Properties

Label 315.2.bb.a.89.4
Level $315$
Weight $2$
Character 315.89
Analytic conductor $2.515$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(89,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.89");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12745506816.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.4
Root \(1.00781 - 0.581861i\) of defining polynomial
Character \(\chi\) \(=\) 315.89
Dual form 315.2.bb.a.269.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{4} +(2.23256 - 0.125246i) q^{5} +(-1.32288 + 2.29129i) q^{7} +(2.44949 - 1.41421i) q^{11} -2.64575 q^{13} +(-2.00000 + 3.46410i) q^{16} +(-3.24037 + 1.87083i) q^{17} +(1.50000 + 0.866025i) q^{19} +(2.44949 + 3.74166i) q^{20} +(3.24037 - 5.61249i) q^{23} +(4.96863 - 0.559237i) q^{25} -5.29150 q^{28} -1.41421i q^{29} +(4.50000 - 2.59808i) q^{31} +(-2.66642 + 5.28112i) q^{35} +(3.96863 + 2.29129i) q^{37} -4.89898 q^{41} +4.58258i q^{43} +(4.89898 + 2.82843i) q^{44} +(3.24037 + 1.87083i) q^{47} +(-3.50000 - 6.06218i) q^{49} +(-2.64575 - 4.58258i) q^{52} +(-6.48074 - 11.2250i) q^{53} +(5.29150 - 3.46410i) q^{55} +(-3.67423 - 6.36396i) q^{59} +(-9.00000 - 5.19615i) q^{61} -8.00000 q^{64} +(-5.90679 + 0.331369i) q^{65} +(11.9059 - 6.87386i) q^{67} +(-6.48074 - 3.74166i) q^{68} +11.3137i q^{71} +(-6.61438 - 11.4564i) q^{73} +3.46410i q^{76} +7.48331i q^{77} +(3.50000 - 6.06218i) q^{79} +(-4.03125 + 7.98430i) q^{80} -14.9666i q^{83} +(-7.00000 + 4.58258i) q^{85} +(-8.57321 + 14.8492i) q^{89} +(3.50000 - 6.06218i) q^{91} +12.9615 q^{92} +(3.45730 + 1.74558i) q^{95} +5.29150 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} - 16 q^{16} + 12 q^{19} + 8 q^{25} + 36 q^{31} - 28 q^{49} - 72 q^{61} - 64 q^{64} + 28 q^{79} - 56 q^{85} + 28 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0 0
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 2.23256 0.125246i 0.998430 0.0560116i
\(6\) 0 0
\(7\) −1.32288 + 2.29129i −0.500000 + 0.866025i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.44949 1.41421i 0.738549 0.426401i −0.0829925 0.996550i \(-0.526448\pi\)
0.821541 + 0.570149i \(0.193114\pi\)
\(12\) 0 0
\(13\) −2.64575 −0.733799 −0.366900 0.930261i \(-0.619581\pi\)
−0.366900 + 0.930261i \(0.619581\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) −3.24037 + 1.87083i −0.785905 + 0.453743i −0.838519 0.544872i \(-0.816578\pi\)
0.0526138 + 0.998615i \(0.483245\pi\)
\(18\) 0 0
\(19\) 1.50000 + 0.866025i 0.344124 + 0.198680i 0.662094 0.749421i \(-0.269668\pi\)
−0.317970 + 0.948101i \(0.603001\pi\)
\(20\) 2.44949 + 3.74166i 0.547723 + 0.836660i
\(21\) 0 0
\(22\) 0 0
\(23\) 3.24037 5.61249i 0.675664 1.17028i −0.300610 0.953747i \(-0.597190\pi\)
0.976274 0.216537i \(-0.0694763\pi\)
\(24\) 0 0
\(25\) 4.96863 0.559237i 0.993725 0.111847i
\(26\) 0 0
\(27\) 0 0
\(28\) −5.29150 −1.00000
\(29\) 1.41421i 0.262613i −0.991342 0.131306i \(-0.958083\pi\)
0.991342 0.131306i \(-0.0419172\pi\)
\(30\) 0 0
\(31\) 4.50000 2.59808i 0.808224 0.466628i −0.0381148 0.999273i \(-0.512135\pi\)
0.846339 + 0.532645i \(0.178802\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.66642 + 5.28112i −0.450708 + 0.892672i
\(36\) 0 0
\(37\) 3.96863 + 2.29129i 0.652438 + 0.376685i 0.789390 0.613892i \(-0.210397\pi\)
−0.136951 + 0.990578i \(0.543730\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.89898 −0.765092 −0.382546 0.923936i \(-0.624953\pi\)
−0.382546 + 0.923936i \(0.624953\pi\)
\(42\) 0 0
\(43\) 4.58258i 0.698836i 0.936967 + 0.349418i \(0.113621\pi\)
−0.936967 + 0.349418i \(0.886379\pi\)
\(44\) 4.89898 + 2.82843i 0.738549 + 0.426401i
\(45\) 0 0
\(46\) 0 0
\(47\) 3.24037 + 1.87083i 0.472657 + 0.272888i 0.717351 0.696712i \(-0.245354\pi\)
−0.244695 + 0.969600i \(0.578688\pi\)
\(48\) 0 0
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) −2.64575 4.58258i −0.366900 0.635489i
\(53\) −6.48074 11.2250i −0.890198 1.54187i −0.839637 0.543148i \(-0.817232\pi\)
−0.0505609 0.998721i \(-0.516101\pi\)
\(54\) 0 0
\(55\) 5.29150 3.46410i 0.713506 0.467099i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.67423 6.36396i −0.478345 0.828517i 0.521347 0.853345i \(-0.325430\pi\)
−0.999692 + 0.0248275i \(0.992096\pi\)
\(60\) 0 0
\(61\) −9.00000 5.19615i −1.15233 0.665299i −0.202878 0.979204i \(-0.565029\pi\)
−0.949454 + 0.313905i \(0.898363\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −5.90679 + 0.331369i −0.732647 + 0.0411013i
\(66\) 0 0
\(67\) 11.9059 6.87386i 1.45453 0.839776i 0.455801 0.890082i \(-0.349353\pi\)
0.998734 + 0.0503056i \(0.0160195\pi\)
\(68\) −6.48074 3.74166i −0.785905 0.453743i
\(69\) 0 0
\(70\) 0 0
\(71\) 11.3137i 1.34269i 0.741145 + 0.671345i \(0.234283\pi\)
−0.741145 + 0.671345i \(0.765717\pi\)
\(72\) 0 0
\(73\) −6.61438 11.4564i −0.774154 1.34087i −0.935269 0.353939i \(-0.884842\pi\)
0.161114 0.986936i \(-0.448491\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 3.46410i 0.397360i
\(77\) 7.48331i 0.852803i
\(78\) 0 0
\(79\) 3.50000 6.06218i 0.393781 0.682048i −0.599164 0.800626i \(-0.704500\pi\)
0.992945 + 0.118578i \(0.0378336\pi\)
\(80\) −4.03125 + 7.98430i −0.450708 + 0.892672i
