Properties

Label 315.2.ce.a.107.2
Level $315$
Weight $2$
Character 315.107
Analytic conductor $2.515$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(53,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 107.2
Character \(\chi\) \(=\) 315.107
Dual form 315.2.ce.a.53.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.604483 - 2.25596i) q^{2} +(-2.99191 + 1.72738i) q^{4} +(-0.254820 - 2.22150i) q^{5} +(-2.19240 - 1.48100i) q^{7} +(2.40251 + 2.40251i) q^{8} +(-4.85759 + 1.91772i) q^{10} +(2.61609 - 1.51040i) q^{11} +(-1.77456 + 1.77456i) q^{13} +(-2.01581 + 5.84122i) q^{14} +(0.512928 - 0.888417i) q^{16} +(-3.73962 - 1.00203i) q^{17} +(3.79826 + 2.19292i) q^{19} +(4.59978 + 6.20636i) q^{20} +(-4.98879 - 4.98879i) q^{22} +(-7.23056 + 1.93742i) q^{23} +(-4.87013 + 1.13217i) q^{25} +(5.07603 + 2.93065i) q^{26} +(9.11773 + 0.643912i) q^{28} +1.25900 q^{29} +(-2.64259 - 4.57710i) q^{31} +(4.24948 + 1.13865i) q^{32} +9.04214i q^{34} +(-2.73138 + 5.24782i) q^{35} +(7.36414 - 1.97321i) q^{37} +(2.65117 - 9.89430i) q^{38} +(4.72497 - 5.94938i) q^{40} -10.7696i q^{41} +(5.73749 - 5.73749i) q^{43} +(-5.21807 + 9.03797i) q^{44} +(8.74151 + 15.1407i) q^{46} +(-2.09056 - 7.80209i) q^{47} +(2.61327 + 6.49391i) q^{49} +(5.49803 + 10.3025i) q^{50} +(2.24398 - 8.37466i) q^{52} +(-0.472193 + 1.76225i) q^{53} +(-4.02199 - 5.42677i) q^{55} +(-1.70915 - 8.82539i) q^{56} +(-0.761042 - 2.84025i) q^{58} +(-2.97005 - 5.14428i) q^{59} +(-3.71170 + 6.42886i) q^{61} +(-8.72836 + 8.72836i) q^{62} -12.3267i q^{64} +(4.39438 + 3.48999i) q^{65} +(2.50901 - 9.36375i) q^{67} +(12.9195 - 3.46176i) q^{68} +(13.4899 + 2.98967i) q^{70} +1.07298i q^{71} +(-2.07401 - 0.555728i) q^{73} +(-8.90299 - 15.4204i) q^{74} -15.1521 q^{76} +(-7.97243 - 0.563028i) q^{77} +(-5.75001 - 3.31977i) q^{79} +(-2.10432 - 0.913083i) q^{80} +(-24.2957 + 6.51003i) q^{82} +(-1.25073 - 1.25073i) q^{83} +(-1.27308 + 8.56290i) q^{85} +(-16.4118 - 9.47534i) q^{86} +(9.91392 + 2.65643i) q^{88} +(2.44200 - 4.22966i) q^{89} +(6.51867 - 1.26242i) q^{91} +(18.2865 - 18.2865i) q^{92} +(-16.3375 + 9.43246i) q^{94} +(3.90371 - 8.99663i) q^{95} +(2.69087 + 2.69087i) q^{97} +(13.0703 - 9.82088i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{7} + 8 q^{10} + 32 q^{16} - 48 q^{22} - 16 q^{25} + 88 q^{28} + 32 q^{31} - 16 q^{37} - 40 q^{40} - 16 q^{43} - 80 q^{52} - 32 q^{55} - 88 q^{58} + 48 q^{61} - 32 q^{67} - 112 q^{70} - 88 q^{73}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.604483 2.25596i −0.427434 1.59521i −0.758550 0.651615i \(-0.774092\pi\)
0.331115 0.943590i \(-0.392575\pi\)
\(3\) 0 0
\(4\) −2.99191 + 1.72738i −1.49596 + 0.863690i
\(5\) −0.254820 2.22150i −0.113959 0.993485i
\(6\) 0 0
\(7\) −2.19240 1.48100i −0.828651 0.559766i
\(8\) 2.40251 + 2.40251i 0.849415 + 0.849415i
\(9\) 0 0
\(10\) −4.85759 + 1.91772i −1.53610 + 0.606437i
\(11\) 2.61609 1.51040i 0.788781 0.455403i −0.0507524 0.998711i \(-0.516162\pi\)
0.839533 + 0.543309i \(0.182829\pi\)
\(12\) 0 0
\(13\) −1.77456 + 1.77456i −0.492174 + 0.492174i −0.908991 0.416817i \(-0.863146\pi\)
0.416817 + 0.908991i \(0.363146\pi\)
\(14\) −2.01581 + 5.84122i −0.538749 + 1.56113i
\(15\) 0 0
\(16\) 0.512928 0.888417i 0.128232 0.222104i
\(17\) −3.73962 1.00203i −0.906990 0.243027i −0.224974 0.974365i \(-0.572230\pi\)
−0.682016 + 0.731337i \(0.738896\pi\)
\(18\) 0 0
\(19\) 3.79826 + 2.19292i 0.871380 + 0.503091i 0.867806 0.496902i \(-0.165529\pi\)
0.00357323 + 0.999994i \(0.498863\pi\)
\(20\) 4.59978 + 6.20636i 1.02854 + 1.38779i
\(21\) 0 0
\(22\) −4.98879 4.98879i −1.06361 1.06361i
\(23\) −7.23056 + 1.93742i −1.50768 + 0.403981i −0.915663 0.401947i \(-0.868334\pi\)
−0.592014 + 0.805928i \(0.701667\pi\)
\(24\) 0 0
\(25\) −4.87013 + 1.13217i −0.974027 + 0.226433i
\(26\) 5.07603 + 2.93065i 0.995491 + 0.574747i
\(27\) 0 0
\(28\) 9.11773 + 0.643912i 1.72309 + 0.121688i
\(29\) 1.25900 0.233790 0.116895 0.993144i \(-0.462706\pi\)
0.116895 + 0.993144i \(0.462706\pi\)
\(30\) 0 0
\(31\) −2.64259 4.57710i −0.474623 0.822072i 0.524954 0.851130i \(-0.324082\pi\)
−0.999578 + 0.0290586i \(0.990749\pi\)
\(32\) 4.24948 + 1.13865i 0.751209 + 0.201286i
\(33\) 0 0
\(34\) 9.04214i 1.55071i
\(35\) −2.73138 + 5.24782i −0.461687 + 0.887043i
\(36\) 0 0
\(37\) 7.36414 1.97321i 1.21066 0.324395i 0.403637 0.914919i \(-0.367746\pi\)
0.807020 + 0.590525i \(0.201079\pi\)
\(38\) 2.65117 9.89430i 0.430077 1.60507i
\(39\) 0 0
\(40\) 4.72497 5.94938i 0.747083 0.940680i
\(41\) 10.7696i 1.68193i −0.541093 0.840963i \(-0.681989\pi\)
0.541093 0.840963i \(-0.318011\pi\)
\(42\) 0 0
\(43\) 5.73749 5.73749i 0.874959 0.874959i −0.118049 0.993008i \(-0.537664\pi\)
0.993008 + 0.118049i \(0.0376640\pi\)
\(44\) −5.21807 + 9.03797i −0.786654 + 1.36252i
\(45\) 0 0
\(46\) 8.74151 + 15.1407i 1.28886 + 2.23238i
\(47\) −2.09056 7.80209i −0.304940 1.13805i −0.932997 0.359884i \(-0.882816\pi\)
0.628057 0.778168i \(-0.283851\pi\)
\(48\) 0 0
\(49\) 2.61327 + 6.49391i 0.373324 + 0.927701i
\(50\) 5.49803 + 10.3025i 0.777539 + 1.45699i
\(51\) 0 0
\(52\) 2.24398 8.37466i 0.311185 1.16136i
\(53\) −0.472193 + 1.76225i −0.0648607 + 0.242064i −0.990743 0.135747i \(-0.956656\pi\)
0.925883 + 0.377811i \(0.123323\pi\)
\(54\) 0 0
\(55\) −4.02199 5.42677i −0.542325 0.731745i
\(56\) −1.70915 8.82539i −0.228394 1.17934i
\(57\) 0 0
\(58\) −0.761042 2.84025i −0.0999298 0.372943i
\(59\) −2.97005 5.14428i −0.386668 0.669729i 0.605331 0.795974i \(-0.293041\pi\)
−0.991999 + 0.126245i \(0.959707\pi\)
\(60\) 0 0
\(61\) −3.71170 + 6.42886i −0.475235 + 0.823131i −0.999598 0.0283643i \(-0.990970\pi\)
