) 1.46305e12i 1.88004i 0.341117 + 0.940021i \(0.389195\pi\)
−0.341117 + 0.940021i \(0.610805\pi\)
\(440\) −8.56415e11 −1.08930
\(441\) 0 0
\(442\) −5.48468e11 −0.683519
\(443\) 5.76578e11i 0.711281i −0.934623 0.355640i \(-0.884263\pi\)
0.934623 0.355640i \(-0.115737\pi\)
\(444\) 0 0
\(445\) −2.73396e11 −0.330500
\(446\) −1.55762e12 −1.86404
\(447\) 0 0
\(448\) −3.43968e11 + 1.13567e12i −0.403429 + 1.33199i
\(449\) 1.41523e12i 1.64330i 0.569990 + 0.821652i \(0.306947\pi\)
−0.569990 + 0.821652i \(0.693053\pi\)
\(450\) 0 0
\(451\) 1.26360e12i 1.43819i
\(452\) 1.66313e12i 1.87415i
\(453\) 0 0
\(454\) 1.16838e11i 0.129072i
\(455\) −1.62110e11 4.90994e10i −0.177320 0.0537063i
\(456\) 0 0
\(457\) −8.57527e11 −0.919655 −0.459828 0.888008i \(-0.652089\pi\)
−0.459828 + 0.888008i \(0.652089\pi\)
\(458\) −2.93535e12 −3.11720
\(459\) 0 0
\(460\) 9.76692e11i 1.01706i
\(461\) 1.00703e12 1.03846 0.519229 0.854635i \(-0.326219\pi\)
0.519229 + 0.854635i \(0.326219\pi\)
\(462\) 0 0
\(463\) −5.94066e11 −0.600786 −0.300393 0.953815i \(-0.597118\pi\)
−0.300393 + 0.953815i \(0.597118\pi\)
\(464\) 1.54519e11i 0.154757i
\(465\) 0 0
\(466\) −5.14361e11 −0.505279
\(467\) 1.31159e12 1.27607 0.638033 0.770009i \(-0.279749\pi\)
0.638033 + 0.770009i \(0.279749\pi\)
\(468\) 0 0
\(469\) 8.46282e10 2.79414e11i 0.0807676 0.266668i
\(470\) 5.40110e11i 0.510554i
\(471\) 0 0
\(472\) 1.96364e12i 1.82106i
\(473\) 1.30834e12i 1.20184i
\(474\) 0 0
\(475\) 3.33136e11i 0.300262i
\(476\) 5.83638e11 1.92698e12i 0.521090 1.72046i
\(477\) 0 0
\(478\) 1.51815e12 1.33011
\(479\) −1.68046e12 −1.45854 −0.729272 0.684224i \(-0.760141\pi\)
−0.729272 + 0.684224i \(0.760141\pi\)
\(480\) 0 0
\(481\) 5.57818e11i 0.475160i
\(482\) 3.88892e12 3.28184
\(483\) 0 0
\(484\) 4.44437e12 3.68134
\(485\) 1.56021e10i 0.0128040i
\(486\) 0 0
\(487\) 1.37638e12 1.10881 0.554407 0.832246i \(-0.312945\pi\)
0.554407 + 0.832246i \(0.312945\pi\)
\(488\) 2.38428e12 1.90313
\(489\) 0 0
\(490\) 5.33094e11 7.99318e11i 0.417755 0.626379i
\(491\) 1.66072e12i 1.28953i 0.764381 + 0.644764i \(0.223044\pi\)
−0.764381 + 0.644764i \(0.776956\pi\)
\(492\) 0 0
\(493\) 3.74984e11i 0.285892i
\(494\) 1.38602e12i 1.04712i
\(495\) 0 0
\(496\) 2.08999e11i 0.155051i
\(497\) −1.59085e12 4.81832e11i −1.16957 0.354235i
\(498\) 0 0
\(499\) 1.79758e12 1.29788 0.648941 0.760839i \(-0.275212\pi\)
0.648941 + 0.760839i \(0.275212\pi\)
\(500\) −2.29293e11 −0.164069
\(501\) 0 0
\(502\) 2.60879e12i 1.83346i
\(503\) −3.81639e11 −0.265825 −0.132913 0.991128i \(-0.542433\pi\)
−0.132913 + 0.991128i \(0.542433\pi\)
\(504\) 0 0
\(505\) 3.20487e10 0.0219280
\(506\) 5.33720e12i 3.61940i
\(507\) 0 0
