Properties

Label 315.2.a.d.1.2
Level $315$
Weight $2$
Character 315.1
Self dual yes
Analytic conductor $2.515$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607 q^{2} +3.00000 q^{4} +1.00000 q^{5} +1.00000 q^{7} +2.23607 q^{8} +2.23607 q^{10} -6.47214 q^{11} +4.47214 q^{13} +2.23607 q^{14} -1.00000 q^{16} +2.00000 q^{17} -2.47214 q^{19} +3.00000 q^{20} -14.4721 q^{22} -4.00000 q^{23} +1.00000 q^{25} +10.0000 q^{26} +3.00000 q^{28} +2.00000 q^{29} +1.52786 q^{31} -6.70820 q^{32} +4.47214 q^{34} +1.00000 q^{35} -6.94427 q^{37} -5.52786 q^{38} +2.23607 q^{40} +2.00000 q^{41} +8.94427 q^{43} -19.4164 q^{44} -8.94427 q^{46} -12.9443 q^{47} +1.00000 q^{49} +2.23607 q^{50} +13.4164 q^{52} +3.52786 q^{53} -6.47214 q^{55} +2.23607 q^{56} +4.47214 q^{58} +8.94427 q^{59} -2.00000 q^{61} +3.41641 q^{62} -13.0000 q^{64} +4.47214 q^{65} -4.00000 q^{67} +6.00000 q^{68} +2.23607 q^{70} -5.52786 q^{71} -12.4721 q^{73} -15.5279 q^{74} -7.41641 q^{76} -6.47214 q^{77} +12.9443 q^{79} -1.00000 q^{80} +4.47214 q^{82} +16.9443 q^{83} +2.00000 q^{85} +20.0000 q^{86} -14.4721 q^{88} +2.00000 q^{89} +4.47214 q^{91} -12.0000 q^{92} -28.9443 q^{94} -2.47214 q^{95} +8.47214 q^{97} +2.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{4} + 2 q^{5} + 2 q^{7} - 4 q^{11} - 2 q^{16} + 4 q^{17} + 4 q^{19} + 6 q^{20} - 20 q^{22} - 8 q^{23} + 2 q^{25} + 20 q^{26} + 6 q^{28} + 4 q^{29} + 12 q^{31} + 2 q^{35} + 4 q^{37} - 20 q^{38}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23607 1.58114 0.790569 0.612372i \(-0.209785\pi\)
0.790569 + 0.612372i \(0.209785\pi\)
\(3\) 0 0
\(4\) 3.00000 1.50000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 2.23607 0.790569
\(9\) 0 0
\(10\) 2.23607 0.707107
\(11\) −6.47214 −1.95142 −0.975711 0.219061i \(-0.929701\pi\)
−0.975711 + 0.219061i \(0.929701\pi\)
\(12\) 0 0
\(13\) 4.47214 1.24035 0.620174 0.784465i \(-0.287062\pi\)
0.620174 + 0.784465i \(0.287062\pi\)
\(14\) 2.23607 0.597614
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −2.47214 −0.567147 −0.283573 0.958951i \(-0.591520\pi\)
−0.283573 + 0.958951i \(0.591520\pi\)
\(20\) 3.00000 0.670820
\(21\) 0 0
\(22\) −14.4721 −3.08547
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 10.0000 1.96116
\(27\) 0 0
\(28\) 3.00000 0.566947
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 1.52786 0.274412 0.137206 0.990543i \(-0.456188\pi\)
0.137206 + 0.990543i \(0.456188\pi\)
\(32\) −6.70820 −1.18585
\(33\) 0 0
\(34\) 4.47214 0.766965
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −6.94427 −1.14163 −0.570816 0.821078i \(-0.693373\pi\)
−0.570816 + 0.821078i \(0.693373\pi\)
\(38\) −5.52786 −0.896738
\(39\) 0 0
\(40\) 2.23607 0.353553
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 8.94427 1.36399 0.681994 0.731357i \(-0.261113\pi\)
0.681994 + 0.731357i \(0.261113\pi\)
\(44\) −19.4164 −2.92713
\(45\) 0 0
\(46\) −8.94427 −1.31876
\(47\) −12.9443 −1.88812 −0.944058 0.329779i \(-0.893026\pi\)
−0.944058 + 0.329779i \(0.893026\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 2.23607 0.316228
\(51\) 0 0
\(52\) 13.4164 1.86052
\(53\) 3.52786 0.484589 0.242295 0.970203i \(-0.422100\pi\)
0.242295 + 0.970203i \(0.422100\pi\)
\(54\) 0 0
\(55\) −6.47214 −0.872703
\(56\) 2.23607 0.298807
\(57\) 0 0
\(58\) 4.47214 0.587220
\(59\) 8.94427 1.16445 0.582223 0.813029i \(-0.302183\pi\)
0.582223 + 0.813029i \(0.302183\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 3.41641 0.433884
\(63\) 0 0
\(64\) −13.0000 −1.62500
\(65\) 4.47214 0.554700
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) 2.23607 0.267261
\(71\) −5.52786 −0.656037 −0.328018 0.944671i \(-0.606381\pi\)
−0.328018 + 0.944671i \(0.606381\pi\)
\(72\) 0 0
\(73\) −12.4721 −1.45975 −0.729877 0.683579i \(-0.760422\pi\)
−0.729877 + 0.683579i \(0.760422\pi\)
\(74\) −15.5279 −1.80508
\(75\) 0 0
\(76\) −7.41641 −0.850720
\(77\) −6.47214 −0.737568
\(78\) 0 0
\(79\) 12.9443 1.45634 0.728172 0.685394i \(-0.240370\pi\)
0.728172 + 0.685394i \(0.240370\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 4.47214 0.493865
\(83\) 16.9443 1.85988 0.929938 0.367717i \(-0.119860\pi\)
0.929938 + 0.367717i \(0.119860\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 20.0000 2.15666
\(87\) 0 0
\(88\) −14.4721 −1.54273
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 4.47214 0.468807
\(92\) −12.0000 −1.25109