0.524363 + 0.851495i \(0.324303\pi\)
\(62\) −8.72836 + 8.72836i −1.10850 + 1.10850i
\(63\) 0 0
\(64\) 12.3267i 1.54083i
\(65\) 4.39438 + 3.48999i 0.545055 + 0.432880i
\(66\) 0 0
\(67\) 2.50901 9.36375i 0.306524 1.14396i −0.625101 0.780544i \(-0.714942\pi\)
0.931625 0.363420i \(-0.118391\pi\)
\(68\) 12.9195 3.46176i 1.56672 0.419801i
\(69\) 0 0
\(70\) 13.4899 + 2.98967i 1.61236 + 0.357334i
\(71\) 1.07298i 0.127339i 0.997971 + 0.0636696i \(0.0202804\pi\)
−0.997971 + 0.0636696i \(0.979720\pi\)
\(72\) 0 0
\(73\) −2.07401 0.555728i −0.242744 0.0650431i 0.135396 0.990792i \(-0.456769\pi\)
−0.378140 + 0.925749i \(0.623436\pi\)
\(74\) −8.90299 15.4204i −1.03495 1.79259i
\(75\) 0 0
\(76\) −15.1521 −1.73806
\(77\) −7.97243 0.563028i −0.908543 0.0641630i
\(78\) 0 0
\(79\) −5.75001 3.31977i −0.646927 0.373503i 0.140351 0.990102i \(-0.455177\pi\)
−0.787278 + 0.616599i \(0.788510\pi\)
\(80\) −2.10432 0.913083i −0.235271 0.102086i
\(81\) 0 0
\(82\) −24.2957 + 6.51003i −2.68302 + 0.718912i
\(83\) −1.25073 1.25073i −0.137285 0.137285i 0.635124 0.772410i \(-0.280949\pi\)
−0.772410 + 0.635124i \(0.780949\pi\)
\(84\) 0 0
\(85\) −1.27308 + 8.56290i −0.138084 + 0.928777i
\(86\) −16.4118 9.47534i −1.76973 1.02175i
\(87\) 0 0
\(88\) 9.91392 + 2.65643i 1.05683 + 0.283176i
\(89\) 2.44200 4.22966i 0.258851 0.448343i −0.707083 0.707130i \(-0.749989\pi\)
0.965934 + 0.258787i \(0.0833227\pi\)
\(90\) 0 0
\(91\) 6.51867 1.26242i 0.683343 0.132338i
\(92\) 18.2865 18.2865i 1.90650 1.90650i
\(93\) 0 0
\(94\) −16.3375 + 9.43246i −1.68509 + 0.972884i
\(95\) 3.90371 8.99663i 0.400512 0.923035i
\(96\) 0 0
\(97\) 2.69087 + 2.69087i 0.273217 + 0.273217i 0.830394 0.557177i \(-0.188115\pi\)
−0.557177 + 0.830394i \(0.688115\pi\)
\(98\) 13.0703 9.82088i 1.32030 0.992059i
\(99\) 0 0
\(100\) 12.6153 11.7999i 1.26153 1.17999i
\(101\) −10.8964 + 6.29104i −1.08423 + 0.625982i −0.932035 0.362368i \(-0.881968\pi\)
−0.152197 + 0.988350i \(0.548635\pi\)
\(102\) 0 0
\(103\) −3.55530 13.2685i −0.350314 1.30739i −0.886280 0.463149i \(-0.846719\pi\)
0.535966 0.844239i \(-0.319947\pi\)
\(104\) −8.52678 −0.836120
\(105\) 0 0
\(106\) 4.26100 0.413865
\(107\) −0.786918 2.93682i −0.0760742 0.283913i 0.917401 0.397965i \(-0.130284\pi\)
−0.993475 + 0.114052i \(0.963617\pi\)
\(108\) 0 0
\(109\) 14.3581 8.28967i 1.37526 0.794006i 0.383674 0.923468i \(-0.374659\pi\)
0.991584 + 0.129462i \(0.0413252\pi\)
\(110\) −9.81135 + 12.3538i −0.935476 + 1.17789i
\(111\) 0 0
\(112\) −2.44029 + 1.18812i −0.230586 + 0.112267i
\(113\) 13.7810 + 13.7810i 1.29641 + 1.29641i 0.930750 + 0.365657i \(0.119156\pi\)
0.365657 + 0.930750i \(0.380844\pi\)
\(114\) 0 0
\(115\) 6.14648 + 15.5690i 0.573162 + 1.45182i
\(116\) −3.76681 + 2.17477i −0.349739 + 0.201922i
\(117\) 0 0
\(118\) −9.80996 + 9.80996i −0.903080 + 0.903080i
\(119\) 6.71474 + 7.73523i 0.615539 + 0.709087i
\(120\) 0 0
\(121\) −0.937384 + 1.62360i −0.0852167 + 0.147600i
\(122\) 16.7469 + 4.48732i 1.51619 + 0.406263i
\(123\) 0 0
\(124\) 15.8128 + 9.12952i 1.42003 + 0.819855i
\(125\) 3.75611 + 10.5305i 0.335957 + 0.941877i
\(126\) 0 0
\(127\) 13.1848 + 13.1848i 1.16996 + 1.16996i 0.982218 + 0.187742i \(0.0601167\pi\)
0.187742 + 0.982218i \(0.439883\pi\)
\(128\) −19.3095 + 5.17397i −1.70674 + 0.457319i
\(129\) 0 0
\(130\) 5.21696 12.0232i 0.457558 1.05450i
\(131\) 9.06836 + 5.23562i 0.792306 + 0.457438i 0.840774 0.541387i \(-0.182100\pi\)
−0.0484676 + 0.998825i \(0.515434\pi\)
\(132\) 0 0
\(133\) −5.07958 10.4330i −0.440456 0.904656i
\(134\) −22.6409 −1.95588
\(135\) 0 0
\(136\) −6.57708 11.3918i −0.563980 0.976842i
\(137\) 16.0127 + 4.29058i 1.36806 + 0.366569i 0.866768 0.498712i \(-0.166193\pi\)
0.501287 + 0.865281i \(0.332860\pi\)
\(138\) 0 0
\(139\) 7.58102i 0.643014i −0.946907 0.321507i \(-0.895811\pi\)
0.946907 0.321507i \(-0.104189\pi\)
\(140\) −0.892929 20.4191i −0.0754663 1.72573i
\(141\) 0 0
\(142\) 2.42060 0.648597i 0.203132 0.0544291i
\(143\) −1.96211 + 7.32270i −0.164080 + 0.612355i
\(144\) 0 0
\(145\) −0.320818 2.79686i −0.0266424 0.232267i
\(146\) 5.01481i 0.415028i
\(147\) 0 0
\(148\) −18.6244 + 18.6244i −1.53091 + 1.53091i
\(149\) 1.70147 2.94704i 0.139390 0.241431i −0.787876 0.615834i \(-0.788819\pi\)
0.927266 + 0.374403i \(0.122152\pi\)
\(150\) 0 0
\(151\) −7.87968 13.6480i −0.641239 1.11066i −0.985157 0.171659i \(-0.945087\pi\)
0.343918 0.939000i \(-0.388246\pi\)
\(152\) 3.85682 + 14.3939i 0.312830 + 1.16750i
\(153\) 0 0
\(154\) 3.54903 + 18.3258i 0.285989 + 1.47674i
\(155\) −9.49465 + 7.03686i −0.762629 + 0.565214i
\(156\) 0 0
\(157\) 1.60818 6.00182i 0.128347 0.478998i −0.871590 0.490236i \(-0.836911\pi\)
0.999937 + 0.0112383i \(0.00357732\pi\)
\(158\) −4.01349 + 14.9785i −0.319296 + 1.19163i
\(159\) 0 0
\(160\) 1.44665 9.73038i 0.114368 0.769254i
\(161\) 18.7216 + 6.46087i 1.47547 + 0.509188i
\(162\) 0 0
\(163\) −0.940977 3.51177i −0.0737030 0.275063i 0.919233 0.393714i \(-0.128810\pi\)
−0.992936 + 0.118650i \(0.962143\pi\)
\(164\) 18.6032 + 32.2216i 1.45266 + 2.51609i
\(165\) 0 0
\(166\) −2.06555 + 3.57764i −0.160318 + 0.277679i
\(167\) −6.11816 + 6.11816i −0.473437 + 0.473437i −0.903025 0.429588i \(-0.858659\pi\)
0.429588 + 0.903025i \(0.358659\pi\)
\(168\) 0 0
\(169\) 6.70188i 0.515529i
\(170\) 20.0871 2.30412i 1.54061 0.176718i
\(171\) 0 0
\(172\) −7.25523 + 27.0769i −0.553206 + 2.06459i
\(173\) −22.7578 + 6.09793i −1.73024 + 0.463617i −0.980239 0.197816i \(-0.936615\pi\)
−0.750004 + 0.661433i \(0.769949\pi\)
\(174\) 0 0
\(175\) 12.3540 + 4.73052i 0.933877 + 0.357593i
\(176\) 3.09891i 0.233589i
\(177\) 0 0
\(178\) −11.0181 2.95229i −0.825842 0.221284i