\(508\) 3.88263e12 2.58666
\(509\) 1.56092e11 0.103075 0.0515373 0.998671i \(-0.483588\pi\)
0.0515373 + 0.998671i \(0.483588\pi\)
\(510\) 0 0
\(511\) −1.11912e11 3.38958e10i −0.0726080 0.0219913i
\(512\) 1.58065e12i 1.01653i
\(513\) 0 0
\(514\) 5.13306e12i 3.24371i
\(515\) 9.56781e11i 0.599350i
\(516\) 0 0
\(517\) 1.91015e12i 1.17587i
\(518\) −3.02824e12 9.17185e11i −1.84802 0.559723i
\(519\) 0 0
\(520\) 4.33915e11 0.260250
\(521\) 2.23134e12 1.32677 0.663387 0.748277i \(-0.269118\pi\)
0.663387 + 0.748277i \(0.269118\pi\)
\(522\) 0 0
\(523\) 3.05055e12i 1.78288i 0.453143 + 0.891438i \(0.350303\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(524\) 8.20022e11 0.475155
\(525\) 0 0
\(526\) 3.72024e12 2.11902
\(527\) 5.07195e11i 0.286436i
\(528\) 0 0
\(529\) −9.67396e11 −0.537098
\(530\) −8.38548e11 −0.461622
\(531\) 0 0
\(532\) 4.86962e12 + 1.47490e12i 2.63568 + 0.798289i
\(533\) 6.40222e11i 0.343604i
\(534\) 0 0
\(535\) 2.82223e11i 0.148936i
\(536\) 7.47900e11i 0.391383i
\(537\) 0 0
\(538\) 5.35313e12i 2.75479i
\(539\) −1.88533e12 + 2.82686e12i −0.962141 + 1.44263i
\(540\) 0 0
\(541\) −1.89145e11 −0.0949309 −0.0474655 0.998873i \(-0.515114\pi\)
−0.0474655 + 0.998873i \(0.515114\pi\)
\(542\) −2.22824e10 −0.0110909
\(543\) 0 0
\(544\) 1.02406e12i 0.501337i
\(545\) −1.07545e12 −0.522164
\(546\) 0 0
\(547\) 1.08007e12 0.515832 0.257916 0.966167i \(-0.416964\pi\)
0.257916 + 0.966167i \(0.416964\pi\)
\(548\) 2.41793e12i 1.14533i
\(549\) 0 0
\(550\) 1.25299e12 0.583869
\(551\) 9.47614e11 0.437975
\(552\) 0 0
\(553\) −9.97078e11 + 3.29202e12i −0.453384 + 1.49692i
\(554\) 1.78400e12i 0.804638i
\(555\) 0 0
\(556\) 6.12941e12i 2.72008i
\(557\) 2.41084e11i 0.106125i 0.998591 + 0.0530627i \(0.0168983\pi\)
−0.998591 + 0.0530627i \(0.983102\pi\)
\(558\) 0 0
\(559\) 6.62889e11i 0.287136i
\(560\) −1.60044e11 + 5.28413e11i −0.0687693 + 0.227053i
\(561\) 0 0
\(562\) −1.93348e12 −0.817572
\(563\) 1.54712e12 0.648986 0.324493 0.945888i \(-0.394806\pi\)
0.324493 + 0.945888i \(0.394806\pi\)
\(564\) 0 0
\(565\) 1.10676e12i 0.456916i
\(566\) 2.40223e12 0.983878
\(567\) 0 0
\(568\) 4.25818e12 1.71655
\(569\) 6.04337e11i 0.241698i 0.992671 + 0.120849i \(0.0385618\pi\)
−0.992671 + 0.120849i \(0.961438\pi\)
\(570\) 0 0
\(571\) 4.30931e11 0.169647 0.0848234 0.996396i \(-0.472967\pi\)
0.0848234 + 0.996396i \(0.472967\pi\)
\(572\) −3.37384e12 −1.31778
\(573\) 0 0
\(574\) −3.47558e12 1.05268e12i −1.33636 0.404754i
\(575\) 6.49959e11i 0.247960i
\(576\) 0 0
\(577\) 1.27250e12i 0.477933i −0.971028 0.238967i \(-0.923191\pi\)
0.971028 0.238967i \(-0.0768086\pi\)
\(578\) 1.78966e11i 0.0666954i
\(579\) 0 0