\(93\) 0 0
\(94\) −28.9443 −2.98537
\(95\) −2.47214 −0.253636
\(96\) 0 0
\(97\) 8.47214 0.860215 0.430108 0.902778i \(-0.358476\pi\)
0.430108 + 0.902778i \(0.358476\pi\)
\(98\) 2.23607 0.225877
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 10.0000 0.980581
\(105\) 0 0
\(106\) 7.88854 0.766203
\(107\) 12.9443 1.25137 0.625685 0.780076i \(-0.284820\pi\)
0.625685 + 0.780076i \(0.284820\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −14.4721 −1.37986
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) −0.472136 −0.0444148 −0.0222074 0.999753i \(-0.507069\pi\)
−0.0222074 + 0.999753i \(0.507069\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 20.0000 1.84115
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 30.8885 2.80805
\(122\) −4.47214 −0.404888
\(123\) 0 0
\(124\) 4.58359 0.411619
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.94427 −0.438733 −0.219367 0.975643i \(-0.570399\pi\)
−0.219367 + 0.975643i \(0.570399\pi\)
\(128\) −15.6525 −1.38350
\(129\) 0 0
\(130\) 10.0000 0.877058
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −2.47214 −0.214361
\(134\) −8.94427 −0.772667
\(135\) 0 0
\(136\) 4.47214 0.383482
\(137\) −3.52786 −0.301406 −0.150703 0.988579i \(-0.548154\pi\)
−0.150703 + 0.988579i \(0.548154\pi\)
\(138\) 0 0
\(139\) 7.41641 0.629052 0.314526 0.949249i \(-0.398155\pi\)
0.314526 + 0.949249i \(0.398155\pi\)
\(140\) 3.00000 0.253546
\(141\) 0 0
\(142\) −12.3607 −1.03729
\(143\) −28.9443 −2.42044
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) −27.8885 −2.30807
\(147\) 0 0
\(148\) −20.8328 −1.71245
\(149\) 14.9443 1.22428 0.612141 0.790748i \(-0.290308\pi\)
0.612141 + 0.790748i \(0.290308\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −5.52786 −0.448369
\(153\) 0 0
\(154\) −14.4721 −1.16620
\(155\) 1.52786 0.122721
\(156\) 0 0
\(157\) −0.472136 −0.0376806 −0.0188403 0.999823i \(-0.505997\pi\)
−0.0188403 + 0.999823i \(0.505997\pi\)
\(158\) 28.9443 2.30268
\(159\) 0 0
\(160\) −6.70820 −0.530330
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) −16.9443 −1.32718 −0.663589 0.748097i \(-0.730968\pi\)
−0.663589 + 0.748097i \(0.730968\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 37.8885 2.94072
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 7.00000 0.538462
\(170\) 4.47214 0.342997
\(171\) 0 0
\(172\) 26.8328 2.04598
\(173\) 2.94427 0.223849 0.111924 0.993717i \(-0.464299\pi\)
0.111924 + 0.993717i \(0.464299\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 6.47214 0.487856
\(177\) 0 0
\(178\) 4.47214 0.335201
\(179\) −6.47214 −0.483750 −0.241875 0.970307i \(-0.577762\pi\)
−0.241875 + 0.970307i \(0.577762\pi\)
\(180\) 0 0
\(181\) 1.05573 0.0784717 0.0392358 0.999230i \(-0.487508\pi\)
0.0392358 + 0.999230i \(0.487508\pi\)
\(182\) 10.0000 0.741249
\(183\) 0 0
\(184\) −8.94427 −0.659380
\(185\) −6.94427 −0.510553
\(186\) 0 0
\(187\) −12.9443 −0.946579
\(188\) −38.8328 −2.83217
\(189\) 0 0
\(190\) −5.52786 −0.401033
\(191\) −0.583592 −0.0422272 −0.0211136 0.999777i \(-0.506721\pi\)
−0.0211136 + 0.999777i \(0.506721\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 18.9443 1.36012
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) −15.5279 −1.10631 −0.553157 0.833077i \(-0.686577\pi\)
−0.553157 + 0.833077i \(0.686577\pi\)
\(198\) 0 0
\(199\) 27.4164 1.94350 0.971749 0.236017i \(-0.0758423\pi\)
0.971749 + 0.236017i \(0.0758423\pi\)
\(200\) 2.23607 0.158114
\(201\) 0 0
\(202\) 31.3050 2.20261
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) 0 0
\(208\) −4.47214 −0.310087
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) −16.9443 −1.16649 −0.583246 0.812296i \(-0.698218\pi\)
−0.583246 + 0.812296i \(0.698218\pi\)
\(212\) 10.5836 0.726884
\(213\) 0 0
\(214\) 28.9443 1.97859
\(215\) 8.94427 0.609994
\(216\) 0 0
\(217\) 1.52786 0.103718
\(218\) −4.47214 −0.302891
\(219\) 0 0
\(220\) −19.4164 −1.30905
\(221\) 8.94427 0.601657
\(222\) 0 0
\(223\) −12.9443 −0.866813 −0.433406 0.901199i \(-0.642688\pi\)
−0.433406 + 0.901199i \(0.642688\pi\)
\(224\) −6.70820 −0.448211
\(225\) 0 0
\(226\) −1.05573 −0.0702260
\(227\) −0.944272 −0.0626735 −0.0313368 0.999509i \(-0.509976\pi\)
−0.0313368 + 0.999509i \(0.509976\pi\)
\(228\) 0 0
\(229\) 23.8885 1.57860 0.789300 0.614008i \(-0.210444\pi\)
0.789300 + 0.614008i \(0.210444\pi\)
\(230\) −8.94427 −0.589768