\(81\) 0 0
\(82\) 0 0
\(83\) 14.9666i 1.64280i −0.570352 0.821401i \(-0.693193\pi\)
0.570352 0.821401i \(-0.306807\pi\)
\(84\) 0 0
\(85\) −7.00000 + 4.58258i −0.759257 + 0.497050i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.57321 + 14.8492i −0.908759 + 1.57402i −0.0929683 + 0.995669i \(0.529636\pi\)
−0.815791 + 0.578347i \(0.803698\pi\)
\(90\) 0 0
\(91\) 3.50000 6.06218i 0.366900 0.635489i
\(92\) 12.9615 1.35133
\(93\) 0 0
\(94\) 0 0
\(95\) 3.45730 + 1.74558i 0.354712 + 0.179093i
\(96\) 0 0
\(97\) 5.29150 0.537271 0.268635 0.963242i \(-0.413427\pi\)
0.268635 + 0.963242i \(0.413427\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.93725 + 8.04668i 0.593725 + 0.804668i
\(101\) −4.89898 8.48528i −0.487467 0.844317i 0.512429 0.858729i \(-0.328746\pi\)
−0.999896 + 0.0144123i \(0.995412\pi\)
\(102\) 0 0
\(103\) −6.61438 + 11.4564i −0.651734 + 1.12884i 0.330968 + 0.943642i \(0.392625\pi\)
−0.982702 + 0.185194i \(0.940708\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.24037 + 5.61249i −0.313258 + 0.542580i −0.979066 0.203544i \(-0.934754\pi\)
0.665807 + 0.746124i \(0.268087\pi\)
\(108\) 0 0
\(109\) 3.50000 + 6.06218i 0.335239 + 0.580651i 0.983531 0.180741i \(-0.0578495\pi\)
−0.648292 + 0.761392i \(0.724516\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −5.29150 9.16515i −0.500000 0.866025i
\(113\) 6.48074 0.609657 0.304828 0.952407i \(-0.401401\pi\)
0.304828 + 0.952407i \(0.401401\pi\)
\(114\) 0 0
\(115\) 6.53137 12.9360i 0.609054 1.20629i
\(116\) 2.44949 1.41421i 0.227429 0.131306i
\(117\) 0 0
\(118\) 0 0
\(119\) 9.89949i 0.907485i
\(120\) 0 0
\(121\) −1.50000 + 2.59808i −0.136364 + 0.236189i
\(122\) 0 0
\(123\) 0 0
\(124\) 9.00000 + 5.19615i 0.808224 + 0.466628i
\(125\) 11.0227 1.87083i 0.985901 0.167332i
\(126\) 0 0
\(127\) 13.7477i 1.21991i 0.792435 + 0.609957i \(0.208813\pi\)
−0.792435 + 0.609957i \(0.791187\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.57321 14.8492i 0.749045 1.29738i −0.199236 0.979952i \(-0.563846\pi\)
0.948281 0.317433i \(-0.102821\pi\)
\(132\) 0 0
\(133\) −3.96863 + 2.29129i −0.344124 + 0.198680i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.24037 5.61249i −0.276844 0.479507i 0.693755 0.720211i \(-0.255955\pi\)
−0.970599 + 0.240704i \(0.922622\pi\)
\(138\) 0 0
\(139\) 8.66025i 0.734553i 0.930112 + 0.367277i \(0.119710\pi\)
−0.930112 + 0.367277i \(0.880290\pi\)
\(140\) −11.8136 + 0.662739i −0.998430 + 0.0560116i
\(141\) 0 0
\(142\) 0 0
\(143\) −6.48074 + 3.74166i −0.541947 + 0.312893i
\(144\) 0 0
\(145\) −0.177124 3.15731i −0.0147094 0.262201i
\(146\) 0 0
\(147\) 0 0
\(148\) 9.16515i 0.753371i
\(149\) 12.2474 + 7.07107i 1.00335 + 0.579284i 0.909238 0.416277i \(-0.136665\pi\)
0.0941123 + 0.995562i \(0.469999\pi\)
\(150\) 0 0
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.72111 6.36396i 0.780818 0.511166i
\(156\) 0 0
\(157\) −2.64575 4.58258i −0.211154 0.365729i 0.740922 0.671591i \(-0.234389\pi\)
−0.952076 + 0.305862i \(0.901055\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.57321 + 14.8492i 0.675664 + 1.17028i
\(162\) 0 0
\(163\) −7.93725 4.58258i −0.621694 0.358935i 0.155834 0.987783i \(-0.450193\pi\)
−0.777528 + 0.628848i \(0.783527\pi\)
\(164\) −4.89898 8.48528i −0.382546 0.662589i
\(165\) 0 0
\(166\) 0 0
\(167\) 7.48331i 0.579076i 0.957166 + 0.289538i \(0.0935017\pi\)
−0.957166 + 0.289538i \(0.906498\pi\)
\(168\) 0 0
\(169\) −6.00000 −0.461538
\(170\) 0 0
\(171\) 0 0
\(172\) −7.93725 + 4.58258i −0.605210 + 0.349418i
\(173\) 12.9615 + 7.48331i 0.985443 + 0.568946i 0.903909 0.427725i \(-0.140685\pi\)
0.0815341 + 0.996671i \(0.474018\pi\)
\(174\) 0 0
\(175\) −5.29150 + 12.1244i −0.400000 + 0.916515i
\(176\) 11.3137i 0.852803i
\(177\) 0 0
\(178\) 0 0
\(179\) 6.12372 3.53553i 0.457709 0.264258i −0.253372 0.967369i \(-0.581540\pi\)
0.711080 + 0.703111i \(0.248206\pi\)
\(180\) 0 0
\(181\) 15.5885i 1.15868i 0.815086 + 0.579340i \(0.196690\pi\)
−0.815086 + 0.579340i \(0.803310\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.14716 + 4.61838i 0.672513 + 0.339550i
\(186\) 0 0
\(187\) −5.29150 + 9.16515i −0.386953 + 0.670222i
\(188\) 7.48331i 0.545777i
\(189\) 0 0
\(190\) 0 0
\(191\) −13.4722 7.77817i −0.974814 0.562809i −0.0741134 0.997250i \(-0.523613\pi\)
−0.900700 + 0.434441i \(0.856946\pi\)
\(192\) 0 0
\(193\) 11.9059 6.87386i 0.857004 0.494792i −0.00600382 0.999982i \(-0.501911\pi\)
0.863008 + 0.505190i \(0.168578\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 7.00000 12.1244i 0.500000 0.866025i
\(197\) −19.4422 −1.38520 −0.692600 0.721321i \(-0.743535\pi\)
−0.692600 + 0.721321i \(0.743535\pi\)
\(198\) 0 0
\(199\) 6.00000 3.46410i 0.425329 0.245564i −0.272026 0.962290i \(-0.587694\pi\)
0.697355 + 0.716726i \(0.254360\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.24037 + 1.87083i 0.227429 + 0.131306i
\(204\) 0 0
\(205\) −10.9373 + 0.613577i −0.763891 + 0.0428541i
\(206\) 0 0
\(207\) 0 0
\(208\) 5.29150 9.16515i 0.366900 0.635489i
\(209\) 4.89898 0.338869
\(210\) 0 0
\(211\) 14.0000 0.963800 0.481900 0.876226i \(-0.339947\pi\)
0.481900 + 0.876226i \(0.339947\pi\)