\(580\) 6.52231e11i 0.239318i
\(581\) −1.94995e11 + 6.43810e11i −0.0709957 + 0.234404i
\(582\) 0 0
\(583\) 2.96560e12 1.06317
\(584\) 2.99553e11 0.106565
\(585\) 0 0
\(586\) 7.27436e12i 2.54833i
\(587\) 9.00228e11 0.312954 0.156477 0.987682i \(-0.449986\pi\)
0.156477 + 0.987682i \(0.449986\pi\)
\(588\) 0 0
\(589\) −1.28172e12 −0.438808
\(590\) 2.87294e12i 0.976094i
\(591\) 0 0
\(592\) 1.81826e12 0.608428
\(593\) 3.26508e12 1.08430 0.542148 0.840283i \(-0.317611\pi\)
0.542148 + 0.840283i \(0.317611\pi\)
\(594\) 0 0
\(595\) −3.88394e11 + 1.28235e12i −0.127042 + 0.419449i
\(596\) 8.87438e11i 0.288091i
\(597\) 0 0
\(598\) 2.70417e12i 0.864727i
\(599\) 3.36471e12i 1.06789i 0.845519 + 0.533945i \(0.179291\pi\)
−0.845519 + 0.533945i \(0.820709\pi\)
\(600\) 0 0
\(601\) 1.40213e11i 0.0438383i 0.999760 + 0.0219191i \(0.00697764\pi\)
−0.999760 + 0.0219191i \(0.993022\pi\)
\(602\) 3.59864e12 + 1.08995e12i 1.11675 + 0.338237i
\(603\) 0 0
\(604\) 1.24064e12 0.379297
\(605\) −2.95759e12 −0.897510
\(606\) 0 0
\(607\) 1.88297e12i 0.562983i 0.959564 + 0.281491i \(0.0908291\pi\)
−0.959564 + 0.281491i \(0.909171\pi\)
\(608\) 2.58787e12 0.768028
\(609\) 0 0
\(610\) −3.48836e12 −1.02009
\(611\) 9.67804e11i 0.280932i
\(612\) 0 0
\(613\) −1.00425e11 −0.0287255 −0.0143628 0.999897i \(-0.504572\pi\)
−0.0143628 + 0.999897i \(0.504572\pi\)
\(614\) −9.15923e12 −2.60077
\(615\) 0 0
\(616\) 2.52321e12 8.33080e12i 0.706059 2.33117i
\(617\) 1.73295e12i 0.481397i 0.970600 + 0.240698i \(0.0773765\pi\)
−0.970600 + 0.240698i \(0.922624\pi\)
\(618\) 0 0
\(619\) 3.70016e12i 1.01301i 0.862238 + 0.506503i \(0.169062\pi\)
−0.862238 + 0.506503i \(0.830938\pi\)
\(620\) 8.82194e11i 0.239774i
\(621\) 0 0
\(622\) 8.62741e12i 2.31113i
\(623\) 8.05492e11 2.65946e12i 0.214222 0.707291i
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 2.73712e12 0.712377
\(627\) 0 0
\(628\) 1.05422e13i 2.70466i
\(629\) 4.41254e12 1.12399
\(630\) 0 0
\(631\) −2.29169e12 −0.575471 −0.287736 0.957710i \(-0.592902\pi\)
−0.287736 + 0.957710i \(0.592902\pi\)
\(632\) 8.81166e12i 2.19700i
\(633\) 0 0
\(634\) −9.57629e12 −2.35394
\(635\) −2.58377e12 −0.630627
\(636\) 0 0
\(637\) 9.55233e11 1.43227e12i 0.229870 0.344665i
\(638\) 3.56416e12i 0.851657i
\(639\) 0 0
\(640\) 3.47641e12i 0.819070i
\(641\) 4.88525e12i 1.14295i −0.820621 0.571473i \(-0.806372\pi\)
0.820621 0.571473i \(-0.193628\pi\)
\(642\) 0 0
\(643\) 6.62542e12i 1.52849i 0.644923 + 0.764247i \(0.276889\pi\)
−0.644923 + 0.764247i \(0.723111\pi\)
\(644\) −9.50080e12 2.87758e12i −2.17658 0.659236i
\(645\) 0 0
\(646\) −1.09639e13 −2.47696
\(647\) −5.93113e12 −1.33066 −0.665331 0.746548i \(-0.731710\pi\)