\(231\) 0 0
\(232\) 4.47214 0.293610
\(233\) 9.41641 0.616889 0.308445 0.951242i \(-0.400192\pi\)
0.308445 + 0.951242i \(0.400192\pi\)
\(234\) 0 0
\(235\) −12.9443 −0.844391
\(236\) 26.8328 1.74667
\(237\) 0 0
\(238\) 4.47214 0.289886
\(239\) 10.4721 0.677386 0.338693 0.940897i \(-0.390015\pi\)
0.338693 + 0.940897i \(0.390015\pi\)
\(240\) 0 0
\(241\) −18.9443 −1.22031 −0.610154 0.792283i \(-0.708892\pi\)
−0.610154 + 0.792283i \(0.708892\pi\)
\(242\) 69.0689 4.43992
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) 1.00000 0.0638877
\(246\) 0 0
\(247\) −11.0557 −0.703459
\(248\) 3.41641 0.216942
\(249\) 0 0
\(250\) 2.23607 0.141421
\(251\) −16.9443 −1.06951 −0.534756 0.845006i \(-0.679597\pi\)
−0.534756 + 0.845006i \(0.679597\pi\)
\(252\) 0 0
\(253\) 25.8885 1.62760
\(254\) −11.0557 −0.693698
\(255\) 0 0
\(256\) −9.00000 −0.562500
\(257\) −18.9443 −1.18171 −0.590856 0.806777i \(-0.701210\pi\)
−0.590856 + 0.806777i \(0.701210\pi\)
\(258\) 0 0
\(259\) −6.94427 −0.431496
\(260\) 13.4164 0.832050
\(261\) 0 0
\(262\) −8.94427 −0.552579
\(263\) −7.05573 −0.435075 −0.217537 0.976052i \(-0.569802\pi\)
−0.217537 + 0.976052i \(0.569802\pi\)
\(264\) 0 0
\(265\) 3.52786 0.216715
\(266\) −5.52786 −0.338935
\(267\) 0 0
\(268\) −12.0000 −0.733017
\(269\) −11.8885 −0.724857 −0.362429 0.932012i \(-0.618052\pi\)
−0.362429 + 0.932012i \(0.618052\pi\)
\(270\) 0 0
\(271\) −1.52786 −0.0928111 −0.0464056 0.998923i \(-0.514777\pi\)
−0.0464056 + 0.998923i \(0.514777\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) −7.88854 −0.476564
\(275\) −6.47214 −0.390284
\(276\) 0 0
\(277\) 18.9443 1.13825 0.569125 0.822251i \(-0.307282\pi\)
0.569125 + 0.822251i \(0.307282\pi\)
\(278\) 16.5836 0.994618
\(279\) 0 0
\(280\) 2.23607 0.133631
\(281\) 10.9443 0.652881 0.326440 0.945218i \(-0.394151\pi\)
0.326440 + 0.945218i \(0.394151\pi\)
\(282\) 0 0
\(283\) 12.0000 0.713326 0.356663 0.934233i \(-0.383914\pi\)
0.356663 + 0.934233i \(0.383914\pi\)
\(284\) −16.5836 −0.984055
\(285\) 0 0
\(286\) −64.7214 −3.82705
\(287\) 2.00000 0.118056
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 4.47214 0.262613
\(291\) 0 0
\(292\) −37.4164 −2.18963
\(293\) −5.05573 −0.295359 −0.147679 0.989035i \(-0.547180\pi\)
−0.147679 + 0.989035i \(0.547180\pi\)
\(294\) 0 0
\(295\) 8.94427 0.520756
\(296\) −15.5279 −0.902539
\(297\) 0 0
\(298\) 33.4164 1.93576
\(299\) −17.8885 −1.03452
\(300\) 0 0
\(301\) 8.94427 0.515539
\(302\) −35.7771 −2.05874
\(303\) 0 0
\(304\) 2.47214 0.141787
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) −15.0557 −0.859276 −0.429638 0.903001i \(-0.641359\pi\)
−0.429638 + 0.903001i \(0.641359\pi\)
\(308\) −19.4164 −1.10635
\(309\) 0 0
\(310\) 3.41641 0.194039
\(311\) −25.8885 −1.46800 −0.734002 0.679147i \(-0.762350\pi\)
−0.734002 + 0.679147i \(0.762350\pi\)
\(312\) 0 0
\(313\) −17.4164 −0.984434 −0.492217 0.870473i \(-0.663813\pi\)
−0.492217 + 0.870473i \(0.663813\pi\)
\(314\) −1.05573 −0.0595782
\(315\) 0 0
\(316\) 38.8328 2.18452
\(317\) −14.3607 −0.806576 −0.403288 0.915073i \(-0.632133\pi\)
−0.403288 + 0.915073i \(0.632133\pi\)
\(318\) 0 0
\(319\) −12.9443 −0.724740
\(320\) −13.0000 −0.726722
\(321\) 0 0
\(322\) −8.94427 −0.498445
\(323\) −4.94427 −0.275107
\(324\) 0 0
\(325\) 4.47214 0.248069
\(326\) −37.8885 −2.09845
\(327\) 0 0
\(328\) 4.47214 0.246932
\(329\) −12.9443 −0.713641
\(330\) 0 0
\(331\) 0.944272 0.0519019 0.0259509 0.999663i \(-0.491739\pi\)
0.0259509 + 0.999663i \(0.491739\pi\)
\(332\) 50.8328 2.78981
\(333\) 0 0
\(334\) 17.8885 0.978818
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) −23.8885 −1.30129 −0.650646 0.759381i \(-0.725502\pi\)
−0.650646 + 0.759381i \(0.725502\pi\)
\(338\) 15.6525 0.851382
\(339\) 0 0
\(340\) 6.00000 0.325396
\(341\) −9.88854 −0.535495
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 20.0000 1.07833
\(345\) 0 0
\(346\) 6.58359 0.353936
\(347\) 8.00000 0.429463 0.214731 0.976673i \(-0.431112\pi\)
0.214731 + 0.976673i \(0.431112\pi\)
\(348\) 0 0
\(349\) −11.8885 −0.636379 −0.318190 0.948027i \(-0.603075\pi\)
−0.318190 + 0.948027i \(0.603075\pi\)
\(350\) 2.23607 0.119523
\(351\) 0 0
\(352\) 43.4164 2.31410
\(353\) −7.88854 −0.419865 −0.209932 0.977716i \(-0.567324\pi\)
−0.209932 + 0.977716i \(0.567324\pi\)
\(354\) 0 0
\(355\) −5.52786 −0.293389