\(212\) 12.9615 22.4499i 0.890198 1.54187i
\(213\) 0 0
\(214\) 0 0
\(215\) 0.573948 + 10.2309i 0.0391430 + 0.697739i
\(216\) 0 0
\(217\) 13.7477i 0.933257i
\(218\) 0 0
\(219\) 0 0
\(220\) 11.2915 + 5.70105i 0.761273 + 0.384365i
\(221\) 8.57321 4.94975i 0.576697 0.332956i
\(222\) 0 0
\(223\) 5.29150 0.354345 0.177173 0.984180i \(-0.443305\pi\)
0.177173 + 0.984180i \(0.443305\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.9615 + 7.48331i −0.860284 + 0.496685i −0.864107 0.503308i \(-0.832116\pi\)
0.00382356 + 0.999993i \(0.498783\pi\)
\(228\) 0 0
\(229\) −1.50000 0.866025i −0.0991228 0.0572286i 0.449619 0.893220i \(-0.351560\pi\)
−0.548742 + 0.835992i \(0.684893\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.24037 + 5.61249i −0.212284 + 0.367686i −0.952429 0.304761i \(-0.901423\pi\)
0.740145 + 0.672447i \(0.234757\pi\)
\(234\) 0 0
\(235\) 7.46863 + 3.77089i 0.487200 + 0.245986i
\(236\) 7.34847 12.7279i 0.478345 0.828517i
\(237\) 0 0
\(238\) 0 0
\(239\) 18.3848i 1.18921i −0.804017 0.594606i \(-0.797308\pi\)
0.804017 0.594606i \(-0.202692\pi\)
\(240\) 0 0
\(241\) −15.0000 + 8.66025i −0.966235 + 0.557856i −0.898086 0.439819i \(-0.855043\pi\)
−0.0681486 + 0.997675i \(0.521709\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 20.7846i 1.33060i
\(245\) −8.57321 13.0958i −0.547723 0.836660i
\(246\) 0 0
\(247\) −3.96863 2.29129i −0.252518 0.145791i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −22.0454 −1.39149 −0.695747 0.718287i \(-0.744926\pi\)
−0.695747 + 0.718287i \(0.744926\pi\)
\(252\) 0 0
\(253\) 18.3303i 1.15242i
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −6.48074 3.74166i −0.404257 0.233398i 0.284062 0.958806i \(-0.408318\pi\)
−0.688319 + 0.725408i \(0.741651\pi\)
\(258\) 0 0
\(259\) −10.5000 + 6.06218i −0.652438 + 0.376685i
\(260\) −6.48074 9.89949i −0.401918 0.613941i
\(261\) 0 0
\(262\) 0 0
\(263\) 6.48074 + 11.2250i 0.399620 + 0.692161i 0.993679 0.112260i \(-0.0358089\pi\)
−0.594059 + 0.804421i \(0.702476\pi\)
\(264\) 0 0
\(265\) −15.8745 24.2487i −0.975163 1.48959i
\(266\) 0 0
\(267\) 0 0
\(268\) 23.8118 + 13.7477i 1.45453 + 0.839776i
\(269\) 8.57321 + 14.8492i 0.522718 + 0.905374i 0.999651 + 0.0264343i \(0.00841529\pi\)
−0.476932 + 0.878940i \(0.658251\pi\)
\(270\) 0 0
\(271\) −12.0000 6.92820i −0.728948 0.420858i 0.0890891 0.996024i \(-0.471604\pi\)
−0.818037 + 0.575165i \(0.804938\pi\)
\(272\) 14.9666i 0.907485i
\(273\) 0 0
\(274\) 0 0
\(275\) 11.3797 8.39655i 0.686223 0.506331i
\(276\) 0 0
\(277\) −3.96863 + 2.29129i −0.238452 + 0.137670i −0.614465 0.788944i \(-0.710628\pi\)
0.376013 + 0.926614i \(0.377295\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 28.2843i 1.68730i 0.536895 + 0.843649i \(0.319597\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 9.26013 + 16.0390i 0.550458 + 0.953420i 0.998241 + 0.0592787i \(0.0188801\pi\)
−0.447784 + 0.894142i \(0.647787\pi\)
\(284\) −19.5959 + 11.3137i −1.16280 + 0.671345i
\(285\) 0 0
\(286\) 0 0
\(287\) 6.48074 11.2250i 0.382546 0.662589i
\(288\) 0 0
\(289\) −1.50000 + 2.59808i −0.0882353 + 0.152828i
\(290\) 0 0
\(291\) 0 0
\(292\) 13.2288 22.9129i 0.774154 1.34087i
\(293\) 29.9333i 1.74872i 0.485278 + 0.874360i \(0.338718\pi\)
−0.485278 + 0.874360i \(0.661282\pi\)
\(294\) 0 0
\(295\) −9.00000 13.7477i −0.524000 0.800424i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.57321 + 14.8492i −0.495802 + 0.858754i
\(300\) 0 0
\(301\) −10.5000 6.06218i −0.605210 0.349418i
\(302\) 0 0
\(303\) 0 0
\(304\) −6.00000 + 3.46410i −0.344124 + 0.198680i
\(305\) −20.7438 10.4735i −1.18779 0.599711i
\(306\) 0 0
\(307\) −2.64575 −0.151001 −0.0755005 0.997146i \(-0.524055\pi\)
−0.0755005 + 0.997146i \(0.524055\pi\)
\(308\) −12.9615 + 7.48331i −0.738549 + 0.426401i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) 9.26013 16.0390i 0.523413 0.906579i −0.476215 0.879329i \(-0.657992\pi\)
0.999629 0.0272499i \(-0.00867500\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) −9.72111 + 16.8375i −0.545992 + 0.945686i 0.452552 + 0.891738i \(0.350514\pi\)
−0.998544 + 0.0539477i \(0.982820\pi\)
\(318\) 0 0
\(319\) −2.00000 3.46410i −0.111979 0.193952i
\(320\) −17.8605 + 1.00197i −0.998430 + 0.0560116i
\(321\) 0 0
\(322\) 0 0
\(323\) −6.48074 −0.360598
\(324\) 0 0
\(325\) −13.1458 + 1.47960i −0.729195 + 0.0820736i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.57321 + 4.94975i −0.472657 + 0.272888i
\(330\) 0 0
\(331\) 3.50000 6.06218i 0.192377 0.333207i −0.753660 0.657264i \(-0.771714\pi\)
0.946038 + 0.324057i \(0.105047\pi\)
\(332\) 25.9230 14.9666i 1.42271 0.821401i
\(333\) 0 0
\(334\) 0 0
\(335\) 25.7196 16.8375i 1.40521 0.919929i
\(336\) 0 0
\(337\) 32.0780i 1.74740i −0.486464 0.873701i \(-0.661713\pi\)
0.486464 0.873701i \(-0.338287\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −14.9373 7.54178i −0.810086 0.409010i
\(341\) 7.34847 12.7279i 0.397942 0.689256i
\(342\) 0 0
\(343\) 18.5203 1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 3.46410i 0.185429i −0.995693 0.0927146i \(-0.970446\pi\)