−0.665331 + 0.746548i \(0.731710\pi\)
\(648\) 0 0
\(649\) 1.01604e13i 2.24807i
\(650\) −6.34846e11 −0.139495
\(651\) 0 0
\(652\) −1.40808e13 −3.05150
\(653\) 9.60892e11i 0.206807i 0.994639 + 0.103404i \(0.0329733\pi\)
−0.994639 + 0.103404i \(0.967027\pi\)
\(654\) 0 0
\(655\) −5.45700e11 −0.115843
\(656\) 2.08687e12 0.439974
\(657\) 0 0
\(658\) −5.25393e12 1.59130e12i −1.09262 0.330929i
\(659\) 2.73844e12i 0.565611i 0.959177 + 0.282806i \(0.0912652\pi\)
−0.959177 + 0.282806i \(0.908735\pi\)
\(660\) 0 0
\(661\) 8.95430e12i 1.82442i −0.409721 0.912211i \(-0.634374\pi\)
0.409721 0.912211i \(-0.365626\pi\)
\(662\) 1.15265e13i 2.33259i
\(663\) 0 0
\(664\) 1.72327e12i 0.344030i
\(665\) −3.24059e12 9.81502e11i −0.642579 0.194623i
\(666\) 0 0
\(667\) −1.84883e12 −0.361685
\(668\) −3.38892e12 −0.658517
\(669\) 0 0
\(670\) 1.09423e12i 0.209783i
\(671\) 1.23369e13 2.34938
\(672\) 0 0
\(673\) 2.60506e12 0.489497 0.244749 0.969587i \(-0.421295\pi\)
0.244749 + 0.969587i \(0.421295\pi\)
\(674\) 3.45652e11i 0.0645163i
\(675\) 0 0
\(676\) −8.25019e12 −1.51951
\(677\) 2.75069e12 0.503260 0.251630 0.967824i \(-0.419033\pi\)
0.251630 + 0.967824i \(0.419033\pi\)
\(678\) 0 0
\(679\) 1.51770e11 + 4.59676e10i 0.0274013 + 0.00829924i
\(680\) 3.43242e12i 0.615617i
\(681\) 0 0
\(682\) 4.82081e12i 0.853277i
\(683\) 9.39157e12i 1.65137i 0.564130 + 0.825686i \(0.309212\pi\)
−0.564130 + 0.825686i \(0.690788\pi\)
\(684\) 0 0
\(685\) 1.60906e12i 0.279232i
\(686\) 6.20476e12 + 7.54068e12i 1.06971 + 1.30003i
\(687\) 0 0
\(688\) −2.16075e12 −0.367669
\(689\) −1.50256e12 −0.254008
\(690\) 0 0
\(691\) 4.34647e12i 0.725246i 0.931936 + 0.362623i \(0.118119\pi\)
−0.931936 + 0.362623i \(0.881881\pi\)
\(692\) 1.86548e13 3.09252
\(693\) 0 0
\(694\) −6.71778e12 −1.09928
\(695\) 4.07894e12i 0.663155i
\(696\) 0 0
\(697\) 5.06438e12 0.812791
\(698\) −1.86075e13 −2.96714
\(699\) 0 0
\(700\) 6.75556e11 2.23046e12i 0.106346 0.351118i
\(701\) 4.71651e12i 0.737716i −0.929486 0.368858i \(-0.879749\pi\)
0.929486 0.368858i \(-0.120251\pi\)
\(702\) 0 0
\(703\) 1.11508e13i 1.72190i
\(704\) 1.57288e13i 2.41333i
\(705\) 0 0
\(706\) 5.39590e12i 0.817415i
\(707\) −9.44235e10 + 3.11755e11i −0.0142132 + 0.0469273i
\(708\) 0 0
\(709\) 3.84343e12 0.571230 0.285615 0.958344i \(-0.407802\pi\)
0.285615 + 0.958344i \(0.407802\pi\)
\(710\) −6.22999e12 −0.920079
\(711\) 0 0
\(712\) 7.11852e12i 1.03808i
\(713\) 2.50068e12 0.362373
\(714\) 0 0
\(715\) 2.24519e12 0.321274
\(716\) 1.19606e13i 1.70076i
\(717\) 0 0
\(718\) −1.13004e13 −1.58684
\(719\) 1.09093e13 1.52235 0.761176 0.648545i \(-0.224622\pi\)
0.761176 + 0.648545i \(0.224622\pi\)
\(720\) 0 0