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) −14.4721 −0.764876
\(359\) −18.4721 −0.974922 −0.487461 0.873145i \(-0.662077\pi\)
−0.487461 + 0.873145i \(0.662077\pi\)
\(360\) 0 0
\(361\) −12.8885 −0.678344
\(362\) 2.36068 0.124075
\(363\) 0 0
\(364\) 13.4164 0.703211
\(365\) −12.4721 −0.652821
\(366\) 0 0
\(367\) 3.05573 0.159508 0.0797539 0.996815i \(-0.474587\pi\)
0.0797539 + 0.996815i \(0.474587\pi\)
\(368\) 4.00000 0.208514
\(369\) 0 0
\(370\) −15.5279 −0.807255
\(371\) 3.52786 0.183158
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) −28.9443 −1.49667
\(375\) 0 0
\(376\) −28.9443 −1.49269
\(377\) 8.94427 0.460653
\(378\) 0 0
\(379\) −37.8885 −1.94620 −0.973102 0.230375i \(-0.926005\pi\)
−0.973102 + 0.230375i \(0.926005\pi\)
\(380\) −7.41641 −0.380454
\(381\) 0 0
\(382\) −1.30495 −0.0667671
\(383\) 8.00000 0.408781 0.204390 0.978889i \(-0.434479\pi\)
0.204390 + 0.978889i \(0.434479\pi\)
\(384\) 0 0
\(385\) −6.47214 −0.329851
\(386\) −31.3050 −1.59338
\(387\) 0 0
\(388\) 25.4164 1.29032
\(389\) 6.94427 0.352089 0.176044 0.984382i \(-0.443670\pi\)
0.176044 + 0.984382i \(0.443670\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 2.23607 0.112938
\(393\) 0 0
\(394\) −34.7214 −1.74924
\(395\) 12.9443 0.651297
\(396\) 0 0
\(397\) −13.4164 −0.673350 −0.336675 0.941621i \(-0.609302\pi\)
−0.336675 + 0.941621i \(0.609302\pi\)
\(398\) 61.3050 3.07294
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) 6.83282 0.340367
\(404\) 42.0000 2.08958
\(405\) 0 0
\(406\) 4.47214 0.221948
\(407\) 44.9443 2.22780
\(408\) 0 0
\(409\) 11.8885 0.587851 0.293925 0.955828i \(-0.405038\pi\)
0.293925 + 0.955828i \(0.405038\pi\)
\(410\) 4.47214 0.220863
\(411\) 0 0
\(412\) 0 0
\(413\) 8.94427 0.440119
\(414\) 0 0
\(415\) 16.9443 0.831762
\(416\) −30.0000 −1.47087
\(417\) 0 0
\(418\) 35.7771 1.74991
\(419\) 29.8885 1.46015 0.730075 0.683367i \(-0.239485\pi\)
0.730075 + 0.683367i \(0.239485\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) −37.8885 −1.84439
\(423\) 0 0
\(424\) 7.88854 0.383102
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) −2.00000 −0.0967868
\(428\) 38.8328 1.87705
\(429\) 0 0
\(430\) 20.0000 0.964486
\(431\) 18.4721 0.889771 0.444886 0.895587i \(-0.353244\pi\)
0.444886 + 0.895587i \(0.353244\pi\)
\(432\) 0 0
\(433\) 16.4721 0.791600 0.395800 0.918337i \(-0.370467\pi\)
0.395800 + 0.918337i \(0.370467\pi\)
\(434\) 3.41641 0.163993
\(435\) 0 0
\(436\) −6.00000 −0.287348
\(437\) 9.88854 0.473033
\(438\) 0 0
\(439\) 1.52786 0.0729210 0.0364605 0.999335i \(-0.488392\pi\)
0.0364605 + 0.999335i \(0.488392\pi\)
\(440\) −14.4721 −0.689932
\(441\) 0 0
\(442\) 20.0000 0.951303
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) 2.00000 0.0948091
\(446\) −28.9443 −1.37055
\(447\) 0 0
\(448\) −13.0000 −0.614192
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) −12.9443 −0.609522
\(452\) −1.41641 −0.0666222
\(453\) 0 0
\(454\) −2.11146 −0.0990955
\(455\) 4.47214 0.209657
\(456\) 0 0
\(457\) 6.94427 0.324839 0.162420 0.986722i \(-0.448070\pi\)
0.162420 + 0.986722i \(0.448070\pi\)
\(458\) 53.4164 2.49598
\(459\) 0 0
\(460\) −12.0000 −0.559503
\(461\) −3.88854 −0.181108 −0.0905538 0.995892i \(-0.528864\pi\)
−0.0905538 + 0.995892i \(0.528864\pi\)
\(462\) 0 0
\(463\) 20.9443 0.973363 0.486681 0.873580i \(-0.338207\pi\)
0.486681 + 0.873580i \(0.338207\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) 21.0557 0.975388
\(467\) 8.94427 0.413892 0.206946 0.978352i \(-0.433648\pi\)
0.206946 + 0.978352i \(0.433648\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) −28.9443 −1.33510
\(471\) 0 0
\(472\) 20.0000 0.920575
\(473\) −57.8885 −2.66172
\(474\) 0 0
\(475\) −2.47214 −0.113429
\(476\) 6.00000 0.275010
\(477\) 0 0
\(478\) 23.4164 1.07104
\(479\) 17.8885 0.817348 0.408674 0.912680i \(-0.365991\pi\)
0.408674 + 0.912680i \(0.365991\pi\)
\(480\) 0 0
\(481\) −31.0557 −1.41602
\(482\) −42.3607 −1.92948
\(483\) 0 0
\(484\) 92.6656 4.21207
\(485\) 8.47214 0.384700
\(486\) 0 0
\(487\) −20.9443 −0.949076 −0.474538 0.880235i \(-0.657385\pi\)
−0.474538 + 0.880235i \(0.657385\pi\)
\(488\) −4.47214 −0.202444
\(489\) 0 0
\(490\) 2.23607 0.101015
\(491\) 21.3050 0.961479 0.480740 0.876863i \(-0.340368\pi\)
0.480740 + 0.876863i \(0.340368\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) −24.7214 −1.11227
\(495\) 0 0
\(496\) −1.52786 −0.0686031