\(179\) −0.228953 0.396558i −0.0171127 0.0296401i 0.857342 0.514747i \(-0.172114\pi\)
−0.874455 + 0.485107i \(0.838781\pi\)
\(180\) 0 0
\(181\) −12.9702 −0.964070 −0.482035 0.876152i \(-0.660102\pi\)
−0.482035 + 0.876152i \(0.660102\pi\)
\(182\) −6.78841 13.9428i −0.503190 1.03351i
\(183\) 0 0
\(184\) −22.0262 12.7168i −1.62379 0.937496i
\(185\) −6.26003 15.8566i −0.460246 1.16580i
\(186\) 0 0
\(187\) −11.2966 + 3.02692i −0.826091 + 0.221351i
\(188\) 19.7320 + 19.7320i 1.43910 + 1.43910i
\(189\) 0 0
\(190\) −22.6558 3.36831i −1.64362 0.244363i
\(191\) 5.84564 + 3.37498i 0.422975 + 0.244205i 0.696350 0.717703i \(-0.254806\pi\)
−0.273374 + 0.961908i \(0.588140\pi\)
\(192\) 0 0
\(193\) 4.93109 + 1.32128i 0.354948 + 0.0951079i 0.431887 0.901928i \(-0.357848\pi\)
−0.0769390 + 0.997036i \(0.524515\pi\)
\(194\) 4.44392 7.69710i 0.319055 0.552619i
\(195\) 0 0
\(196\) −19.0361 14.9151i −1.35972 1.06536i
\(197\) 5.34774 5.34774i 0.381011 0.381011i −0.490456 0.871466i \(-0.663170\pi\)
0.871466 + 0.490456i \(0.163170\pi\)
\(198\) 0 0
\(199\) 14.9596 8.63693i 1.06046 0.612256i 0.134899 0.990859i \(-0.456929\pi\)
0.925559 + 0.378603i \(0.123596\pi\)
\(200\) −14.4206 8.98050i −1.01969 0.635017i
\(201\) 0 0
\(202\) 20.7790 + 20.7790i 1.46201 + 1.46201i
\(203\) −2.76023 1.86458i −0.193730 0.130868i
\(204\) 0 0
\(205\) −23.9246 + 2.74430i −1.67097 + 0.191670i
\(206\) −27.7842 + 16.0412i −1.93582 + 1.11764i
\(207\) 0 0
\(208\) 0.666328 + 2.48677i 0.0462015 + 0.172426i
\(209\) 13.2488 0.916437
\(210\) 0 0
\(211\) 11.1106 0.764882 0.382441 0.923980i \(-0.375084\pi\)
0.382441 + 0.923980i \(0.375084\pi\)
\(212\) −1.63131 6.08815i −0.112039 0.418136i
\(213\) 0 0
\(214\) −6.14967 + 3.55051i −0.420383 + 0.242708i
\(215\) −14.2079 11.2838i −0.968968 0.769550i
\(216\) 0 0
\(217\) −0.985072 + 13.9485i −0.0668711 + 0.946888i
\(218\) −27.3804 27.3804i −1.85444 1.85444i
\(219\) 0 0
\(220\) 21.4075 + 9.28890i 1.44329 + 0.626257i
\(221\) 8.41432 4.85801i 0.566009 0.326785i
\(222\) 0 0
\(223\) −1.84347 + 1.84347i −0.123448 + 0.123448i −0.766132 0.642684i \(-0.777821\pi\)
0.642684 + 0.766132i \(0.277821\pi\)
\(224\) −7.63024 8.78986i −0.509817 0.587297i
\(225\) 0 0
\(226\) 22.7590 39.4198i 1.51391 2.62216i
\(227\) −6.53177 1.75018i −0.433529 0.116164i 0.0354533 0.999371i \(-0.488712\pi\)
−0.468982 + 0.883208i \(0.655379\pi\)
\(228\) 0 0
\(229\) 22.0329 + 12.7207i 1.45597 + 0.840606i 0.998810 0.0487763i \(-0.0155321\pi\)
0.457163 + 0.889383i \(0.348865\pi\)
\(230\) 31.4076 23.2774i 2.07096 1.53487i
\(231\) 0 0
\(232\) 3.02475 + 3.02475i 0.198585 + 0.198585i
\(233\) 10.2722 2.75243i 0.672954 0.180317i 0.0938688 0.995585i \(-0.470077\pi\)
0.579085 + 0.815267i \(0.303410\pi\)
\(234\) 0 0
\(235\) −16.7996 + 6.63232i −1.09589 + 0.432645i
\(236\) 17.7723 + 10.2608i 1.15688 + 0.667923i
\(237\) 0 0
\(238\) 13.3914 19.8240i 0.868037 1.28500i
\(239\) −15.7861 −1.02112 −0.510558 0.859843i \(-0.670561\pi\)
−0.510558 + 0.859843i \(0.670561\pi\)
\(240\) 0 0
\(241\) 1.41218 + 2.44597i 0.0909664 + 0.157559i 0.907918 0.419148i \(-0.137671\pi\)
−0.816952 + 0.576706i \(0.804338\pi\)
\(242\) 4.22940 + 1.13326i 0.271876 + 0.0728490i
\(243\) 0 0
\(244\) 25.6461i 1.64182i
\(245\) 13.7603 7.46015i 0.879114 0.476611i
\(246\) 0 0
\(247\) −10.6317 + 2.84876i −0.676479 + 0.181262i
\(248\) 4.64768 17.3454i 0.295128 1.10143i
\(249\) 0 0
\(250\) 21.4859 14.8392i 1.35889 0.938511i
\(251\) 22.0003i 1.38865i −0.719663 0.694324i \(-0.755704\pi\)
0.719663 0.694324i \(-0.244296\pi\)
\(252\) 0 0
\(253\) −15.9895 + 15.9895i −1.00525 + 1.00525i
\(254\) 21.7744 37.7143i 1.36625 2.36641i
\(255\) 0 0
\(256\) 11.0179 + 19.0836i 0.688619 + 1.19272i
\(257\) −2.56986 9.59086i −0.160304 0.598261i −0.998593 0.0530353i \(-0.983110\pi\)
0.838289 0.545226i \(-0.183556\pi\)
\(258\) 0 0
\(259\) −19.0675 6.58022i −1.18480 0.408875i
\(260\) −19.1761 2.85098i −1.18925 0.176810i
\(261\) 0 0
\(262\) 6.32969 23.6227i 0.391049 1.45942i
\(263\) −2.27029 + 8.47285i −0.139992 + 0.522458i 0.859935 + 0.510404i \(0.170504\pi\)
−0.999927 + 0.0120549i \(0.996163\pi\)
\(264\) 0 0
\(265\) 4.03516 + 0.599922i 0.247878 + 0.0368529i
\(266\) −20.4659 + 17.7659i −1.25485 + 1.08930i
\(267\) 0 0
\(268\) 8.66803 + 32.3495i 0.529484 + 1.97606i
\(269\) 10.3843 + 17.9862i 0.633143 + 1.09664i 0.986905 + 0.161300i \(0.0515687\pi\)
−0.353763 + 0.935335i \(0.615098\pi\)
\(270\) 0 0
\(271\) −11.8493 + 20.5237i −0.719796 + 1.24672i 0.241284 + 0.970455i \(0.422432\pi\)
−0.961080 + 0.276269i \(0.910902\pi\)
\(272\) −2.80837 + 2.80837i −0.170283 + 0.170283i
\(273\) 0 0
\(274\) 38.7176i 2.33901i
\(275\) −11.0307 + 10.3177i −0.665175 + 0.622180i
\(276\) 0 0
\(277\) −1.55791 + 5.81419i −0.0936056 + 0.349341i −0.996804 0.0798818i \(-0.974546\pi\)
0.903199 + 0.429223i \(0.141212\pi\)
\(278\) −17.1025 + 4.58260i −1.02574 + 0.274846i
\(279\) 0 0
\(280\) −19.1701 + 6.04576i −1.14563 + 0.361303i
\(281\) 1.10459i 0.0658940i −0.999457 0.0329470i \(-0.989511\pi\)
0.999457 0.0329470i \(-0.0104893\pi\)
\(282\) 0 0
\(283\) 13.4052 + 3.59192i 0.796858 + 0.213517i 0.634204 0.773166i \(-0.281328\pi\)
0.162654 + 0.986683i \(0.447995\pi\)
\(284\) −1.85344 3.21026i −0.109982 0.190494i
\(285\) 0 0
\(286\) 17.7058 1.04697
\(287\) −15.9498 + 23.6113i −0.941485 + 1.39373i
\(288\) 0 0
\(289\) −1.74177 1.00561i −0.102457 0.0591534i
\(290\) −6.11569 + 2.41441i −0.359126 + 0.141779i
\(291\) 0 0
\(292\) 7.16520 1.91991i 0.419311 0.112354i
\(293\) 2.68196 + 2.68196i 0.156682 + 0.156682i 0.781095 0.624413i \(-0.214662\pi\)
−0.624413 + 0.781095i \(0.714662\pi\)
\(294\) 0 0