\(721\) −9.30712e12 2.81892e12i −1.28265 0.388485i
\(722\) 1.54141e13i 2.11106i
\(723\) 0 0
\(724\) 7.37410e11i 0.0997437i
\(725\) 4.34040e11i 0.0583457i
\(726\) 0 0
\(727\) 7.43636e12i 0.987315i −0.869656 0.493657i \(-0.835660\pi\)
0.869656 0.493657i \(-0.164340\pi\)
\(728\) −1.27842e12 + 4.22093e12i −0.168688 + 0.556950i
\(729\) 0 0
\(730\) −4.38266e11 −0.0571195
\(731\) −5.24369e12 −0.679217
\(732\) 0 0
\(733\) 1.51330e12i 0.193623i −0.995303 0.0968115i \(-0.969136\pi\)
0.995303 0.0968115i \(-0.0308644\pi\)
\(734\) 1.55265e13 1.97443
\(735\) 0 0
\(736\) −5.04903e12 −0.634246
\(737\) 3.86983e12i 0.483156i
\(738\) 0 0
\(739\) −9.36352e12 −1.15489 −0.577443 0.816431i \(-0.695949\pi\)
−0.577443 + 0.816431i \(0.695949\pi\)
\(740\) −7.67498e12 −0.940881
\(741\) 0 0
\(742\) 2.47057e12 8.15700e12i 0.299213 0.987900i
\(743\) 1.53465e13i 1.84739i 0.383126 + 0.923696i \(0.374847\pi\)
−0.383126 + 0.923696i \(0.625153\pi\)
\(744\) 0 0
\(745\) 5.90563e11i 0.0702366i
\(746\) 9.88280e12i 1.16830i
\(747\) 0 0
\(748\) 2.66883e13i 3.11719i
\(749\) 2.74533e12 + 8.31500e11i 0.318733 + 0.0965370i
\(750\) 0 0
\(751\) −1.15451e13 −1.32439 −0.662197 0.749330i \(-0.730376\pi\)
−0.662197 + 0.749330i \(0.730376\pi\)
\(752\) 3.15465e12 0.359725
\(753\) 0 0
\(754\) 1.80584e12i 0.203473i
\(755\) −8.25609e11 −0.0924726
\(756\) 0 0
\(757\) −1.73462e12 −0.191987 −0.0959937 0.995382i \(-0.530603\pi\)
−0.0959937 + 0.995382i \(0.530603\pi\)
\(758\) 2.27530e13i 2.50338i
\(759\) 0 0
\(760\) 8.67400e12 0.943102
\(761\) 3.49684e12 0.377959 0.188980 0.981981i \(-0.439482\pi\)
0.188980 + 0.981981i \(0.439482\pi\)
\(762\) 0 0
\(763\) 3.16855e12 1.04615e13i 0.338455 1.11746i
\(764\) 2.22876e13i 2.36670i
\(765\) 0 0
\(766\) 5.21969e12i 0.547792i
\(767\) 5.14791e12i 0.537096i
\(768\) 0 0
\(769\) 1.03414e12i 0.106638i −0.998578 0.0533188i \(-0.983020\pi\)
0.998578 0.0533188i \(-0.0169800\pi\)
\(770\) −3.69162e12 + 1.21885e13i −0.378450 + 1.24952i
\(771\) 0 0
\(772\) −1.30219e12 −0.131946
\(773\) −1.51631e13 −1.52750 −0.763749 0.645514i \(-0.776643\pi\)
−0.763749 + 0.645514i \(0.776643\pi\)
\(774\) 0 0
\(775\) 5.87073e11i 0.0584568i
\(776\) −4.06238e11 −0.0402164
\(777\) 0 0
\(778\) 2.06315e13 2.01893
\(779\) 1.27981e13i 1.24516i
\(780\) 0 0
\(781\) 2.20329e13 2.11906
\(782\) 2.13910e13 2.04550
\(783\) 0 0
\(784\) −4.66862e12 3.11367e12i −0.441333 0.294341i
\(785\) 7.01551e12i 0.659396i
\(786\) 0 0
\(787\) 5.57880e12i 0.518387i 0.965825 + 0.259194i \(0.0834568\pi\)
−0.965825 + 0.259194i \(0.916543\pi\)
\(788\) 1.83930e13i 1.69936i
\(789\) 0 0
\(790\) 1.28920e13i 1.17760i
\(791\) −1.07661e13 3.26080e12i −0.977830 0.296163i
\(792\) 0 0