\(497\) −5.52786 −0.247959
\(498\) 0 0
\(499\) −13.8885 −0.621737 −0.310868 0.950453i \(-0.600620\pi\)
−0.310868 + 0.950453i \(0.600620\pi\)
\(500\) 3.00000 0.134164
\(501\) 0 0
\(502\) −37.8885 −1.69105
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) 0 0
\(505\) 14.0000 0.622992
\(506\) 57.8885 2.57346
\(507\) 0 0
\(508\) −14.8328 −0.658100
\(509\) 23.8885 1.05884 0.529421 0.848360i \(-0.322409\pi\)
0.529421 + 0.848360i \(0.322409\pi\)
\(510\) 0 0
\(511\) −12.4721 −0.551735
\(512\) 11.1803 0.494106
\(513\) 0 0
\(514\) −42.3607 −1.86845
\(515\) 0 0
\(516\) 0 0
\(517\) 83.7771 3.68451
\(518\) −15.5279 −0.682255
\(519\) 0 0
\(520\) 10.0000 0.438529
\(521\) 19.8885 0.871333 0.435666 0.900108i \(-0.356513\pi\)
0.435666 + 0.900108i \(0.356513\pi\)
\(522\) 0 0
\(523\) −8.94427 −0.391106 −0.195553 0.980693i \(-0.562650\pi\)
−0.195553 + 0.980693i \(0.562650\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −15.7771 −0.687914
\(527\) 3.05573 0.133110
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 7.88854 0.342656
\(531\) 0 0
\(532\) −7.41641 −0.321542
\(533\) 8.94427 0.387419
\(534\) 0 0
\(535\) 12.9443 0.559630
\(536\) −8.94427 −0.386334
\(537\) 0 0
\(538\) −26.5836 −1.14610
\(539\) −6.47214 −0.278775
\(540\) 0 0
\(541\) −11.8885 −0.511128 −0.255564 0.966792i \(-0.582261\pi\)
−0.255564 + 0.966792i \(0.582261\pi\)
\(542\) −3.41641 −0.146747
\(543\) 0 0
\(544\) −13.4164 −0.575224
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 5.88854 0.251776 0.125888 0.992044i \(-0.459822\pi\)
0.125888 + 0.992044i \(0.459822\pi\)
\(548\) −10.5836 −0.452109
\(549\) 0 0
\(550\) −14.4721 −0.617094
\(551\) −4.94427 −0.210633
\(552\) 0 0
\(553\) 12.9443 0.550446
\(554\) 42.3607 1.79973
\(555\) 0 0
\(556\) 22.2492 0.943577
\(557\) −20.4721 −0.867432 −0.433716 0.901050i \(-0.642798\pi\)
−0.433716 + 0.901050i \(0.642798\pi\)
\(558\) 0 0
\(559\) 40.0000 1.69182
\(560\) −1.00000 −0.0422577
\(561\) 0 0
\(562\) 24.4721 1.03229
\(563\) −13.8885 −0.585332 −0.292666 0.956215i \(-0.594542\pi\)
−0.292666 + 0.956215i \(0.594542\pi\)
\(564\) 0 0
\(565\) −0.472136 −0.0198629
\(566\) 26.8328 1.12787
\(567\) 0 0
\(568\) −12.3607 −0.518643
\(569\) 39.8885 1.67221 0.836107 0.548566i \(-0.184826\pi\)
0.836107 + 0.548566i \(0.184826\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) −86.8328 −3.63066
\(573\) 0 0
\(574\) 4.47214 0.186663
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 10.3607 0.431321 0.215660 0.976468i \(-0.430810\pi\)
0.215660 + 0.976468i \(0.430810\pi\)
\(578\) −29.0689 −1.20911
\(579\) 0 0
\(580\) 6.00000 0.249136
\(581\) 16.9443 0.702967
\(582\) 0 0
\(583\) −22.8328 −0.945639
\(584\) −27.8885 −1.15404
\(585\) 0 0
\(586\) −11.3050 −0.467003
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) 0 0
\(589\) −3.77709 −0.155632
\(590\) 20.0000 0.823387
\(591\) 0 0
\(592\) 6.94427 0.285408
\(593\) −23.8885 −0.980985 −0.490492 0.871445i \(-0.663183\pi\)
−0.490492 + 0.871445i \(0.663183\pi\)
\(594\) 0 0
\(595\) 2.00000 0.0819920
\(596\) 44.8328 1.83642
\(597\) 0 0
\(598\) −40.0000 −1.63572
\(599\) −12.3607 −0.505044 −0.252522 0.967591i \(-0.581260\pi\)
−0.252522 + 0.967591i \(0.581260\pi\)
\(600\) 0 0
\(601\) 38.9443 1.58857 0.794285 0.607545i \(-0.207846\pi\)
0.794285 + 0.607545i \(0.207846\pi\)
\(602\) 20.0000 0.815139
\(603\) 0 0
\(604\) −48.0000 −1.95309
\(605\) 30.8885 1.25580
\(606\) 0 0
\(607\) 38.8328 1.57618 0.788088 0.615563i \(-0.211071\pi\)
0.788088 + 0.615563i \(0.211071\pi\)
\(608\) 16.5836 0.672553
\(609\) 0 0
\(610\) −4.47214 −0.181071
\(611\) −57.8885 −2.34192
\(612\) 0 0
\(613\) −6.94427 −0.280477 −0.140238 0.990118i \(-0.544787\pi\)
−0.140238 + 0.990118i \(0.544787\pi\)
\(614\) −33.6656 −1.35863
\(615\) 0 0
\(616\) −14.4721 −0.583099
\(617\) −16.4721 −0.663143 −0.331572 0.943430i \(-0.607579\pi\)
−0.331572 + 0.943430i \(0.607579\pi\)
\(618\) 0 0
\(619\) 39.4164 1.58428 0.792140 0.610340i \(-0.208967\pi\)
0.792140 + 0.610340i \(0.208967\pi\)
\(620\) 4.58359 0.184081
\(621\) 0 0
\(622\) −57.8885 −2.32112
\(623\) 2.00000 0.0801283
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −38.9443 −1.55653
\(627\) 0 0
\(628\) −1.41641 −0.0565208
\(629\) −13.8885 −0.553773
\(630\) 0 0
\(631\) 30.8328 1.22744 0.613718 0.789526i \(-0.289673\pi\)
0.613718 + 0.789526i \(0.289673\pi\)
\(632\) 28.9443 1.15134
\(633\) 0 0