\(295\) −10.6712 + 7.90884i −0.621302 + 0.460471i
\(296\) 22.4331 + 12.9517i 1.30390 + 0.752804i
\(297\) 0 0
\(298\) −7.67691 2.05702i −0.444712 0.119160i
\(299\) 9.39299 16.2691i 0.543211 0.940868i
\(300\) 0 0
\(301\) −21.0761 + 4.08166i −1.21481 + 0.235263i
\(302\) −26.0262 + 26.0262i −1.49764 + 1.49764i
\(303\) 0 0
\(304\) 3.89646 2.24962i 0.223477 0.129025i
\(305\) 15.2275 + 6.60735i 0.871925 + 0.378336i
\(306\) 0 0
\(307\) −15.8583 15.8583i −0.905081 0.905081i 0.0907893 0.995870i \(-0.471061\pi\)
−0.995870 + 0.0907893i \(0.971061\pi\)
\(308\) 24.8254 12.0869i 1.41456 0.688715i
\(309\) 0 0
\(310\) 21.6142 + 17.1659i 1.22761 + 0.974958i
\(311\) 22.0623 12.7377i 1.25104 0.722288i 0.279723 0.960081i \(-0.409757\pi\)
0.971316 + 0.237793i \(0.0764241\pi\)
\(312\) 0 0
\(313\) 1.63905 + 6.11703i 0.0926448 + 0.345755i 0.996652 0.0817624i \(-0.0260549\pi\)
−0.904007 + 0.427518i \(0.859388\pi\)
\(314\) −14.5120 −0.818959
\(315\) 0 0
\(316\) 22.9380 1.29036
\(317\) −0.647369 2.41602i −0.0363599 0.135697i 0.945360 0.326028i \(-0.105710\pi\)
−0.981720 + 0.190331i \(0.939044\pi\)
\(318\) 0 0
\(319\) 3.29365 1.90159i 0.184409 0.106469i
\(320\) −27.3837 + 3.14108i −1.53080 + 0.175592i
\(321\) 0 0
\(322\) 3.25855 46.1408i 0.181592 2.57133i
\(323\) −12.0066 12.0066i −0.668068 0.668068i
\(324\) 0 0
\(325\) 6.63324 10.6514i 0.367946 0.590835i
\(326\) −7.35362 + 4.24561i −0.407279 + 0.235143i
\(327\) 0 0
\(328\) 25.8740 25.8740i 1.42865 1.42865i
\(329\) −6.97155 + 20.2015i −0.384354 + 1.11374i
\(330\) 0 0
\(331\) −0.708836 + 1.22774i −0.0389611 + 0.0674827i −0.884848 0.465879i \(-0.845738\pi\)
0.845887 + 0.533362i \(0.179072\pi\)
\(332\) 5.90256 + 1.58159i 0.323945 + 0.0868008i
\(333\) 0 0
\(334\) 17.5007 + 10.1040i 0.957593 + 0.552867i
\(335\) −21.4409 3.18770i −1.17144 0.174162i
\(336\) 0 0
\(337\) 7.38849 + 7.38849i 0.402477 + 0.402477i 0.879105 0.476628i \(-0.158141\pi\)
−0.476628 + 0.879105i \(0.658141\pi\)
\(338\) 15.1192 4.05117i 0.822375 0.220355i
\(339\) 0 0
\(340\) −10.9825 27.8185i −0.595607 1.50867i
\(341\) −13.8265 7.98274i −0.748748 0.432290i
\(342\) 0 0
\(343\) 3.88816 18.1075i 0.209941 0.977714i
\(344\) 27.5687 1.48641
\(345\) 0 0
\(346\) 27.5134 + 47.6546i 1.47913 + 2.56193i
\(347\) 10.1880 + 2.72987i 0.546922 + 0.146547i 0.521691 0.853134i \(-0.325301\pi\)
0.0252308 + 0.999682i \(0.491968\pi\)
\(348\) 0 0
\(349\) 8.10936i 0.434084i 0.976162 + 0.217042i \(0.0696409\pi\)
−0.976162 + 0.217042i \(0.930359\pi\)
\(350\) 3.20406 30.7297i 0.171264 1.64257i
\(351\) 0 0
\(352\) 12.8368 3.43962i 0.684206 0.183332i
\(353\) 2.68249 10.0112i 0.142774 0.532841i −0.857070 0.515200i \(-0.827718\pi\)
0.999844 0.0176413i \(-0.00561568\pi\)
\(354\) 0 0
\(355\) 2.38362 0.273416i 0.126510 0.0145114i
\(356\) 16.8730i 0.894269i
\(357\) 0 0
\(358\) −0.756221 + 0.756221i −0.0399675 + 0.0399675i
\(359\) −1.45427 + 2.51888i −0.0767537 + 0.132941i −0.901848 0.432054i \(-0.857789\pi\)
0.825094 + 0.564996i \(0.191122\pi\)
\(360\) 0 0
\(361\) 0.117833 + 0.204093i 0.00620174 + 0.0107417i
\(362\) 7.84028 + 29.2603i 0.412076 + 1.53789i
\(363\) 0 0
\(364\) −17.3226 + 15.0373i −0.907952 + 0.788168i
\(365\) −0.706053 + 4.74902i −0.0369565 + 0.248575i
\(366\) 0 0
\(367\) 2.80371 10.4636i 0.146352 0.546194i −0.853339 0.521356i \(-0.825426\pi\)
0.999691 0.0248380i \(-0.00790698\pi\)
\(368\) −1.98752 + 7.41752i −0.103607 + 0.386665i
\(369\) 0 0
\(370\) −31.9879 + 23.7074i −1.66297 + 1.23249i
\(371\) 3.64513 3.16424i 0.189246 0.164279i
\(372\) 0 0
\(373\) 4.65126 + 17.3587i 0.240833 + 0.898801i 0.975432 + 0.220300i \(0.0707036\pi\)
−0.734599 + 0.678501i \(0.762630\pi\)
\(374\) 13.6572 + 23.6550i 0.706199 + 1.22317i
\(375\) 0 0
\(376\) 13.7220 23.7672i 0.707658 1.22570i
\(377\) −2.23416 + 2.23416i −0.115065 + 0.115065i
\(378\) 0 0
\(379\) 7.37508i 0.378832i −0.981897 0.189416i \(-0.939340\pi\)
0.981897 0.189416i \(-0.0606595\pi\)
\(380\) 3.86105 + 33.6603i 0.198068 + 1.72674i
\(381\) 0 0
\(382\) 4.08024 15.2277i 0.208763 0.779114i
\(383\) 8.84543 2.37013i 0.451981 0.121108i −0.0256454 0.999671i \(-0.508164\pi\)
0.477626 + 0.878563i \(0.341497\pi\)
\(384\) 0 0
\(385\) 0.780766 + 17.8542i 0.0397915 + 0.909936i
\(386\) 11.9230i 0.606867i
\(387\) 0 0
\(388\) −12.6990 3.40269i −0.644695 0.172746i
\(389\) −4.50787 7.80786i −0.228558 0.395874i 0.728823 0.684702i \(-0.240068\pi\)
−0.957381 + 0.288828i \(0.906734\pi\)
\(390\) 0 0
\(391\) 28.9809 1.46563
\(392\) −9.32328 + 21.8801i −0.470897 + 1.10511i
\(393\) 0 0
\(394\) −15.2969 8.83167i −0.770647 0.444933i
\(395\) −5.90965 + 13.6196i −0.297347 + 0.685276i
\(396\) 0 0
\(397\) 14.8688 3.98408i 0.746244 0.199955i 0.134393 0.990928i \(-0.457092\pi\)
0.611851 + 0.790973i \(0.290425\pi\)
\(398\) −28.5274 28.5274i −1.42995 1.42995i
\(399\) 0 0
\(400\) −1.49219 + 4.90743i −0.0746096 + 0.245371i
\(401\) −16.5088 9.53134i −0.824408 0.475972i 0.0275261 0.999621i \(-0.491237\pi\)
−0.851934 + 0.523649i \(0.824570\pi\)
\(402\) 0 0
\(403\) 12.8118 + 3.43290i 0.638200 + 0.171005i
\(404\) 21.7340 37.6445i 1.08131 1.87288i
\(405\) 0 0
\(406\) −2.53790 + 7.35408i −0.125954 + 0.364977i
\(407\) 16.2849 16.2849i 0.807213 0.807213i
\(408\) 0 0
\(409\) −14.2422 + 8.22271i −0.704229 + 0.406587i −0.808921 0.587918i \(-0.799948\pi\)
0.104691 + 0.994505i \(0.466615\pi\)
\(410\) 20.6531 + 52.3141i 1.01998 + 2.58361i
\(411\) 0 0
\(412\) 33.5570 + 33.5570i 1.65323 + 1.65323i
\(413\) −1.10714 + 15.6770i −0.0544788 + 0.771415i
\(414\) 0 0
\(415\) −2.45979 + 3.09721i −0.120746 + 0.152036i
\(416\) −9.56155 + 5.52036i −0.468794 + 0.270658i
\(417\) 0 0
\(418\) −8.00866 29.8887i −0.391716 1.46190i