\(793\) −6.25066e12 −0.561302
\(794\) −2.46514e13 −2.20115
\(795\) 0 0
\(796\) 1.45415e13i 1.28381i
\(797\) −2.60232e12 −0.228453 −0.114227 0.993455i \(-0.536439\pi\)
−0.114227 + 0.993455i \(0.536439\pi\)
\(798\) 0 0
\(799\) 7.65567e12 0.664542
\(800\) 1.18534e12i 0.102314i
\(801\) 0 0
\(802\) −2.94522e13 −2.51382
\(803\) 1.54997e12 0.131553
\(804\) 0 0
\(805\) 6.32250e12 + 1.91494e12i 0.530649 + 0.160722i
\(806\) 2.44253e12i 0.203860i
\(807\) 0 0
\(808\) 8.34466e11i 0.0688744i
\(809\) 3.57628e12i 0.293538i 0.989171 + 0.146769i \(0.0468873\pi\)
−0.989171 + 0.146769i \(0.953113\pi\)
\(810\) 0 0
\(811\) 5.59959e11i 0.0454530i −0.999742 0.0227265i \(-0.992765\pi\)
0.999742 0.0227265i \(-0.00723469\pi\)
\(812\) −6.34460e12 1.92164e12i −0.512156 0.155121i
\(813\) 0 0
\(814\) 4.19405e13 3.34829
\(815\) 9.37035e12 0.743955
\(816\) 0 0
\(817\) 1.32512e13i 1.04053i
\(818\) 1.00185e13 0.782371
\(819\) 0 0
\(820\) −8.80877e12 −0.680382
\(821\) 2.03191e13i 1.56085i 0.625251 + 0.780424i \(0.284997\pi\)
−0.625251 + 0.780424i \(0.715003\pi\)
\(822\) 0 0
\(823\) 2.34007e13 1.77799 0.888995 0.457917i \(-0.151404\pi\)
0.888995 + 0.457917i \(0.151404\pi\)
\(824\) 2.49121e13 1.88252
\(825\) 0 0
\(826\) −2.79466e13 8.46439e12i −2.08890 0.632682i
\(827\) 1.30144e13i 0.967496i −0.875207 0.483748i \(-0.839275\pi\)
0.875207 0.483748i \(-0.160725\pi\)
\(828\) 0 0
\(829\) 2.58006e12i 0.189730i 0.995490 + 0.0948648i \(0.0302419\pi\)
−0.995490 + 0.0948648i \(0.969758\pi\)
\(830\) 2.52125e12i 0.184402i
\(831\) 0 0
\(832\) 7.96921e12i 0.576581i
\(833\) −1.13298e13 7.55623e12i −0.815301 0.543754i
\(834\) 0 0
\(835\) 2.25522e12 0.160546
\(836\) −6.74433e13 −4.77541
\(837\) 0 0
\(838\) 4.81158e12i 0.337047i
\(839\) 9.19034e12 0.640329 0.320164 0.947362i \(-0.396262\pi\)
0.320164 + 0.947362i \(0.396262\pi\)
\(840\) 0 0
\(841\) 1.32725e13 0.914894
\(842\) 3.44019e13i 2.35873i
\(843\) 0 0
\(844\) −3.90132e13 −2.64649
\(845\) 5.49025e12 0.370457
\(846\) 0 0
\(847\) 8.71381e12 2.87701e13i 0.581745 1.92073i
\(848\) 4.89776e12i 0.325249i
\(849\) 0 0
\(850\) 5.02185e12i 0.329973i
\(851\) 2.17556e13i 1.42197i
\(852\) 0 0
\(853\) 2.27465e13i 1.47111i 0.677467 + 0.735553i \(0.263078\pi\)
−0.677467 + 0.735553i \(0.736922\pi\)
\(854\) 1.02776e13 3.39331e13i 0.661196 2.18305i
\(855\) 0 0
\(856\) −7.34836e12 −0.467798
\(857\) −1.19907e13 −0.759327 −0.379664 0.925125i \(-0.623960\pi\)
−0.379664 + 0.925125i \(0.623960\pi\)
\(858\) 0 0
\(859\) 1.01502e13i 0.636072i 0.948079 + 0.318036i \(0.103023\pi\)
−0.948079 + 0.318036i \(0.896977\pi\)
\(860\) 9.12065e12 0.568568
\(861\) 0 0
\(862\) −2.85791e13 −1.76305