\(634\) −32.1115 −1.27531
\(635\) −4.94427 −0.196207
\(636\) 0 0
\(637\) 4.47214 0.177192
\(638\) −28.9443 −1.14591
\(639\) 0 0
\(640\) −15.6525 −0.618718
\(641\) −16.8328 −0.664856 −0.332428 0.943129i \(-0.607868\pi\)
−0.332428 + 0.943129i \(0.607868\pi\)
\(642\) 0 0
\(643\) −15.0557 −0.593740 −0.296870 0.954918i \(-0.595943\pi\)
−0.296870 + 0.954918i \(0.595943\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) −11.0557 −0.434982
\(647\) 1.88854 0.0742463 0.0371232 0.999311i \(-0.488181\pi\)
0.0371232 + 0.999311i \(0.488181\pi\)
\(648\) 0 0
\(649\) −57.8885 −2.27232
\(650\) 10.0000 0.392232
\(651\) 0 0
\(652\) −50.8328 −1.99077
\(653\) 22.5836 0.883764 0.441882 0.897073i \(-0.354311\pi\)
0.441882 + 0.897073i \(0.354311\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) −2.00000 −0.0780869
\(657\) 0 0
\(658\) −28.9443 −1.12837
\(659\) −21.3050 −0.829923 −0.414962 0.909839i \(-0.636205\pi\)
−0.414962 + 0.909839i \(0.636205\pi\)
\(660\) 0 0
\(661\) −35.8885 −1.39590 −0.697951 0.716145i \(-0.745905\pi\)
−0.697951 + 0.716145i \(0.745905\pi\)
\(662\) 2.11146 0.0820641
\(663\) 0 0
\(664\) 37.8885 1.47036
\(665\) −2.47214 −0.0958653
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) 24.0000 0.928588
\(669\) 0 0
\(670\) −8.94427 −0.345547
\(671\) 12.9443 0.499708
\(672\) 0 0
\(673\) 8.83282 0.340480 0.170240 0.985403i \(-0.445546\pi\)
0.170240 + 0.985403i \(0.445546\pi\)
\(674\) −53.4164 −2.05752
\(675\) 0 0
\(676\) 21.0000 0.807692
\(677\) −21.0557 −0.809237 −0.404619 0.914485i \(-0.632596\pi\)
−0.404619 + 0.914485i \(0.632596\pi\)
\(678\) 0 0
\(679\) 8.47214 0.325131
\(680\) 4.47214 0.171499
\(681\) 0 0
\(682\) −22.1115 −0.846691
\(683\) 1.88854 0.0722631 0.0361316 0.999347i \(-0.488496\pi\)
0.0361316 + 0.999347i \(0.488496\pi\)
\(684\) 0 0
\(685\) −3.52786 −0.134793
\(686\) 2.23607 0.0853735
\(687\) 0 0
\(688\) −8.94427 −0.340997
\(689\) 15.7771 0.601059
\(690\) 0 0
\(691\) 44.3607 1.68756 0.843780 0.536689i \(-0.180325\pi\)
0.843780 + 0.536689i \(0.180325\pi\)
\(692\) 8.83282 0.335773
\(693\) 0 0
\(694\) 17.8885 0.679040
\(695\) 7.41641 0.281320
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) −26.5836 −1.00620
\(699\) 0 0
\(700\) 3.00000 0.113389
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) 17.1672 0.647473
\(704\) 84.1378 3.17106
\(705\) 0 0
\(706\) −17.6393 −0.663865
\(707\) 14.0000 0.526524
\(708\) 0 0
\(709\) 25.7771 0.968079 0.484039 0.875046i \(-0.339169\pi\)
0.484039 + 0.875046i \(0.339169\pi\)
\(710\) −12.3607 −0.463888
\(711\) 0 0
\(712\) 4.47214 0.167600
\(713\) −6.11146 −0.228876
\(714\) 0 0
\(715\) −28.9443 −1.08245
\(716\) −19.4164 −0.725625
\(717\) 0 0
\(718\) −41.3050 −1.54149
\(719\) 6.83282 0.254821 0.127411 0.991850i \(-0.459333\pi\)
0.127411 + 0.991850i \(0.459333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −28.8197 −1.07256
\(723\) 0 0
\(724\) 3.16718 0.117707
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −38.8328 −1.44023 −0.720115 0.693855i \(-0.755911\pi\)
−0.720115 + 0.693855i \(0.755911\pi\)
\(728\) 10.0000 0.370625
\(729\) 0 0
\(730\) −27.8885 −1.03220
\(731\) 17.8885 0.661632
\(732\) 0 0
\(733\) 10.5836 0.390914 0.195457 0.980712i \(-0.437381\pi\)
0.195457 + 0.980712i \(0.437381\pi\)
\(734\) 6.83282 0.252204
\(735\) 0 0
\(736\) 26.8328 0.989071
\(737\) 25.8885 0.953617
\(738\) 0 0
\(739\) −5.88854 −0.216614 −0.108307 0.994118i \(-0.534543\pi\)
−0.108307 + 0.994118i \(0.534543\pi\)
\(740\) −20.8328 −0.765830
\(741\) 0 0
\(742\) 7.88854 0.289598
\(743\) −34.8328 −1.27789 −0.638946 0.769252i \(-0.720629\pi\)
−0.638946 + 0.769252i \(0.720629\pi\)
\(744\) 0 0
\(745\) 14.9443 0.547516
\(746\) 13.4164 0.491210
\(747\) 0 0
\(748\) −38.8328 −1.41987
\(749\) 12.9443 0.472973
\(750\) 0 0
\(751\) −20.9443 −0.764267 −0.382134 0.924107i \(-0.624811\pi\)
−0.382134 + 0.924107i \(0.624811\pi\)
\(752\) 12.9443 0.472029
\(753\) 0 0
\(754\) 20.0000 0.728357
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) 31.8885 1.15901 0.579504 0.814969i \(-0.303246\pi\)
0.579504 + 0.814969i \(0.303246\pi\)
\(758\) −84.7214 −3.07722
\(759\) 0 0
\(760\) −5.52786 −0.200517
\(761\) 27.8885 1.01096 0.505479 0.862839i \(-0.331316\pi\)
0.505479 + 0.862839i \(0.331316\pi\)
\(762\) 0 0
\(763\) −2.00000 −0.0724049
\(764\) −1.75078 −0.0633409
\(765\) 0 0
\(766\) 17.8885 0.646339
\(767\) 40.0000 1.44432