\(419\) 0.432905 0.0211488 0.0105744 0.999944i \(-0.496634\pi\)
0.0105744 + 0.999944i \(0.496634\pi\)
\(420\) 0 0
\(421\) 2.44053 0.118944 0.0594721 0.998230i \(-0.481058\pi\)
0.0594721 + 0.998230i \(0.481058\pi\)
\(422\) −6.71614 25.0650i −0.326937 1.22014i
\(423\) 0 0
\(424\) −5.36826 + 3.09937i −0.260706 + 0.150519i
\(425\) 19.3469 + 0.646142i 0.938462 + 0.0313425i
\(426\) 0 0
\(427\) 17.6587 8.59761i 0.854564 0.416067i
\(428\) 7.42739 + 7.42739i 0.359016 + 0.359016i
\(429\) 0 0
\(430\) −16.8674 + 38.8733i −0.813420 + 1.87464i
\(431\) −1.41023 + 0.814199i −0.0679286 + 0.0392186i −0.533580 0.845750i \(-0.679154\pi\)
0.465651 + 0.884968i \(0.345820\pi\)
\(432\) 0 0
\(433\) 12.1563 12.1563i 0.584193 0.584193i −0.351860 0.936053i \(-0.614451\pi\)
0.936053 + 0.351860i \(0.114451\pi\)
\(434\) 32.0628 6.20937i 1.53906 0.298059i
\(435\) 0 0
\(436\) −28.6388 + 49.6039i −1.37155 + 2.37560i
\(437\) −31.7122 8.49725i −1.51700 0.406478i
\(438\) 0 0
\(439\) −32.5150 18.7725i −1.55185 0.895964i −0.997991 0.0633566i \(-0.979819\pi\)
−0.553864 0.832607i \(-0.686847\pi\)
\(440\) 3.37499 22.7007i 0.160896 1.08221i
\(441\) 0 0
\(442\) −16.0458 16.0458i −0.763221 0.763221i
\(443\) −12.1431 + 3.25374i −0.576937 + 0.154590i −0.535476 0.844550i \(-0.679868\pi\)
−0.0414608 + 0.999140i \(0.513201\pi\)
\(444\) 0 0
\(445\) −10.0185 4.34710i −0.474921 0.206072i
\(446\) 5.27315 + 3.04446i 0.249691 + 0.144159i
\(447\) 0 0
\(448\) −18.2558 + 27.0250i −0.862507 + 1.27681i
\(449\) 24.2617 1.14498 0.572491 0.819911i \(-0.305977\pi\)
0.572491 + 0.819911i \(0.305977\pi\)
\(450\) 0 0
\(451\) −16.2664 28.1742i −0.765953 1.32667i
\(452\) −65.0365 17.4265i −3.05906 0.819673i
\(453\) 0 0
\(454\) 15.7934i 0.741220i
\(455\) −4.46556 14.1596i −0.209349 0.663810i
\(456\) 0 0
\(457\) −31.6281 + 8.47473i −1.47950 + 0.396431i −0.906177 0.422898i \(-0.861013\pi\)
−0.573323 + 0.819329i \(0.694346\pi\)
\(458\) 15.3789 57.3947i 0.718608 2.68188i
\(459\) 0 0
\(460\) −45.2833 35.9638i −2.11135 1.67682i
\(461\) 11.3402i 0.528165i 0.964500 + 0.264083i \(0.0850691\pi\)
−0.964500 + 0.264083i \(0.914931\pi\)
\(462\) 0 0
\(463\) 10.8990 10.8990i 0.506520 0.506520i −0.406937 0.913456i \(-0.633403\pi\)
0.913456 + 0.406937i \(0.133403\pi\)
\(464\) 0.645775 1.11851i 0.0299793 0.0519257i
\(465\) 0 0
\(466\) −12.4187 21.5099i −0.575287 0.996426i
\(467\) 5.98056 + 22.3197i 0.276747 + 1.03283i 0.954661 + 0.297694i \(0.0962174\pi\)
−0.677914 + 0.735141i \(0.737116\pi\)
\(468\) 0 0
\(469\) −19.3685 + 16.8133i −0.894354 + 0.776365i
\(470\) 25.1173 + 33.8902i 1.15858 + 1.56324i
\(471\) 0 0
\(472\) 5.22361 19.4948i 0.240436 0.897319i
\(473\) 6.34388 23.6757i 0.291692 1.08861i
\(474\) 0 0
\(475\) −20.9808 6.37958i −0.962664 0.292715i
\(476\) −33.4516 11.5442i −1.53325 0.529127i
\(477\) 0 0
\(478\) 9.54242 + 35.6128i 0.436460 + 1.62889i
\(479\) −4.96946 8.60736i −0.227061 0.393280i 0.729875 0.683581i \(-0.239578\pi\)
−0.956936 + 0.290300i \(0.906245\pi\)
\(480\) 0 0
\(481\) −9.56651 + 16.5697i −0.436195 + 0.755512i
\(482\) 4.66437 4.66437i 0.212456 0.212456i
\(483\) 0 0
\(484\) 6.47687i 0.294403i
\(485\) 5.29209 6.66347i 0.240301 0.302572i
\(486\) 0 0
\(487\) −1.20024 + 4.47934i −0.0543879 + 0.202978i −0.987773 0.155897i \(-0.950173\pi\)
0.933385 + 0.358876i \(0.116840\pi\)
\(488\) −24.3628 + 6.52798i −1.10285 + 0.295508i
\(489\) 0 0
\(490\) −25.1477 26.5332i −1.13606 1.19865i
\(491\) 1.99747i 0.0901445i −0.998984 0.0450722i \(-0.985648\pi\)
0.998984 0.0450722i \(-0.0143518\pi\)
\(492\) 0 0
\(493\) −4.70817 1.26155i −0.212045 0.0568173i
\(494\) 12.8534 + 22.2627i 0.578300 + 1.00165i
\(495\) 0 0
\(496\) −5.42183 −0.243448
\(497\) 1.58908 2.35240i 0.0712801 0.105520i
\(498\) 0 0
\(499\) 0.178762 + 0.103208i 0.00800250 + 0.00462025i 0.503996 0.863706i \(-0.331863\pi\)
−0.495993 + 0.868326i \(0.665196\pi\)
\(500\) −29.4282 25.0181i −1.31607 1.11884i
\(501\) 0 0
\(502\) −49.6319 + 13.2988i −2.21518 + 0.593555i
\(503\) 20.3423 + 20.3423i 0.907017 + 0.907017i 0.996030 0.0890134i \(-0.0283714\pi\)
−0.0890134 + 0.996030i \(0.528371\pi\)
\(504\) 0 0
\(505\) 16.7522 + 22.6033i 0.745462 + 1.00583i
\(506\) 45.7371 + 26.4063i 2.03326 + 1.17391i
\(507\) 0 0
\(508\) −62.2228 16.6726i −2.76069 0.739725i
\(509\) −2.36278 + 4.09245i −0.104728 + 0.181395i −0.913627 0.406553i \(-0.866731\pi\)
0.808899 + 0.587948i \(0.200064\pi\)
\(510\) 0 0
\(511\) 3.72402 + 4.28999i 0.164741 + 0.189778i
\(512\) 8.12052 8.12052i 0.358880 0.358880i
\(513\) 0 0
\(514\) −20.0832 + 11.5950i −0.885831 + 0.511435i
\(515\) −28.5701 + 11.2792i −1.25895 + 0.497020i
\(516\) 0 0
\(517\) −17.2534 17.2534i −0.758803 0.758803i
\(518\) −3.31875 + 46.9932i −0.145817 + 2.06476i
\(519\) 0 0
\(520\) 2.17279 + 18.9423i 0.0952833 + 0.830673i
\(521\) 10.9951 6.34804i 0.481705 0.278113i −0.239422 0.970916i \(-0.576958\pi\)
0.721127 + 0.692803i \(0.243625\pi\)
\(522\) 0 0
\(523\) 8.48338 + 31.6604i 0.370952 + 1.38441i 0.859170 + 0.511691i \(0.170981\pi\)
−0.488217 + 0.872722i \(0.662353\pi\)
\(524\) −36.1756 −1.58034
\(525\) 0 0
\(526\) 20.4868 0.893266
\(527\) 5.29590 + 19.7645i 0.230693 + 0.860957i
\(528\) 0 0
\(529\) 28.6089 16.5173i 1.24386 0.718145i
\(530\) −1.08579 9.46581i −0.0471636 0.411169i
\(531\) 0 0
\(532\) 33.2194 + 22.4402i 1.44025 + 0.972908i
\(533\) 19.1112 + 19.1112i 0.827800 + 0.827800i
\(534\) 0 0
\(535\) −6.32362 + 2.49650i −0.273394 + 0.107933i
\(536\) 28.5244 16.4686i 1.23207 0.711334i
\(537\) 0 0
\(538\) 34.2989 34.2989i 1.47873 1.47873i
\(539\) 16.6449 + 13.0416i 0.716948 + 0.561740i
\(540\) 0 0