0.995693 0.0927146i \(-0.0295544\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.48074 3.74166i 0.344935 0.199148i −0.317517 0.948253i \(-0.602849\pi\)
0.662452 + 0.749104i \(0.269516\pi\)
\(354\) 0 0
\(355\) 1.41699 + 25.2585i 0.0752063 + 1.34058i
\(356\) −34.2929 −1.81752
\(357\) 0 0
\(358\) 0 0
\(359\) −13.4722 7.77817i −0.711035 0.410516i 0.100409 0.994946i \(-0.467985\pi\)
−0.811444 + 0.584430i \(0.801318\pi\)
\(360\) 0 0
\(361\) −8.00000 13.8564i −0.421053 0.729285i
\(362\) 0 0
\(363\) 0 0
\(364\) 14.0000 0.733799
\(365\) −16.2019 24.7487i −0.848044 1.29541i
\(366\) 0 0
\(367\) 9.26013 + 16.0390i 0.483375 + 0.837230i 0.999818 0.0190919i \(-0.00607750\pi\)
−0.516443 + 0.856322i \(0.672744\pi\)
\(368\) 12.9615 + 22.4499i 0.675664 + 1.17028i
\(369\) 0 0
\(370\) 0 0
\(371\) 34.2929 1.78040
\(372\) 0 0
\(373\) −3.96863 2.29129i −0.205488 0.118638i 0.393725 0.919228i \(-0.371186\pi\)
−0.599213 + 0.800590i \(0.704520\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.74166i 0.192705i
\(378\) 0 0
\(379\) 5.00000 0.256833 0.128416 0.991720i \(-0.459011\pi\)
0.128416 + 0.991720i \(0.459011\pi\)
\(380\) 0.433864 + 7.73381i 0.0222568 + 0.396736i
\(381\) 0 0
\(382\) 0 0
\(383\) −6.48074 3.74166i −0.331150 0.191190i 0.325201 0.945645i \(-0.394568\pi\)
−0.656352 + 0.754455i \(0.727901\pi\)
\(384\) 0 0
\(385\) 0.937254 + 16.7069i 0.0477669 + 0.851464i
\(386\) 0 0
\(387\) 0 0
\(388\) 5.29150 + 9.16515i 0.268635 + 0.465290i
\(389\) 2.44949 1.41421i 0.124194 0.0717035i −0.436616 0.899648i \(-0.643823\pi\)
0.560810 + 0.827945i \(0.310490\pi\)
\(390\) 0 0
\(391\) 24.2487i 1.22631i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.05469 13.9725i 0.354960 0.703034i
\(396\) 0 0
\(397\) −14.5516 + 25.2042i −0.730325 + 1.26496i 0.226419 + 0.974030i \(0.427298\pi\)
−0.956744 + 0.290931i \(0.906035\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −8.00000 + 18.3303i −0.400000 + 0.916515i
\(401\) 4.89898 + 2.82843i 0.244643 + 0.141245i 0.617309 0.786721i \(-0.288223\pi\)
−0.372666 + 0.927966i \(0.621556\pi\)
\(402\) 0 0
\(403\) −11.9059 + 6.87386i −0.593074 + 0.342412i
\(404\) 9.79796 16.9706i 0.487467 0.844317i
\(405\) 0 0
\(406\) 0 0
\(407\) 12.9615 0.642477
\(408\) 0 0
\(409\) −4.50000 + 2.59808i −0.222511 + 0.128467i −0.607112 0.794616i \(-0.707672\pi\)
0.384602 + 0.923083i \(0.374339\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −26.4575 −1.30347
\(413\) 19.4422 0.956689
\(414\) 0 0
\(415\) −1.87451 33.4139i −0.0920160 1.64022i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.1464 0.837658 0.418829 0.908065i \(-0.362441\pi\)
0.418829 + 0.908065i \(0.362441\pi\)
\(420\) 0 0
\(421\) 35.0000 1.70580 0.852898 0.522078i \(-0.174843\pi\)
0.852898 + 0.522078i \(0.174843\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −15.0540 + 11.1076i −0.730224 + 0.538797i
\(426\) 0 0
\(427\) 23.8118 13.7477i 1.15233 0.665299i
\(428\) −12.9615 −0.626517
\(429\) 0 0
\(430\) 0 0
\(431\) 6.12372 3.53553i 0.294969 0.170301i −0.345211 0.938525i \(-0.612193\pi\)
0.640181 + 0.768224i \(0.278859\pi\)
\(432\) 0 0
\(433\) 13.2288 0.635733 0.317867 0.948135i \(-0.397034\pi\)
0.317867 + 0.948135i \(0.397034\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −7.00000 + 12.1244i −0.335239 + 0.580651i
\(437\) 9.72111 5.61249i 0.465024 0.268482i
\(438\) 0 0
\(439\) 9.00000 + 5.19615i 0.429547 + 0.247999i 0.699153 0.714972i \(-0.253560\pi\)
−0.269607 + 0.962970i \(0.586894\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −19.4422 + 33.6749i −0.923728 + 1.59994i −0.130133 + 0.991496i \(0.541541\pi\)
−0.793594 + 0.608447i \(0.791793\pi\)
\(444\) 0 0
\(445\) −17.2804 + 34.2255i −0.819169 + 1.62245i
\(446\) 0 0
\(447\) 0 0
\(448\) 10.5830 18.3303i 0.500000 0.866025i
\(449\) 18.3848i 0.867631i −0.901002 0.433816i \(-0.857167\pi\)
0.901002 0.433816i \(-0.142833\pi\)
\(450\) 0 0
\(451\) −12.0000 + 6.92820i −0.565058 + 0.326236i
\(452\) 6.48074 + 11.2250i 0.304828 + 0.527978i
\(453\) 0 0
\(454\) 0 0
\(455\) 7.05469 13.9725i 0.330729 0.655042i
\(456\) 0 0
\(457\) −11.9059 6.87386i −0.556934 0.321546i 0.194980 0.980807i \(-0.437536\pi\)
−0.751914 + 0.659261i \(0.770869\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 28.9373 1.62337i 1.34921 0.0756901i
\(461\) −17.1464 −0.798589 −0.399294 0.916823i \(-0.630745\pi\)
−0.399294 + 0.916823i \(0.630745\pi\)
\(462\) 0 0
\(463\) 4.58258i 0.212970i −0.994314 0.106485i \(-0.966040\pi\)
0.994314 0.106485i \(-0.0339597\pi\)
\(464\) 4.89898 + 2.82843i 0.227429 + 0.131306i
\(465\) 0 0
\(466\) 0 0
\(467\) 3.24037 + 1.87083i 0.149946 + 0.0865716i 0.573096 0.819488i \(-0.305742\pi\)
−0.423150 + 0.906060i \(0.639076\pi\)
\(468\) 0 0
\(469\) 36.3731i 1.67955i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.48074 + 11.2250i 0.297985 + 0.516125i
\(474\) 0 0
\(475\) 7.93725 + 3.46410i 0.364186 + 0.158944i
\(476\) 17.1464 9.89949i 0.785905 0.453743i
\(477\) 0 0
\(478\) 0 0
\(479\) 17.1464 + 29.6985i 0.783440 + 1.35696i 0.929926 + 0.367746i \(0.119870\pi\)
−0.146486 + 0.989213i \(0.546796\pi\)
\(480\) 0 0
\(481\) −10.5000 6.06218i −0.478759 0.276412i
\(482\) 0 0
\(483\) 0 0
\(484\) −6.00000 −0.272727