\(863\) 2.40731e13i 1.47735i −0.674063 0.738674i \(-0.735452\pi\)
0.674063 0.738674i \(-0.264548\pi\)
\(864\) 0 0
\(865\) −1.24142e13 −0.753957
\(866\) 4.03497e13 2.43786
\(867\) 0 0
\(868\) 8.58156e12 + 2.59916e12i 0.513130 + 0.155416i
\(869\) 4.55938e13i 2.71217i
\(870\) 0 0
\(871\) 1.96070e12i 0.115433i
\(872\) 2.80020e13i 1.64008i
\(873\) 0 0
\(874\) 5.40566e13i 3.13363i
\(875\) −4.49562e11 + 1.48430e12i −0.0259271 + 0.0856025i
\(876\) 0 0
\(877\) 3.30746e13 1.88798 0.943988 0.329980i \(-0.107042\pi\)
0.943988 + 0.329980i \(0.107042\pi\)
\(878\) −5.57339e13 −3.16515
\(879\) 0 0
\(880\) 7.31841e12i 0.411382i
\(881\) −2.27328e13 −1.27134 −0.635669 0.771962i \(-0.719276\pi\)
−0.635669 + 0.771962i \(0.719276\pi\)
\(882\) 0 0
\(883\) 2.52535e12 0.139797 0.0698987 0.997554i \(-0.477732\pi\)
0.0698987 + 0.997554i \(0.477732\pi\)
\(884\) 1.35220e13i 0.744742i
\(885\) 0 0
\(886\) 2.19644e13 1.19748
\(887\) 3.55886e13 1.93043 0.965216 0.261452i \(-0.0842014\pi\)
0.965216 + 0.261452i \(0.0842014\pi\)
\(888\) 0 0
\(889\) 7.61244e12 2.51337e13i 0.408758 1.34958i
\(890\) 1.04148e13i 0.556414i
\(891\) 0 0
\(892\) 3.84018e13i 2.03100i
\(893\) 1.93465e13i 1.01805i
\(894\) 0 0
\(895\) 7.95939e12i 0.414645i
\(896\) −3.38169e13 1.02424e13i −1.75286 0.530902i
\(897\) 0 0
\(898\) −5.39123e13 −2.76659
\(899\) 1.66995e12 0.0852676
\(900\) 0 0
\(901\) 1.18858e13i 0.600852i
\(902\) 4.81361e13 2.42126
\(903\) 0 0
\(904\) 2.88173e13 1.43514
\(905\) 4.90724e11i 0.0243175i
\(906\) 0 0
\(907\) 2.90847e13 1.42703 0.713513 0.700642i \(-0.247103\pi\)
0.713513 + 0.700642i \(0.247103\pi\)
\(908\) 2.88053e12 0.140633
\(909\) 0 0
\(910\) 1.87042e12 6.17548e12i 0.0904174 0.298528i
\(911\) 6.16034e12i 0.296328i 0.988963 + 0.148164i \(0.0473363\pi\)
−0.988963 + 0.148164i \(0.952664\pi\)
\(912\) 0 0
\(913\) 8.91663e12i 0.424700i
\(914\) 3.26670e13i 1.54829i
\(915\) 0 0
\(916\) 7.23684e13i 3.39641i
\(917\) 1.60777e12 5.30832e12i 0.0750865 0.247910i
\(918\) 0 0
\(919\) −4.45657e12 −0.206101 −0.103051 0.994676i \(-0.532860\pi\)
−0.103051 + 0.994676i \(0.532860\pi\)
\(920\) −1.69233e13 −0.778824
\(921\) 0 0
\(922\) 3.83623e13i 1.74830i
\(923\) −1.11633e13 −0.506274
\(924\) 0 0
\(925\) 5.10747e12 0.229387
\(926\) 2.26306e13i 1.01146i
\(927\) 0 0
\(928\) −3.37172e12 −0.149240
\(929\) −1.03844e13 −0.457413 −0.228707 0.973495i \(-0.573450\pi\)
−0.228707 + 0.973495i \(0.573450\pi\)
\(930\) 0 0
\(931\) 1.90952e13 2.86312e13i 0.833010 1.24901i
\(932\) 1.26811e13i 0.550537i
\(933\) 0 0
\(934\) 4.99644e13i 2.14832i
\(935\) 1.77602e13i 0.759970i
\(936\) 0 0
\(937\) 3.54858e13i 1.50393i 0.659205 + 0.751963i \(0.270893\pi\)
−0.659205 + 0.751963i \(0.729107\pi\)