\(541\) 21.0600 36.4771i 0.905442 1.56827i 0.0851189 0.996371i \(-0.472873\pi\)
0.820323 0.571901i \(-0.193794\pi\)
\(542\) 53.4633 + 14.3255i 2.29645 + 0.615331i
\(543\) 0 0
\(544\) −14.7505 8.51619i −0.632421 0.365129i
\(545\) −22.0742 29.7842i −0.945556 1.27582i
\(546\) 0 0
\(547\) 19.7948 + 19.7948i 0.846364 + 0.846364i 0.989677 0.143313i \(-0.0457757\pi\)
−0.143313 + 0.989677i \(0.545776\pi\)
\(548\) −55.3200 + 14.8229i −2.36315 + 0.633205i
\(549\) 0 0
\(550\) 29.9442 + 18.6479i 1.27682 + 0.795150i
\(551\) 4.78199 + 2.76089i 0.203720 + 0.117618i
\(552\) 0 0
\(553\) 7.68975 + 15.7940i 0.327002 + 0.671631i
\(554\) 14.0583 0.597280
\(555\) 0 0
\(556\) 13.0953 + 22.6818i 0.555365 + 0.961921i
\(557\) −39.6153 10.6149i −1.67855 0.449767i −0.711157 0.703033i \(-0.751829\pi\)
−0.967397 + 0.253266i \(0.918495\pi\)
\(558\) 0 0
\(559\) 20.3630i 0.861264i
\(560\) 3.26125 + 5.11836i 0.137813 + 0.216290i
\(561\) 0 0
\(562\) −2.49190 + 0.667703i −0.105115 + 0.0281654i
\(563\) 1.85140 6.90950i 0.0780270 0.291201i −0.915876 0.401462i \(-0.868502\pi\)
0.993903 + 0.110261i \(0.0351688\pi\)
\(564\) 0 0
\(565\) 27.1028 34.1262i 1.14022 1.43570i
\(566\) 32.4129i 1.36242i
\(567\) 0 0
\(568\) −2.57784 + 2.57784i −0.108164 + 0.108164i
\(569\) −19.8667 + 34.4101i −0.832855 + 1.44255i 0.0629097 + 0.998019i \(0.479962\pi\)
−0.895765 + 0.444528i \(0.853371\pi\)
\(570\) 0 0
\(571\) −13.4380 23.2753i −0.562362 0.974040i −0.997290 0.0735743i \(-0.976559\pi\)
0.434928 0.900465i \(-0.356774\pi\)
\(572\) −6.77863 25.2982i −0.283429 1.05777i
\(573\) 0 0
\(574\) 62.9074 + 21.7095i 2.62571 + 0.906135i
\(575\) 33.0203 17.6217i 1.37704 0.734876i
\(576\) 0 0
\(577\) −4.11210 + 15.3466i −0.171189 + 0.638886i 0.825980 + 0.563699i \(0.190622\pi\)
−0.997169 + 0.0751873i \(0.976045\pi\)
\(578\) −1.21575 + 4.53723i −0.0505684 + 0.188724i
\(579\) 0 0
\(580\) 5.79111 + 7.81379i 0.240463 + 0.324450i
\(581\) 0.889770 + 4.59443i 0.0369139 + 0.190609i
\(582\) 0 0
\(583\) 1.42640 + 5.32340i 0.0590755 + 0.220473i
\(584\) −3.64767 6.31796i −0.150942 0.261439i
\(585\) 0 0
\(586\) 4.42920 7.67160i 0.182969 0.316911i
\(587\) 4.67480 4.67480i 0.192950 0.192950i −0.604020 0.796969i \(-0.706435\pi\)
0.796969 + 0.604020i \(0.206435\pi\)
\(588\) 0 0
\(589\) 23.1800i 0.955116i
\(590\) 24.2926 + 19.2931i 1.00011 + 0.794283i
\(591\) 0 0
\(592\) 2.02423 7.55454i 0.0831955 0.310490i
\(593\) −9.58856 + 2.56925i −0.393755 + 0.105506i −0.450263 0.892896i \(-0.648670\pi\)
0.0565085 + 0.998402i \(0.482003\pi\)
\(594\) 0 0
\(595\) 15.4728 16.8879i 0.634321 0.692336i
\(596\) 11.7564i 0.481559i
\(597\) 0 0
\(598\) −42.3804 11.3558i −1.73307 0.464373i
\(599\) −8.98437 15.5614i −0.367092 0.635821i 0.622018 0.783003i \(-0.286313\pi\)
−0.989109 + 0.147182i \(0.952980\pi\)
\(600\) 0 0
\(601\) 39.8874 1.62704 0.813520 0.581538i \(-0.197549\pi\)
0.813520 + 0.581538i \(0.197549\pi\)
\(602\) 21.9482 + 45.0796i 0.894543 + 1.83731i
\(603\) 0 0
\(604\) 47.1506 + 27.2224i 1.91853 + 1.10766i
\(605\) 3.84568 + 1.66867i 0.156349 + 0.0678412i
\(606\) 0 0
\(607\) 30.9589 8.29542i 1.25658 0.336701i 0.431708 0.902014i \(-0.357911\pi\)
0.824877 + 0.565313i \(0.191245\pi\)
\(608\) 13.6437 + 13.6437i 0.553323 + 0.553323i
\(609\) 0 0
\(610\) 5.70114 38.3467i 0.230833 1.55261i
\(611\) 17.5551 + 10.1354i 0.710203 + 0.410036i
\(612\) 0 0
\(613\) 16.2623 + 4.35747i 0.656828 + 0.175996i 0.571814 0.820383i \(-0.306240\pi\)
0.0850137 + 0.996380i \(0.472907\pi\)
\(614\) −26.1896 + 45.3618i −1.05693 + 1.83065i
\(615\) 0 0
\(616\) −17.8011 20.5065i −0.717229 0.826231i
\(617\) 10.1234 10.1234i 0.407552 0.407552i −0.473332 0.880884i \(-0.656949\pi\)
0.880884 + 0.473332i \(0.156949\pi\)
\(618\) 0 0
\(619\) 28.0328 16.1847i 1.12673 0.650520i 0.183622 0.982997i \(-0.441218\pi\)
0.943111 + 0.332477i \(0.107885\pi\)
\(620\) 16.2518 37.4545i 0.652689 1.50421i
\(621\) 0 0
\(622\) −42.0720 42.0720i −1.68693 1.68693i
\(623\) −11.6180 + 5.65653i −0.465465 + 0.226624i
\(624\) 0 0
\(625\) 22.4364 11.0276i 0.897456 0.441104i
\(626\) 12.8090 7.39529i 0.511951 0.295575i
\(627\) 0 0
\(628\) 5.55589 + 20.7349i 0.221704 + 0.827411i
\(629\) −29.5163 −1.17689
\(630\) 0 0
\(631\) −8.76242 −0.348827 −0.174413 0.984673i \(-0.555803\pi\)
−0.174413 + 0.984673i \(0.555803\pi\)
\(632\) −5.83867 21.7902i −0.232250 0.866768i
\(633\) 0 0
\(634\) −5.05911 + 2.92088i −0.200923 + 0.116003i
\(635\) 25.9303 32.6497i 1.02901 1.29567i
\(636\) 0 0
\(637\) −16.1612 6.88643i −0.640331 0.272850i
\(638\) −6.28087 6.28087i −0.248662 0.248662i
\(639\) 0 0
\(640\) 16.4144 + 41.5777i 0.648838 + 1.64350i
\(641\) −3.35536 + 1.93722i −0.132529 + 0.0765156i −0.564799 0.825229i \(-0.691046\pi\)
0.432270 + 0.901744i \(0.357713\pi\)
\(642\) 0 0
\(643\) −22.2135 + 22.2135i −0.876016 + 0.876016i −0.993120 0.117103i \(-0.962639\pi\)
0.117103 + 0.993120i \(0.462639\pi\)
\(644\) −67.1739 + 13.0091i −2.64702 + 0.512629i
\(645\) 0 0
\(646\) −19.8287 + 34.3444i −0.780151 + 1.35126i
\(647\) −3.37217 0.903571i −0.132574 0.0355231i 0.191922 0.981410i \(-0.438528\pi\)
−0.324496 + 0.945887i \(0.605195\pi\)
\(648\) 0 0
\(649\) −15.5399 8.97194i −0.609993 0.352179i
\(650\) −28.0389 8.52573i −1.09978 0.334407i
\(651\) 0 0
\(652\) 8.88149 + 8.88149i 0.347826 + 0.347826i
\(653\) 20.0441 5.37079i 0.784385 0.210175i 0.155668 0.987809i \(-0.450247\pi\)
0.628717 + 0.777634i \(0.283580\pi\)
\(654\) 0 0
\(655\) 9.32014 21.4795i 0.364168 0.839274i
\(656\) −9.56788 5.52402i −0.373563 0.215677i
\(657\) 0 0
\(658\) 49.7879 + 3.51612i 1.94093 + 0.137073i
\(659\) 8.70064 0.338929 0.169464 0.985536i \(-0.445796\pi\)
0.169464 + 0.985536i \(0.445796\pi\)