\(485\) 11.8136 0.662739i 0.536427 0.0300934i
\(486\) 0 0
\(487\) −19.8431 + 11.4564i −0.899178 + 0.519141i −0.876933 0.480612i \(-0.840415\pi\)
−0.0222448 + 0.999753i \(0.507081\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.3137i 0.510581i 0.966864 + 0.255290i \(0.0821710\pi\)
−0.966864 + 0.255290i \(0.917829\pi\)
\(492\) 0 0
\(493\) 2.64575 + 4.58258i 0.119159 + 0.206389i
\(494\) 0 0
\(495\) 0 0
\(496\) 20.7846i 0.933257i
\(497\) −25.9230 14.9666i −1.16280 0.671345i
\(498\) 0 0
\(499\) 6.50000 11.2583i 0.290980 0.503992i −0.683062 0.730361i \(-0.739352\pi\)
0.974042 + 0.226369i \(0.0726854\pi\)
\(500\) 14.2631 + 17.2211i 0.637864 + 0.770149i
\(501\) 0 0
\(502\) 0 0
\(503\) 3.74166i 0.166832i −0.996515 0.0834161i \(-0.973417\pi\)
0.996515 0.0834161i \(-0.0265831\pi\)
\(504\) 0 0
\(505\) −12.0000 18.3303i −0.533993 0.815688i
\(506\) 0 0
\(507\) 0 0
\(508\) −23.8118 + 13.7477i −1.05648 + 0.609957i
\(509\) 8.57321 14.8492i 0.380001 0.658181i −0.611061 0.791584i \(-0.709257\pi\)
0.991062 + 0.133402i \(0.0425903\pi\)
\(510\) 0 0
\(511\) 35.0000 1.54831
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.3321 + 26.4056i −0.587483 + 1.16357i
\(516\) 0 0
\(517\) 10.5830 0.465440
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17.1464 29.6985i −0.751199 1.30111i −0.947242 0.320519i \(-0.896143\pi\)
0.196043 0.980595i \(-0.437191\pi\)
\(522\) 0 0
\(523\) −6.61438 + 11.4564i −0.289227 + 0.500955i −0.973625 0.228153i \(-0.926731\pi\)
0.684399 + 0.729108i \(0.260065\pi\)
\(524\) 34.2929 1.49809
\(525\) 0 0
\(526\) 0 0
\(527\) −9.72111 + 16.8375i −0.423458 + 0.733451i
\(528\) 0 0
\(529\) −9.50000 16.4545i −0.413043 0.715412i
\(530\) 0 0
\(531\) 0 0
\(532\) −7.93725 4.58258i −0.344124 0.198680i
\(533\) 12.9615 0.561424
\(534\) 0 0
\(535\) −6.53137 + 12.9360i −0.282376 + 0.559274i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −17.1464 9.89949i −0.738549 0.426401i
\(540\) 0 0
\(541\) 3.50000 6.06218i 0.150477 0.260633i −0.780926 0.624623i \(-0.785252\pi\)
0.931403 + 0.363990i \(0.118586\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.57321 + 13.0958i 0.367236 + 0.560962i
\(546\) 0 0
\(547\) 18.3303i 0.783747i 0.920019 + 0.391874i \(0.128173\pi\)
−0.920019 + 0.391874i \(0.871827\pi\)
\(548\) 6.48074 11.2250i 0.276844 0.479507i
\(549\) 0 0
\(550\) 0 0
\(551\) 1.22474 2.12132i 0.0521759 0.0903713i
\(552\) 0 0
\(553\) 9.26013 + 16.0390i 0.393781 + 0.682048i
\(554\) 0 0
\(555\) 0 0
\(556\) −15.0000 + 8.66025i −0.636142 + 0.367277i
\(557\) 3.24037 + 5.61249i 0.137299 + 0.237809i 0.926473 0.376360i \(-0.122825\pi\)
−0.789174 + 0.614169i \(0.789491\pi\)
\(558\) 0 0
\(559\) 12.1244i 0.512806i
\(560\) −12.9615 19.7990i −0.547723 0.836660i
\(561\) 0 0
\(562\) 0 0
\(563\) 16.2019 9.35414i 0.682827 0.394230i −0.118093 0.993003i \(-0.537678\pi\)
0.800919 + 0.598772i \(0.204345\pi\)
\(564\) 0 0
\(565\) 14.4686 0.811686i 0.608700 0.0341479i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −39.1918 22.6274i −1.64301 0.948591i −0.979756 0.200194i \(-0.935843\pi\)
−0.663251 0.748397i \(-0.730824\pi\)
\(570\) 0 0
\(571\) −8.50000 14.7224i −0.355714 0.616115i 0.631526 0.775355i \(-0.282429\pi\)
−0.987240 + 0.159240i \(0.949096\pi\)
\(572\) −12.9615 7.48331i −0.541947 0.312893i
\(573\) 0 0
\(574\) 0 0
\(575\) 12.9615 29.6985i 0.540531 1.23851i
\(576\) 0 0
\(577\) 17.1974 + 29.7867i 0.715936 + 1.24004i 0.962597 + 0.270936i \(0.0873333\pi\)
−0.246661 + 0.969102i \(0.579333\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 5.29150 3.46410i 0.219718 0.143839i
\(581\) 34.2929 + 19.7990i 1.42271 + 0.821401i
\(582\) 0 0
\(583\) −31.7490 18.3303i −1.31491 0.759164i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.1916i 1.08104i −0.841330 0.540522i \(-0.818227\pi\)
0.841330 0.540522i \(-0.181773\pi\)
\(588\) 0 0
\(589\) 9.00000 0.370839
\(590\) 0 0
\(591\) 0 0
\(592\) −15.8745 + 9.16515i −0.652438 + 0.376685i
\(593\) 12.9615 + 7.48331i 0.532264 + 0.307303i 0.741938 0.670468i \(-0.233907\pi\)
−0.209674 + 0.977771i \(0.567240\pi\)
\(594\) 0 0
\(595\) −1.23987 22.1012i −0.0508297 0.906061i
\(596\) 28.2843i 1.15857i
\(597\) 0 0
\(598\) 0 0
\(599\) 2.44949 1.41421i 0.100083 0.0577832i −0.449123 0.893470i \(-0.648263\pi\)
0.549206 + 0.835687i \(0.314930\pi\)
\(600\) 0 0
\(601\) 8.66025i 0.353259i −0.984277 0.176630i \(-0.943481\pi\)
0.984277 0.176630i \(-0.0565195\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −10.0000 + 17.3205i −0.406894 + 0.704761i
\(605\) −3.02344 + 5.98822i −0.122920 + 0.243456i
\(606\) 0 0
\(607\) 17.1974 29.7867i 0.698020 1.20901i −0.271132 0.962542i \(-0.587398\pi\)
0.969152 0.246464i \(-0.0792688\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.57321 4.94975i −0.346835 0.200245i
\(612\) 0 0
\(613\) 15.8745 9.16515i 0.641165 0.370177i −0.143898 0.989593i \(-0.545964\pi\)
0.785063 + 0.619416i \(0.212630\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.4037 −1.30452 −0.652262 0.757994i \(-0.726180\pi\)
−0.652262 + 0.757994i \(0.726180\pi\)
\(618\) 0 0
\(619\) 25.5000 14.7224i 1.02493 0.591744i 0.109403 0.993997i \(-0.465106\pi\)