\(768\) 0 0
\(769\) −52.8328 −1.90520 −0.952600 0.304226i \(-0.901602\pi\)
−0.952600 + 0.304226i \(0.901602\pi\)
\(770\) −14.4721 −0.521540
\(771\) 0 0
\(772\) −42.0000 −1.51161
\(773\) 42.9443 1.54460 0.772299 0.635259i \(-0.219107\pi\)
0.772299 + 0.635259i \(0.219107\pi\)
\(774\) 0 0
\(775\) 1.52786 0.0548825
\(776\) 18.9443 0.680060
\(777\) 0 0
\(778\) 15.5279 0.556701
\(779\) −4.94427 −0.177147
\(780\) 0 0
\(781\) 35.7771 1.28020
\(782\) −17.8885 −0.639693
\(783\) 0 0
\(784\) −1.00000 −0.0357143
\(785\) −0.472136 −0.0168513
\(786\) 0 0
\(787\) 31.0557 1.10702 0.553509 0.832843i \(-0.313289\pi\)
0.553509 + 0.832843i \(0.313289\pi\)
\(788\) −46.5836 −1.65947
\(789\) 0 0
\(790\) 28.9443 1.02979
\(791\) −0.472136 −0.0167872
\(792\) 0 0
\(793\) −8.94427 −0.317620
\(794\) −30.0000 −1.06466
\(795\) 0 0
\(796\) 82.2492 2.91525
\(797\) 18.9443 0.671041 0.335520 0.942033i \(-0.391088\pi\)
0.335520 + 0.942033i \(0.391088\pi\)
\(798\) 0 0
\(799\) −25.8885 −0.915871
\(800\) −6.70820 −0.237171
\(801\) 0 0
\(802\) −22.3607 −0.789583
\(803\) 80.7214 2.84859
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 15.2786 0.538167
\(807\) 0 0
\(808\) 31.3050 1.10130
\(809\) −38.9443 −1.36921 −0.684604 0.728915i \(-0.740025\pi\)
−0.684604 + 0.728915i \(0.740025\pi\)
\(810\) 0 0
\(811\) 55.4164 1.94593 0.972967 0.230946i \(-0.0741820\pi\)
0.972967 + 0.230946i \(0.0741820\pi\)
\(812\) 6.00000 0.210559
\(813\) 0 0
\(814\) 100.498 3.52247
\(815\) −16.9443 −0.593532
\(816\) 0 0
\(817\) −22.1115 −0.773582
\(818\) 26.5836 0.929474
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) −33.7771 −1.17883 −0.589414 0.807831i \(-0.700641\pi\)
−0.589414 + 0.807831i \(0.700641\pi\)
\(822\) 0 0
\(823\) 44.9443 1.56666 0.783329 0.621607i \(-0.213520\pi\)
0.783329 + 0.621607i \(0.213520\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 20.0000 0.695889
\(827\) −12.9443 −0.450116 −0.225058 0.974345i \(-0.572257\pi\)
−0.225058 + 0.974345i \(0.572257\pi\)
\(828\) 0 0
\(829\) −13.0557 −0.453444 −0.226722 0.973959i \(-0.572801\pi\)
−0.226722 + 0.973959i \(0.572801\pi\)
\(830\) 37.8885 1.31513
\(831\) 0 0
\(832\) −58.1378 −2.01556
\(833\) 2.00000 0.0692959
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 48.0000 1.66011
\(837\) 0 0
\(838\) 66.8328 2.30870
\(839\) −54.8328 −1.89304 −0.946520 0.322647i \(-0.895427\pi\)
−0.946520 + 0.322647i \(0.895427\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 49.1935 1.69532
\(843\) 0 0
\(844\) −50.8328 −1.74974
\(845\) 7.00000 0.240807
\(846\) 0 0
\(847\) 30.8885 1.06134
\(848\) −3.52786 −0.121147
\(849\) 0 0
\(850\) 4.47214 0.153393
\(851\) 27.7771 0.952186
\(852\) 0 0
\(853\) −31.3050 −1.07186 −0.535931 0.844262i \(-0.680039\pi\)
−0.535931 + 0.844262i \(0.680039\pi\)
\(854\) −4.47214 −0.153033
\(855\) 0 0
\(856\) 28.9443 0.989295
\(857\) −36.8328 −1.25819 −0.629093 0.777330i \(-0.716573\pi\)
−0.629093 + 0.777330i \(0.716573\pi\)
\(858\) 0 0
\(859\) 50.4721 1.72209 0.861044 0.508531i \(-0.169811\pi\)
0.861044 + 0.508531i \(0.169811\pi\)
\(860\) 26.8328 0.914991
\(861\) 0 0
\(862\) 41.3050 1.40685
\(863\) −21.8885 −0.745095 −0.372547 0.928013i \(-0.621516\pi\)
−0.372547 + 0.928013i \(0.621516\pi\)
\(864\) 0 0
\(865\) 2.94427 0.100108
\(866\) 36.8328 1.25163
\(867\) 0 0
\(868\) 4.58359 0.155577
\(869\) −83.7771 −2.84194
\(870\) 0 0
\(871\) −17.8885 −0.606130
\(872\) −4.47214 −0.151446
\(873\) 0 0
\(874\) 22.1115 0.747931
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) −56.8328 −1.91911 −0.959554 0.281525i \(-0.909160\pi\)
−0.959554 + 0.281525i \(0.909160\pi\)
\(878\) 3.41641 0.115298
\(879\) 0 0
\(880\) 6.47214 0.218176
\(881\) 27.8885 0.939589 0.469794 0.882776i \(-0.344328\pi\)
0.469794 + 0.882776i \(0.344328\pi\)
\(882\) 0 0
\(883\) −37.8885 −1.27505 −0.637526 0.770429i \(-0.720042\pi\)
−0.637526 + 0.770429i \(0.720042\pi\)
\(884\) 26.8328 0.902485
\(885\) 0 0
\(886\) 17.8885 0.600977
\(887\) 30.8328 1.03526 0.517632 0.855603i \(-0.326814\pi\)
0.517632 + 0.855603i \(0.326814\pi\)
\(888\) 0 0
\(889\) −4.94427 −0.165826
\(890\) 4.47214 0.149906
\(891\) 0 0
\(892\) −38.8328 −1.30022
\(893\) 32.0000 1.07084
\(894\) 0 0
\(895\) −6.47214 −0.216340
\(896\) −15.6525 −0.522913
\(897\) 0 0
\(898\) 31.3050 1.04466
\(899\) 3.05573 0.101914
\(900\) 0 0
\(901\) 7.05573 0.235060
\(902\) −28.9443 −0.963739