\(660\) 0 0
\(661\) −21.7101 37.6029i −0.844424 1.46258i −0.886121 0.463455i \(-0.846610\pi\)
0.0416969 0.999130i \(-0.486724\pi\)
\(662\) 3.19821 + 0.856958i 0.124302 + 0.0333066i
\(663\) 0 0
\(664\) 6.00977i 0.233224i
\(665\) −21.8825 + 13.9428i −0.848569 + 0.540680i
\(666\) 0 0
\(667\) −9.10326 + 2.43921i −0.352480 + 0.0944466i
\(668\) 7.73660 28.8734i 0.299338 1.11714i
\(669\) 0 0
\(670\) 5.76935 + 50.2968i 0.222890 + 1.94314i
\(671\) 22.4246i 0.865693i
\(672\) 0 0
\(673\) 12.2145 12.2145i 0.470833 0.470833i −0.431351 0.902184i \(-0.641963\pi\)
0.902184 + 0.431351i \(0.141963\pi\)
\(674\) 12.2019 21.1344i 0.470001 0.814065i
\(675\) 0 0
\(676\) −11.5767 20.0514i −0.445258 0.771209i
\(677\) 5.44169 + 20.3087i 0.209141 + 0.780526i 0.988147 + 0.153509i \(0.0490575\pi\)
−0.779006 + 0.627017i \(0.784276\pi\)
\(678\) 0 0
\(679\) −1.91429 9.88467i −0.0734637 0.379339i
\(680\) −23.6310 + 17.5139i −0.906207 + 0.671626i
\(681\) 0 0
\(682\) −9.65086 + 36.0175i −0.369551 + 1.37918i
\(683\) −4.56461 + 17.0354i −0.174660 + 0.651840i 0.821949 + 0.569561i \(0.192887\pi\)
−0.996609 + 0.0822793i \(0.973780\pi\)
\(684\) 0 0
\(685\) 5.45119 36.6655i 0.208279 1.40092i
\(686\) −43.2002 + 2.17415i −1.64939 + 0.0830093i
\(687\) 0 0
\(688\) −2.15437 8.04020i −0.0821344 0.306530i
\(689\) −2.28928 3.96515i −0.0872146 0.151060i
\(690\) 0 0
\(691\) 15.0811 26.1213i 0.573714 0.993701i −0.422467 0.906378i \(-0.638836\pi\)
0.996180 0.0873225i \(-0.0278310\pi\)
\(692\) 57.5559 57.5559i 2.18795 2.18795i
\(693\) 0 0
\(694\) 24.6340i 0.935093i
\(695\) −16.8413 + 1.93180i −0.638825 + 0.0732772i
\(696\) 0 0
\(697\) −10.7914 + 40.2741i −0.408754 + 1.52549i
\(698\) 18.2944 4.90197i 0.692454 0.185542i
\(699\) 0 0
\(700\) −45.1336 + 7.18684i −1.70589 + 0.271637i
\(701\) 25.9117i 0.978670i 0.872096 + 0.489335i \(0.162760\pi\)
−0.872096 + 0.489335i \(0.837240\pi\)
\(702\) 0 0
\(703\) 32.2980 + 8.65422i 1.21814 + 0.326400i
\(704\) −18.6182 32.2477i −0.701700 1.21538i
\(705\) 0 0
\(706\) −24.2063 −0.911018
\(707\) 33.2064 + 2.34510i 1.24885 + 0.0881964i
\(708\) 0 0
\(709\) 12.4525 + 7.18943i 0.467662 + 0.270005i 0.715260 0.698858i \(-0.246308\pi\)
−0.247599 + 0.968863i \(0.579641\pi\)
\(710\) −2.05768 5.21209i −0.0772232 0.195606i
\(711\) 0 0
\(712\) 16.0287 4.29488i 0.600702 0.160958i
\(713\) 27.9752 + 27.9752i 1.04768 + 1.04768i
\(714\) 0 0
\(715\) 16.7674 + 2.49286i 0.627064 + 0.0932278i
\(716\) 1.37001 + 0.790977i 0.0511998 + 0.0295602i
\(717\) 0 0
\(718\) 6.56158 + 1.75817i 0.244876 + 0.0656143i
\(719\) 3.38386 5.86102i 0.126197 0.218579i −0.796003 0.605292i \(-0.793056\pi\)
0.922200 + 0.386713i \(0.126390\pi\)
\(720\) 0 0
\(721\) −11.8561 + 34.3554i −0.441544 + 1.27946i
\(722\) 0.389198 0.389198i 0.0144844 0.0144844i
\(723\) 0 0
\(724\) 38.8058 22.4045i 1.44221 0.832658i
\(725\) −6.13148 + 1.42539i −0.227718 + 0.0529378i
\(726\) 0 0
\(727\) 16.4806 + 16.4806i 0.611233 + 0.611233i 0.943267 0.332034i \(-0.107735\pi\)
−0.332034 + 0.943267i \(0.607735\pi\)
\(728\) 18.6941 + 12.6282i 0.692851 + 0.468032i
\(729\) 0 0
\(730\) 11.1404 1.27787i 0.412325 0.0472962i
\(731\) −27.2051 + 15.7069i −1.00622 + 0.580940i
\(732\) 0 0
\(733\) −13.5666 50.6311i −0.501093 1.87010i −0.492810 0.870137i \(-0.664030\pi\)
−0.00828279 0.999966i \(-0.502637\pi\)
\(734\) −25.3002 −0.933848
\(735\) 0 0
\(736\) −32.9322 −1.21390
\(737\) −7.57921 28.2860i −0.279184 1.04193i
\(738\) 0 0
\(739\) −37.8928 + 21.8774i −1.39391 + 0.804773i −0.993745 0.111671i \(-0.964380\pi\)
−0.400163 + 0.916444i \(0.631046\pi\)
\(740\) 46.1199 + 36.6282i 1.69540 + 1.34648i
\(741\) 0 0
\(742\) −9.34183 6.31055i −0.342949 0.231668i
\(743\) −16.4879 16.4879i −0.604881 0.604881i 0.336723 0.941604i \(-0.390681\pi\)
−0.941604 + 0.336723i \(0.890681\pi\)
\(744\) 0 0
\(745\) −6.98041 3.02886i −0.255743 0.110969i
\(746\) 36.3490 20.9861i 1.33083 0.768356i
\(747\) 0 0
\(748\) 28.5699 28.5699i 1.04462 1.04462i
\(749\) −2.62419 + 7.60411i −0.0958859 + 0.277848i
\(750\) 0 0
\(751\) −1.48307 + 2.56876i −0.0541181 + 0.0937353i −0.891815 0.452400i \(-0.850568\pi\)
0.837697 + 0.546135i \(0.183901\pi\)
\(752\) −8.00382 2.14462i −0.291869 0.0782061i
\(753\) 0 0
\(754\) 6.39070 + 3.68967i 0.232736 + 0.134370i
\(755\) −28.3111 + 20.9825i −1.03035 + 0.763631i
\(756\) 0 0
\(757\) −31.2106 31.2106i −1.13437 1.13437i −0.989443 0.144925i \(-0.953706\pi\)
−0.144925 0.989443i \(-0.546294\pi\)
\(758\) −16.6379 + 4.45811i −0.604316 + 0.161926i
\(759\) 0 0
\(760\) 30.9932 12.2358i 1.12424 0.443838i
\(761\) −34.8304 20.1094i −1.26260 0.728963i −0.289025 0.957322i \(-0.593331\pi\)
−0.973577 + 0.228358i \(0.926664\pi\)
\(762\) 0 0
\(763\) −43.7558 3.09012i −1.58407 0.111870i
\(764\) −23.3195 −0.843670
\(765\) 0 0
\(766\) −10.6938 18.5223i −0.386384 0.669236i
\(767\) 14.3994 + 3.85830i 0.519931 + 0.139315i
\(768\) 0 0
\(769\) 24.6136i 0.887589i 0.896129 + 0.443794i \(0.146368\pi\)
−0.896129 + 0.443794i \(0.853632\pi\)
\(770\) 39.8065 12.5540i 1.43453 0.452413i
\(771\) 0 0
\(772\) −17.0357 + 4.56471i −0.613130 + 0.164288i
\(773\) 13.3233 49.7233i 0.479206 1.78842i −0.125637 0.992076i \(-0.540097\pi\)
0.604843 0.796345i \(-0.293236\pi\)
\(774\) 0 0
\(775\) 18.0518 + 19.2992i 0.648440 + 0.693249i
\(776\) 12.9297i 0.464149i
\(777\) 0 0
\(778\) −14.8893 + 14.8893i −0.533807 + 0.533807i
\(779\) 23.6169 40.9056i 0.846162 1.46560i
\(780\) 0 0
\(781\) 1.62063 + 2.80701i 0.0579906 + 0.100443i
\(782\) −17.5185 65.3798i −0.626459 2.33798i
\(783\) 0 0
\(784\) 7.10972 + 1.00924i 0.253918 + 0.0360442i
\(785\) −13.7429 2.04320i −0.490503 0.0729248i
\(786\) 0 0