0.915529 + 0.402253i \(0.131773\pi\)
\(620\) 20.7438 + 10.4735i 0.833092 + 0.420626i
\(621\) 0 0
\(622\) 0 0
\(623\) −22.6826 39.2874i −0.908759 1.57402i
\(624\) 0 0
\(625\) 24.3745 5.55728i 0.974980 0.222291i
\(626\) 0 0
\(627\) 0 0
\(628\) 5.29150 9.16515i 0.211154 0.365729i
\(629\) −17.1464 −0.683673
\(630\) 0 0
\(631\) 14.0000 0.557331 0.278666 0.960388i \(-0.410108\pi\)
0.278666 + 0.960388i \(0.410108\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.72185 + 30.6926i 0.0683294 + 1.21800i
\(636\) 0 0
\(637\) 9.26013 + 16.0390i 0.366900 + 0.635489i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −23.2702 + 13.4350i −0.919116 + 0.530652i −0.883353 0.468709i \(-0.844719\pi\)
−0.0357629 + 0.999360i \(0.511386\pi\)
\(642\) 0 0
\(643\) −2.64575 −0.104338 −0.0521691 0.998638i \(-0.516613\pi\)
−0.0521691 + 0.998638i \(0.516613\pi\)
\(644\) −17.1464 + 29.6985i −0.675664 + 1.17028i
\(645\) 0 0
\(646\) 0 0
\(647\) −12.9615 + 7.48331i −0.509568 + 0.294199i −0.732656 0.680599i \(-0.761720\pi\)
0.223088 + 0.974798i \(0.428386\pi\)
\(648\) 0 0
\(649\) −18.0000 10.3923i −0.706562 0.407934i
\(650\) 0 0
\(651\) 0 0
\(652\) 18.3303i 0.717870i
\(653\) 12.9615 22.4499i 0.507222 0.878534i −0.492743 0.870175i \(-0.664006\pi\)
0.999965 0.00835938i \(-0.00266090\pi\)
\(654\) 0 0
\(655\) 17.2804 34.2255i 0.675201 1.33730i
\(656\) 9.79796 16.9706i 0.382546 0.662589i
\(657\) 0 0
\(658\) 0 0
\(659\) 28.2843i 1.10180i 0.834572 + 0.550899i \(0.185715\pi\)
−0.834572 + 0.550899i \(0.814285\pi\)
\(660\) 0 0
\(661\) −4.50000 + 2.59808i −0.175030 + 0.101053i −0.584955 0.811065i \(-0.698888\pi\)
0.409926 + 0.912119i \(0.365555\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.57321 + 5.61249i −0.332455 + 0.217643i
\(666\) 0 0
\(667\) −7.93725 4.58258i −0.307332 0.177438i
\(668\) −12.9615 + 7.48331i −0.501495 + 0.289538i
\(669\) 0 0
\(670\) 0 0
\(671\) −29.3939 −1.13474
\(672\) 0 0
\(673\) 22.9129i 0.883227i −0.897206 0.441613i \(-0.854406\pi\)
0.897206 0.441613i \(-0.145594\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −6.00000 10.3923i −0.230769 0.399704i
\(677\) 3.24037 + 1.87083i 0.124538 + 0.0719018i 0.560975 0.827833i \(-0.310427\pi\)
−0.436437 + 0.899735i \(0.643760\pi\)
\(678\) 0 0
\(679\) −7.00000 + 12.1244i −0.268635 + 0.465290i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −16.2019 28.0624i −0.619947 1.07378i −0.989495 0.144568i \(-0.953821\pi\)
0.369548 0.929212i \(-0.379512\pi\)
\(684\) 0 0
\(685\) −7.93725 12.1244i −0.303267 0.463248i
\(686\) 0 0
\(687\) 0 0
\(688\) −15.8745 9.16515i −0.605210 0.349418i
\(689\) 17.1464 + 29.6985i 0.653227 + 1.13142i
\(690\) 0 0
\(691\) −40.5000 23.3827i −1.54069 0.889519i −0.998795 0.0490747i \(-0.984373\pi\)
−0.541897 0.840445i \(-0.682294\pi\)
\(692\) 29.9333i 1.13789i
\(693\) 0 0
\(694\) 0 0
\(695\) 1.08466 + 19.3345i 0.0411435 + 0.733400i
\(696\) 0 0
\(697\) 15.8745 9.16515i 0.601290 0.347155i
\(698\) 0 0
\(699\) 0 0
\(700\) −26.2915 + 2.95920i −0.993725 + 0.111847i
\(701\) 1.41421i 0.0534141i −0.999643 0.0267071i \(-0.991498\pi\)
0.999643 0.0267071i \(-0.00850213\pi\)
\(702\) 0 0
\(703\) 3.96863 + 6.87386i 0.149680 + 0.259253i
\(704\) −19.5959 + 11.3137i −0.738549 + 0.426401i
\(705\) 0 0
\(706\) 0 0
\(707\) 25.9230 0.974933
\(708\) 0 0
\(709\) −4.00000 + 6.92820i −0.150223 + 0.260194i −0.931309 0.364229i \(-0.881333\pi\)
0.781086 + 0.624423i \(0.214666\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 33.6749i 1.26114i
\(714\) 0 0
\(715\) −14.0000 + 9.16515i −0.523570 + 0.342757i
\(716\) 12.2474 + 7.07107i 0.457709 + 0.264258i
\(717\) 0 0
\(718\) 0 0
\(719\) −1.22474 + 2.12132i −0.0456753 + 0.0791119i −0.887959 0.459922i \(-0.847877\pi\)
0.842284 + 0.539034i \(0.181211\pi\)
\(720\) 0 0
\(721\) −17.5000 30.3109i −0.651734 1.12884i
\(722\) 0 0
\(723\) 0 0
\(724\) −27.0000 + 15.5885i −1.00345 + 0.579340i
\(725\) −0.790881 7.02670i −0.0293726 0.260965i
\(726\) 0 0
\(727\) 29.1033 1.07938 0.539690 0.841864i \(-0.318541\pi\)
0.539690 + 0.841864i \(0.318541\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.57321 14.8492i −0.317092 0.549219i
\(732\) 0 0
\(733\) −6.61438 + 11.4564i −0.244308 + 0.423153i −0.961937 0.273272i \(-0.911894\pi\)
0.717629 + 0.696426i \(0.245227\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.4422 33.6749i 0.716163 1.24043i
\(738\) 0 0
\(739\) −8.50000 14.7224i −0.312678 0.541573i 0.666264 0.745716i \(-0.267893\pi\)
−0.978941 + 0.204143i \(0.934559\pi\)
\(740\) 1.14790 + 20.4617i 0.0421975 + 0.752188i
\(741\) 0 0
\(742\) 0 0
\(743\) −51.8459 −1.90204 −0.951021 0.309125i \(-0.899964\pi\)
−0.951021 + 0.309125i \(0.899964\pi\)
\(744\) 0 0
\(745\) 28.2288 + 14.2526i 1.03422 + 0.522176i
\(746\) 0 0
\(747\) 0 0
\(748\) −21.1660 −0.773906
\(749\) −8.57321 14.8492i −0.313258 0.542580i
\(750\) 0 0
\(751\) 3.50000 6.06218i 0.127717 0.221212i −0.795075 0.606511i \(-0.792568\pi\)
0.922792 + 0.385299i \(0.125902\pi\)
\(752\) −12.9615 + 7.48331i −0.472657 + 0.272888i
\(753\) 0 0
\(754\) 0 0
\(755\) 12.2474 + 18.7083i 0.445730 + 0.680864i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.57321 14.8492i 0.310779 0.538285i −0.667752 0.744383i \(-0.732744\pi\)