\(903\) 0 0
\(904\) −1.05573 −0.0351130
\(905\) 1.05573 0.0350936
\(906\) 0 0
\(907\) 53.8885 1.78934 0.894670 0.446728i \(-0.147411\pi\)
0.894670 + 0.446728i \(0.147411\pi\)
\(908\) −2.83282 −0.0940103
\(909\) 0 0
\(910\) 10.0000 0.331497
\(911\) −46.2492 −1.53231 −0.766153 0.642659i \(-0.777831\pi\)
−0.766153 + 0.642659i \(0.777831\pi\)
\(912\) 0 0
\(913\) −109.666 −3.62940
\(914\) 15.5279 0.513616
\(915\) 0 0
\(916\) 71.6656 2.36790
\(917\) −4.00000 −0.132092
\(918\) 0 0
\(919\) −35.0557 −1.15638 −0.578191 0.815902i \(-0.696241\pi\)
−0.578191 + 0.815902i \(0.696241\pi\)
\(920\) −8.94427 −0.294884
\(921\) 0 0
\(922\) −8.69505 −0.286356
\(923\) −24.7214 −0.813713
\(924\) 0 0
\(925\) −6.94427 −0.228326
\(926\) 46.8328 1.53902
\(927\) 0 0
\(928\) −13.4164 −0.440415
\(929\) 16.1115 0.528600 0.264300 0.964441i \(-0.414859\pi\)
0.264300 + 0.964441i \(0.414859\pi\)
\(930\) 0 0
\(931\) −2.47214 −0.0810210
\(932\) 28.2492 0.925334
\(933\) 0 0
\(934\) 20.0000 0.654420
\(935\) −12.9443 −0.423323
\(936\) 0 0
\(937\) −52.4721 −1.71419 −0.857095 0.515158i \(-0.827733\pi\)
−0.857095 + 0.515158i \(0.827733\pi\)
\(938\) −8.94427 −0.292041
\(939\) 0 0
\(940\) −38.8328 −1.26659
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 0 0
\(943\) −8.00000 −0.260516
\(944\) −8.94427 −0.291111
\(945\) 0 0
\(946\) −129.443 −4.20855
\(947\) 17.8885 0.581300 0.290650 0.956830i \(-0.406129\pi\)
0.290650 + 0.956830i \(0.406129\pi\)
\(948\) 0 0
\(949\) −55.7771 −1.81060
\(950\) −5.52786 −0.179348
\(951\) 0 0
\(952\) 4.47214 0.144943
\(953\) 33.4164 1.08246 0.541232 0.840873i \(-0.317958\pi\)
0.541232 + 0.840873i \(0.317958\pi\)
\(954\) 0 0
\(955\) −0.583592 −0.0188846
\(956\) 31.4164 1.01608
\(957\) 0 0
\(958\) 40.0000 1.29234
\(959\) −3.52786 −0.113921
\(960\) 0 0
\(961\) −28.6656 −0.924698
\(962\) −69.4427 −2.23892
\(963\) 0 0
\(964\) −56.8328 −1.83046
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) 25.8885 0.832519 0.416260 0.909246i \(-0.363341\pi\)
0.416260 + 0.909246i \(0.363341\pi\)
\(968\) 69.0689 2.21996
\(969\) 0 0
\(970\) 18.9443 0.608264
\(971\) −40.9443 −1.31396 −0.656982 0.753906i \(-0.728167\pi\)
−0.656982 + 0.753906i \(0.728167\pi\)
\(972\) 0 0
\(973\) 7.41641 0.237759
\(974\) −46.8328 −1.50062
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) −30.5836 −0.978456 −0.489228 0.872156i \(-0.662721\pi\)
−0.489228 + 0.872156i \(0.662721\pi\)
\(978\) 0 0
\(979\) −12.9443 −0.413701
\(980\) 3.00000 0.0958315
\(981\) 0 0
\(982\) 47.6393 1.52023
\(983\) 22.8328 0.728254 0.364127 0.931349i \(-0.381367\pi\)
0.364127 + 0.931349i \(0.381367\pi\)
\(984\) 0 0
\(985\) −15.5279 −0.494759
\(986\) 8.94427 0.284844
\(987\) 0 0
\(988\) −33.1672 −1.05519
\(989\) −35.7771 −1.13765
\(990\) 0 0
\(991\) 4.94427 0.157060 0.0785300 0.996912i \(-0.474977\pi\)
0.0785300 + 0.996912i \(0.474977\pi\)
\(992\) −10.2492 −0.325413
\(993\) 0 0
\(994\) −12.3607 −0.392057
\(995\) 27.4164 0.869159
\(996\) 0 0
\(997\) −5.41641 −0.171539 −0.0857697 0.996315i \(-0.527335\pi\)
−0.0857697 + 0.996315i \(0.527335\pi\)
\(998\) −31.0557 −0.983052
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.a.d.1.2 2
3.2 odd 2 105.2.a.b.1.1 2
4.3 odd 2 5040.2.a.bw.1.2 2
5.2 odd 4 1575.2.d.d.1324.4 4
5.3 odd 4 1575.2.d.d.1324.1 4
5.4 even 2 1575.2.a.r.1.1 2
7.6 odd 2 2205.2.a.w.1.2 2
12.11 even 2 1680.2.a.v.1.1 2
15.2 even 4 525.2.d.c.274.2 4
15.8 even 4 525.2.d.c.274.3 4
15.14 odd 2 525.2.a.g.1.2 2
21.2 odd 6 735.2.i.k.361.2 4
21.5 even 6 735.2.i.i.361.2 4
21.11 odd 6 735.2.i.k.226.2 4
21.17 even 6 735.2.i.i.226.2 4
21.20 even 2 735.2.a.k.1.1 2
24.5 odd 2 6720.2.a.cx.1.1 2
24.11 even 2 6720.2.a.cs.1.2 2
60.59 even 2 8400.2.a.cx.1.1 2
105.104 even 2 3675.2.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.a.b.1.1 2 3.2 odd 2
315.2.a.d.1.2 2 1.1 even 1 trivial
525.2.a.g.1.2 2 15.14 odd 2
525.2.d.c.274.2 4 15.2 even 4
525.2.d.c.274.3 4 15.8 even 4
735.2.a.k.1.1 2 21.20 even 2
735.2.i.i.226.2 4 21.17 even 6
735.2.i.i.361.2 4 21.5 even 6
735.2.i.k.226.2 4 21.11 odd 6
735.2.i.k.361.2 4 21.2 odd 6
1575.2.a.r.1.1 2 5.4 even 2
1575.2.d.d.1324.1 4 5.3 odd 4
1575.2.d.d.1324.4 4 5.2 odd 4
1680.2.a.v.1.1 2 12.11 even 2
2205.2.a.w.1.2 2 7.6 odd 2
3675.2.a.y.1.2 2 105.104 even 2
5040.2.a.bw.1.2 2 4.3 odd 2
6720.2.a.cs.1.2 2 24.11 even 2
6720.2.a.cx.1.1 2 24.5 odd 2
8400.2.a.cx.1.1 2 60.59 even 2