\(938\) 1.06441e13 + 3.22386e12i 0.448949 + 0.135976i
\(939\) 0 0
\(940\) −1.33159e13 −0.556284
\(941\) 9.59076e12 0.398749 0.199375 0.979923i \(-0.436109\pi\)
0.199375 + 0.979923i \(0.436109\pi\)
\(942\) 0 0
\(943\) 2.49695e13i 1.02827i
\(944\) 1.67801e13 0.687735
\(945\) 0 0
\(946\) −4.98404e13 −2.02335
\(947\) 2.11868e13i 0.856032i −0.903771 0.428016i \(-0.859213\pi\)
0.903771 0.428016i \(-0.140787\pi\)
\(948\) 0 0
\(949\) −7.85313e11 −0.0314300
\(950\) −1.26906e13 −0.505506
\(951\) 0 0
\(952\) 3.33890e13 + 1.01128e13i 1.31746 + 0.399029i
\(953\) 2.05972e12i 0.0808891i 0.999182 + 0.0404445i \(0.0128774\pi\)
−0.999182 + 0.0404445i \(0.987123\pi\)
\(954\) 0 0
\(955\) 1.48317e13i 0.577001i
\(956\) 3.74287e13i 1.44925i
\(957\) 0 0
\(958\) 6.40163e13i 2.45553i
\(959\) 1.56522e13 + 4.74070e12i 0.597574 + 0.180992i
\(960\) 0 0
\(961\) 2.41809e13 0.914570
\(962\) −2.12498e13 −0.799957
\(963\) 0 0
\(964\) 9.58781e13i 3.57580i
\(965\) 8.66565e11 0.0321683
\(966\) 0 0
\(967\) −3.70576e12 −0.136288 −0.0681442 0.997675i \(-0.521708\pi\)
−0.0681442 + 0.997675i \(0.521708\pi\)
\(968\) 7.70081e13i 2.81902i
\(969\) 0 0
\(970\) 5.94352e11 0.0215561
\(971\) −2.46210e13 −0.888833 −0.444416 0.895820i \(-0.646589\pi\)
−0.444416 + 0.895820i \(0.646589\pi\)
\(972\) 0 0
\(973\) −3.96780e13 1.20176e13i −1.41919 0.429842i
\(974\) 5.24325e13i 1.86674i
\(975\) 0 0
\(976\) 2.03746e13i 0.718730i
\(977\) 1.82838e13i 0.642009i −0.947078 0.321005i \(-0.895980\pi\)
0.947078 0.321005i \(-0.104020\pi\)
\(978\) 0 0
\(979\) 3.68330e13i 1.28149i
\(980\) 1.97065e13 + 1.31430e13i 0.682483 + 0.455173i
\(981\) 0 0
\(982\) −6.32644e13 −2.17099
\(983\) −3.16369e13 −1.08070 −0.540348 0.841442i \(-0.681707\pi\)
−0.540348 + 0.841442i \(0.681707\pi\)
\(984\) 0 0
\(985\) 1.22400e13i 0.414304i
\(986\) 1.42848e13 0.481314
\(987\) 0 0
\(988\) 3.41712e13 1.14092
\(989\) 2.58536e13i 0.859285i
\(990\) 0 0
\(991\) 1.23580e13 0.407020 0.203510 0.979073i \(-0.434765\pi\)
0.203510 + 0.979073i \(0.434765\pi\)
\(992\) 4.56052e12 0.149524
\(993\) 0 0
\(994\) 1.83551e13 6.06025e13i 0.596374 1.96903i
\(995\) 9.67696e12i 0.312993i
\(996\) 0 0
\(997\) 4.00822e13i 1.28476i 0.766385 + 0.642382i \(0.222054\pi\)
−0.766385 + 0.642382i \(0.777946\pi\)
\(998\) 6.84777e13i 2.18505i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.b.b.251.43 yes 48
3.2 odd 2 315.10.b.a.251.6 48
7.6 odd 2 315.10.b.a.251.43 yes 48
21.20 even 2 inner 315.10.b.b.251.6 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.10.b.a.251.6 48 3.2 odd 2
315.10.b.a.251.43 yes 48 7.6 odd 2
315.10.b.b.251.6 yes 48 21.20 even 2 inner
315.10.b.b.251.43 yes 48 1.1 even 1 trivial