0.978531 + 0.206099i \(0.0660768\pi\)
\(762\) 0 0
\(763\) −18.5203 −0.670478
\(764\) 31.1127i 1.12562i
\(765\) 0 0
\(766\) 0 0
\(767\) 9.72111 + 16.8375i 0.351009 + 0.607965i
\(768\) 0 0
\(769\) 32.9090i 1.18673i −0.804934 0.593364i \(-0.797800\pi\)
0.804934 0.593364i \(-0.202200\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 23.8118 + 13.7477i 0.857004 + 0.494792i
\(773\) 25.9230 14.9666i 0.932384 0.538312i 0.0448193 0.998995i \(-0.485729\pi\)
0.887565 + 0.460683i \(0.152395\pi\)
\(774\) 0 0
\(775\) 20.9059 15.4254i 0.750961 0.554098i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.34847 4.24264i −0.263286 0.152008i
\(780\) 0 0
\(781\) 16.0000 + 27.7128i 0.572525 + 0.991642i
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) −6.48074 9.89949i −0.231308 0.353328i
\(786\) 0 0
\(787\) −26.4575 45.8258i −0.943108 1.63351i −0.759495 0.650513i \(-0.774554\pi\)
−0.183614 0.982998i \(-0.558780\pi\)
\(788\) −19.4422 33.6749i −0.692600 1.19962i
\(789\) 0 0
\(790\) 0 0
\(791\) −8.57321 + 14.8492i −0.304828 + 0.527978i
\(792\) 0 0
\(793\) 23.8118 + 13.7477i 0.845580 + 0.488196i
\(794\) 0 0
\(795\) 0 0
\(796\) 12.0000 + 6.92820i 0.425329 + 0.245564i
\(797\) 41.1582i 1.45790i 0.684567 + 0.728950i \(0.259991\pi\)
−0.684567 + 0.728950i \(0.740009\pi\)
\(798\) 0 0
\(799\) −14.0000 −0.495284
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −32.4037 18.7083i −1.14350 0.660201i
\(804\) 0 0
\(805\) 21.0000 + 32.0780i 0.740153 + 1.13060i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28.1691 16.2635i 0.990374 0.571793i 0.0849879 0.996382i \(-0.472915\pi\)
0.905386 + 0.424589i \(0.139582\pi\)
\(810\) 0 0
\(811\) 20.7846i 0.729846i 0.931038 + 0.364923i \(0.118905\pi\)
−0.931038 + 0.364923i \(0.881095\pi\)
\(812\) 7.48331i 0.262613i
\(813\) 0 0
\(814\) 0 0
\(815\) −18.2943 9.23676i −0.640822 0.323549i
\(816\) 0 0
\(817\) −3.96863 + 6.87386i −0.138845 + 0.240486i
\(818\) 0 0
\(819\) 0 0
\(820\) −12.0000 18.3303i −0.419058 0.640122i
\(821\) 4.89898 + 2.82843i 0.170976 + 0.0987128i 0.583046 0.812439i \(-0.301861\pi\)
−0.412070 + 0.911152i \(0.635194\pi\)
\(822\) 0 0
\(823\) −23.8118 + 13.7477i −0.830026 + 0.479216i −0.853862 0.520500i \(-0.825745\pi\)
0.0238357 + 0.999716i \(0.492412\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.4422 0.676072 0.338036 0.941133i \(-0.390237\pi\)
0.338036 + 0.941133i \(0.390237\pi\)
\(828\) 0 0
\(829\) 37.5000 21.6506i 1.30243 0.751958i 0.321609 0.946873i \(-0.395776\pi\)
0.980820 + 0.194915i \(0.0624431\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 21.1660 0.733799
\(833\) 22.6826 + 13.0958i 0.785905 + 0.453743i
\(834\) 0 0
\(835\) 0.937254 + 16.7069i 0.0324350 + 0.578167i
\(836\) 4.89898 + 8.48528i 0.169435 + 0.293470i
\(837\) 0 0
\(838\) 0 0
\(839\) 12.2474 0.422829 0.211414 0.977397i \(-0.432193\pi\)
0.211414 + 0.977397i \(0.432193\pi\)
\(840\) 0 0
\(841\) 27.0000 0.931034
\(842\) 0 0
\(843\) 0 0
\(844\) 14.0000 + 24.2487i 0.481900 + 0.834675i
\(845\) −13.3953 + 0.751475i −0.460814 + 0.0258515i
\(846\) 0 0
\(847\) −3.96863 6.87386i −0.136364 0.236189i
\(848\) 51.8459 1.78040
\(849\) 0 0
\(850\) 0 0
\(851\) 25.7196 14.8492i 0.881658 0.509025i
\(852\) 0 0
\(853\) −50.2693 −1.72119 −0.860594 0.509292i \(-0.829907\pi\)
−0.860594 + 0.509292i \(0.829907\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.2019 9.35414i 0.553445 0.319531i −0.197065 0.980390i \(-0.563141\pi\)
0.750510 + 0.660859i \(0.229808\pi\)
\(858\) 0 0
\(859\) 12.0000 + 6.92820i 0.409435 + 0.236387i 0.690547 0.723288i \(-0.257370\pi\)
−0.281112 + 0.959675i \(0.590703\pi\)
\(860\) −17.1464 + 11.2250i −0.584688 + 0.382768i
\(861\) 0 0
\(862\) 0 0
\(863\) 16.2019 28.0624i 0.551517 0.955256i −0.446648 0.894710i \(-0.647382\pi\)
0.998165 0.0605464i \(-0.0192843\pi\)
\(864\) 0 0
\(865\) 29.8745 + 15.0836i 1.01576 + 0.512856i
\(866\) 0 0
\(867\) 0 0
\(868\) −23.8118 + 13.7477i −0.808224 + 0.466628i
\(869\) 19.7990i 0.671635i
\(870\) 0 0
\(871\) −31.5000 + 18.1865i −1.06734 + 0.616227i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −10.2951 + 27.7311i −0.348037 + 0.937481i
\(876\) 0 0
\(877\) 7.93725 + 4.58258i 0.268022 + 0.154743i 0.627988 0.778223i \(-0.283879\pi\)
−0.359966 + 0.932965i \(0.617212\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 1.41699 + 25.2585i 0.0477669 + 0.851464i
\(881\) −29.3939 −0.990305 −0.495152 0.868806i \(-0.664888\pi\)
−0.495152 + 0.868806i \(0.664888\pi\)
\(882\) 0 0
\(883\) 41.2432i 1.38794i 0.720002 + 0.693972i \(0.244141\pi\)
−0.720002 + 0.693972i \(0.755859\pi\)
\(884\) 17.1464 + 9.89949i 0.576697 + 0.332956i
\(885\) 0 0
\(886\) 0 0
\(887\) 32.4037 + 18.7083i 1.08801 + 0.628163i 0.933046 0.359757i \(-0.117141\pi\)
0.154964 + 0.987920i \(0.450474\pi\)
\(888\) 0 0
\(889\) −31.5000 18.1865i −1.05648 0.609957i
\(890\) 0 0
\(891\) 0 0
\(892\) 5.29150 + 9.16515i 0.177173 + 0.306872i
\(893\) 3.24037 + 5.61249i 0.108435 + 0.187815i
\(894\) 0 0
\(895\) 13.2288 8.66025i 0.442189 0.289480i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.67423 6.36396i −0.122543 0.212250i
\(900\) 0 0
\(901\) 42.0000 + 24.2487i 1.39922 + 0.807842i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.95239 + 34.8021i 0.0648996 + 1.15686i
\(906\) 0 0
\(907\) 19.8431 11.4564i 0.658880 0.380405i −0.132970 0.991120i \(-0.542451\pi\)
0.791850 + 0.610715i \(0.209118\pi\)
\(908\) −25.9230 14.9666i −0.860284 0.496685i
\(909\) 0 0
\(910\) 0 0
\(911\) 41.0122i 1.35879i 0.733771 + 0.679397i \(0.237759\pi\)
−0.733771 + 0.679397i \(0.762241\pi\)
\(912\) 0 0
\(913\) −21.1660 36.6606i −0.700493 1.21329i
\(914\) 0 0
\(915\) 0 0
\(916\) 3.46410i 0.114457i
\(917\) 22.6826 + 39.2874i 0.749045 + 1.29738i
\(918\) 0 0
\(919\) −17.5000 + 30.3109i −0.577272 + 0.999864i 0.418519 + 0.908208i \(0.362549\pi\)
−0.995791 + 0.0916559i \(0.970784\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 29.9333i 0.985265i
\(924\) 0 0
\(925\) 21.0000 + 9.16515i 0.690476 + 0.301348i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 0 0
\(931\) 12.1244i 0.397360i
\(932\) −12.9615 −0.424567
\(933\) 0 0
\(934\) 0 0
\(935\) −10.6657 + 21.1245i −0.348805 + 0.690844i
\(936\) 0 0
\(937\) −50.2693 −1.64223 −0.821113 0.570766i \(-0.806646\pi\)
−0.821113 + 0.570766i \(0.806646\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.937254 + 16.7069i 0.0305699 + 0.544920i
\(941\) −3.67423 6.36396i −0.119777 0.207459i 0.799902 0.600130i \(-0.204885\pi\)
−0.919679 + 0.392671i \(0.871551\pi\)
\(942\) 0 0
\(943\) −15.8745 + 27.4955i −0.516945 + 0.895375i
\(944\) 29.3939 0.956689
\(945\) 0 0
\(946\) 0 0
\(947\) −19.4422 + 33.6749i −0.631787 + 1.09429i 0.355399 + 0.934715i \(0.384345\pi\)
−0.987186 + 0.159573i \(0.948988\pi\)
\(948\) 0 0
\(949\) 17.5000 + 30.3109i 0.568074 + 0.983933i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −31.0516 15.6779i −1.00481 0.507325i
\(956\) 31.8434 18.3848i 1.02989 0.594606i
\(957\) 0 0
\(958\) 0 0
\(959\) 17.1464 0.553687
\(960\) 0 0
\(961\) −2.00000 + 3.46410i −0.0645161 + 0.111745i
\(962\) 0 0
\(963\) 0 0
\(964\) −30.0000 17.3205i −0.966235 0.557856i
\(965\) 25.7196 16.8375i 0.827945 0.542017i
\(966\) 0 0
\(967\) 4.58258i 0.147366i −0.997282 0.0736828i \(-0.976525\pi\)
0.997282 0.0736828i \(-0.0234753\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 9.79796 16.9706i 0.314431 0.544611i −0.664885 0.746946i \(-0.731519\pi\)
0.979316 + 0.202334i \(0.0648528\pi\)
\(972\) 0 0
\(973\) −19.8431 11.4564i −0.636142 0.367277i
\(974\) 0 0
\(975\) 0 0
\(976\) 36.0000 20.7846i 1.15233 0.665299i
\(977\) −19.4422 33.6749i −0.622012 1.07736i −0.989111 0.147174i \(-0.952982\pi\)
0.367099 0.930182i \(-0.380351\pi\)
\(978\) 0 0
\(979\) 48.4974i 1.54998i
\(980\) 14.1094 27.9450i 0.450708 0.892672i
\(981\) 0 0
\(982\) 0 0
\(983\) −42.1248 + 24.3208i −1.34357 + 0.775712i −0.987330 0.158681i \(-0.949276\pi\)
−0.356243 + 0.934393i \(0.615942\pi\)
\(984\) 0 0
\(985\) −43.4059 + 2.43506i −1.38303 + 0.0775874i
\(986\) 0 0
\(987\) 0 0
\(988\) 9.16515i 0.291582i
\(989\) 25.7196 + 14.8492i 0.817837 + 0.472178i
\(990\) 0 0
\(991\) 3.50000 + 6.06218i 0.111181 + 0.192571i 0.916247 0.400614i \(-0.131203\pi\)
−0.805066 + 0.593186i \(0.797870\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12.9615 8.48528i 0.410907 0.269002i
\(996\) 0 0
\(997\) 1.32288 + 2.29129i 0.0418959 + 0.0725658i 0.886213 0.463278i \(-0.153327\pi\)
−0.844317 + 0.535844i \(0.819994\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.bb.a.89.4 yes 8
3.2 odd 2 inner 315.2.bb.a.89.1 8
5.2 odd 4 1575.2.bk.d.26.2 8
5.3 odd 4 1575.2.bk.d.26.4 8
5.4 even 2 inner 315.2.bb.a.89.2 yes 8
7.2 even 3 2205.2.g.a.2204.2 8
7.3 odd 6 inner 315.2.bb.a.269.3 yes 8
7.5 odd 6 2205.2.g.a.2204.8 8
15.2 even 4 1575.2.bk.d.26.1 8
15.8 even 4 1575.2.bk.d.26.3 8
15.14 odd 2 inner 315.2.bb.a.89.3 yes 8
21.2 odd 6 2205.2.g.a.2204.7 8
21.5 even 6 2205.2.g.a.2204.1 8
21.17 even 6 inner 315.2.bb.a.269.2 yes 8
35.3 even 12 1575.2.bk.d.1151.3 8
35.9 even 6 2205.2.g.a.2204.4 8
35.17 even 12 1575.2.bk.d.1151.1 8
35.19 odd 6 2205.2.g.a.2204.6 8
35.24 odd 6 inner 315.2.bb.a.269.1 yes 8
105.17 odd 12 1575.2.bk.d.1151.2 8
105.38 odd 12 1575.2.bk.d.1151.4 8
105.44 odd 6 2205.2.g.a.2204.5 8
105.59 even 6 inner 315.2.bb.a.269.4 yes 8
105.89 even 6 2205.2.g.a.2204.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.bb.a.89.1 8 3.2 odd 2 inner
315.2.bb.a.89.2 yes 8 5.4 even 2 inner
315.2.bb.a.89.3 yes 8 15.14 odd 2 inner
315.2.bb.a.89.4 yes 8 1.1 even 1 trivial
315.2.bb.a.269.1 yes 8 35.24 odd 6 inner
315.2.bb.a.269.2 yes 8 21.17 even 6 inner
315.2.bb.a.269.3 yes 8 7.3 odd 6 inner
315.2.bb.a.269.4 yes 8 105.59 even 6 inner
1575.2.bk.d.26.1 8 15.2 even 4
1575.2.bk.d.26.2 8 5.2 odd 4
1575.2.bk.d.26.3 8 15.8 even 4
1575.2.bk.d.26.4 8 5.3 odd 4
1575.2.bk.d.1151.1 8 35.17 even 12
1575.2.bk.d.1151.2 8 105.17 odd 12
1575.2.bk.d.1151.3 8 35.3 even 12
1575.2.bk.d.1151.4 8 105.38 odd 12
2205.2.g.a.2204.1 8 21.5 even 6
2205.2.g.a.2204.2 8 7.2 even 3
2205.2.g.a.2204.3 8 105.89 even 6
2205.2.g.a.2204.4 8 35.9 even 6
2205.2.g.a.2204.5 8 105.44 odd 6
2205.2.g.a.2204.6 8 35.19 odd 6
2205.2.g.a.2204.7 8 21.2 odd 6
2205.2.g.a.2204.8 8 7.5 odd 6