\(787\) −6.64831 + 24.8118i −0.236987 + 0.884446i 0.740257 + 0.672324i \(0.234704\pi\)
−0.977243 + 0.212121i \(0.931963\pi\)
\(788\) −6.76238 + 25.2375i −0.240900 + 0.899050i
\(789\) 0 0
\(790\) 34.2976 + 5.09914i 1.22025 + 0.181419i
\(791\) −9.80382 50.6232i −0.348584 1.79995i
\(792\) 0 0
\(793\) −4.82175 17.9950i −0.171225 0.639022i
\(794\) −17.9759 31.1351i −0.637940 1.10494i
\(795\) 0 0
\(796\) −29.8386 + 51.6819i −1.05760 + 1.83182i
\(797\) 1.12818 1.12818i 0.0399621 0.0399621i −0.686843 0.726805i \(-0.741004\pi\)
0.726805 + 0.686843i \(0.241004\pi\)
\(798\) 0 0
\(799\) 31.2716i 1.10631i
\(800\) −21.9847 0.734239i −0.777276 0.0259593i
\(801\) 0 0
\(802\) −11.5231 + 43.0047i −0.406893 + 1.51855i
\(803\) −6.26516 + 1.67874i −0.221093 + 0.0592416i
\(804\) 0 0
\(805\) 9.58218 43.2365i 0.337727 1.52389i
\(806\) 30.9780i 1.09115i
\(807\) 0 0
\(808\) −41.2930 11.0644i −1.45268 0.389245i
\(809\) 18.4134 + 31.8929i 0.647381 + 1.12130i 0.983746 + 0.179565i \(0.0574689\pi\)
−0.336366 + 0.941731i \(0.609198\pi\)
\(810\) 0 0
\(811\) 9.33779 0.327894 0.163947 0.986469i \(-0.447577\pi\)
0.163947 + 0.986469i \(0.447577\pi\)
\(812\) 11.4792 + 0.810683i 0.402841 + 0.0284494i
\(813\) 0 0
\(814\) −46.5821 26.8942i −1.63270 0.942640i
\(815\) −7.56163 + 2.98525i −0.264872 + 0.104569i
\(816\) 0 0
\(817\) 34.3743 9.21057i 1.20261 0.322237i
\(818\) 27.1593 + 27.1593i 0.949602 + 0.949602i
\(819\) 0 0
\(820\) 66.8399 49.5376i 2.33415 1.72993i
\(821\) −13.7473 7.93699i −0.479783 0.277003i 0.240543 0.970639i \(-0.422675\pi\)
−0.720326 + 0.693636i \(0.756008\pi\)
\(822\) 0 0
\(823\) −13.2164 3.54133i −0.460696 0.123443i 0.0210040 0.999779i \(-0.493314\pi\)
−0.481700 + 0.876336i \(0.659980\pi\)
\(824\) 23.3362 40.4194i 0.812954 1.40808i
\(825\) 0 0
\(826\) 36.0360 6.97882i 1.25385 0.242824i
\(827\) −1.84947 + 1.84947i −0.0643124 + 0.0643124i −0.738531 0.674219i \(-0.764480\pi\)
0.674219 + 0.738531i \(0.264480\pi\)
\(828\) 0 0
\(829\) 28.8636 16.6644i 1.00247 0.578778i 0.0934940 0.995620i \(-0.470196\pi\)
0.908979 + 0.416842i \(0.136863\pi\)
\(830\) 8.47408 + 3.67697i 0.294139 + 0.127630i
\(831\) 0 0
\(832\) 21.8744 + 21.8744i 0.758359 + 0.758359i
\(833\) −3.26554 26.9033i −0.113144 0.932144i
\(834\) 0 0
\(835\) 15.1505 + 12.0325i 0.524306 + 0.416401i
\(836\) −39.6392 + 22.8857i −1.37095 + 0.791518i
\(837\) 0 0
\(838\) −0.261684 0.976617i −0.00903971 0.0337367i
\(839\) 26.2661 0.906808 0.453404 0.891305i \(-0.350210\pi\)
0.453404 + 0.891305i \(0.350210\pi\)
\(840\) 0 0
\(841\) −27.4149 −0.945342
\(842\) −1.47526 5.50574i −0.0508408 0.189740i
\(843\) 0 0
\(844\) −33.2418 + 19.1922i −1.14423 + 0.660621i
\(845\) 14.8882 1.70777i 0.512171 0.0587492i
\(846\) 0 0
\(847\) 4.45967 2.17131i 0.153236 0.0746071i
\(848\) 1.32341 + 1.32341i 0.0454461 + 0.0454461i
\(849\) 0 0
\(850\) −10.2372 44.0364i −0.351133 1.51044i
\(851\) −49.4239 + 28.5349i −1.69423 + 0.978164i
\(852\) 0 0
\(853\) −19.2905 + 19.2905i −0.660495 + 0.660495i −0.955497 0.295002i \(-0.904680\pi\)
0.295002 + 0.955497i \(0.404680\pi\)
\(854\) −30.0702 34.6402i −1.02898 1.18536i
\(855\) 0 0
\(856\) 5.16515 8.94630i 0.176541 0.305778i
\(857\) 32.5286 + 8.71601i 1.11116 + 0.297733i 0.767299 0.641289i \(-0.221600\pi\)
0.343856 + 0.939022i \(0.388267\pi\)
\(858\) 0 0
\(859\) −3.29570 1.90278i −0.112448 0.0649219i 0.442721 0.896659i \(-0.354013\pi\)
−0.555169 + 0.831737i \(0.687346\pi\)
\(860\) 62.0001 + 9.21777i 2.11419 + 0.314323i
\(861\) 0 0
\(862\) 2.68926 + 2.68926i 0.0915967 + 0.0915967i
\(863\) 26.6306 7.13565i 0.906517 0.242901i 0.224704 0.974427i \(-0.427858\pi\)
0.681813 + 0.731527i \(0.261192\pi\)
\(864\) 0 0
\(865\) 19.3457 + 49.0026i 0.657774 + 1.66614i
\(866\) −34.7723 20.0758i −1.18161 0.682204i
\(867\) 0 0
\(868\) −21.1472 43.4344i −0.717782 1.47426i
\(869\) −20.0567 −0.680378
\(870\) 0 0
\(871\) 12.1641 + 21.0689i 0.412166 + 0.713893i
\(872\) 54.4115 + 14.5795i 1.84261 + 0.493725i
\(873\) 0 0
\(874\) 76.6778i 2.59367i
\(875\) 7.36079 28.6499i 0.248840 0.968545i
\(876\) 0 0
\(877\) −16.6920 + 4.47261i −0.563649 + 0.151029i −0.529382 0.848384i \(-0.677576\pi\)
−0.0342666 + 0.999413i \(0.510910\pi\)
\(878\) −22.6953 + 84.7002i −0.765931 + 2.85849i
\(879\) 0 0
\(880\) −6.88422 + 0.789663i −0.232067 + 0.0266195i
\(881\) 55.6733i 1.87568i −0.347064 0.937841i \(-0.612822\pi\)
0.347064 0.937841i \(-0.387178\pi\)
\(882\) 0 0
\(883\) −13.5326 + 13.5326i −0.455408 + 0.455408i −0.897145 0.441737i \(-0.854362\pi\)
0.441737 + 0.897145i \(0.354362\pi\)
\(884\) −16.7833 + 29.0695i −0.564483 + 0.977713i
\(885\) 0 0
\(886\) 14.6806 + 25.4276i 0.493205 + 0.854256i
\(887\) 12.1926 + 45.5036i 0.409389 + 1.52786i 0.795815 + 0.605540i \(0.207043\pi\)
−0.386426 + 0.922321i \(0.626290\pi\)
\(888\) 0 0
\(889\) −9.37967 48.4330i −0.314584 1.62439i
\(890\) −3.75089 + 25.2290i −0.125730 + 0.845679i
\(891\) 0 0
\(892\) 2.33113 8.69989i 0.0780519 0.291294i
\(893\) 9.16890 34.2188i 0.306825 1.14509i
\(894\) 0 0
\(895\) −0.822612 + 0.609670i −0.0274969 + 0.0203790i
\(896\) 49.9969 + 17.2540i 1.67028 + 0.576416i
\(897\) 0 0
\(898\) −14.6658 54.7335i −0.489404 1.82648i
\(899\) −3.32701 5.76256i −0.110962 0.192192i
\(900\) 0 0
\(901\) 3.53164 6.11698i 0.117656 0.203786i
\(902\) −53.7271 + 53.7271i −1.78892 + 1.78892i
\(903\) 0 0
\(904\) 66.2179i 2.20237i
\(905\) 3.30507 + 28.8134i 0.109864 + 0.957789i
\(906\) 0 0
\(907\) 0.109787 0.409732i 0.00364543 0.0136049i −0.964079 0.265615i \(-0.914425\pi\)
0.967725 + 0.252010i \(0.0810916\pi\)
\(908\) 22.5657 6.04646i 0.748870 0.200659i
\(909\) 0 0
\(910\) −29.2440 + 18.6333i −0.969431 + 0.617689i
\(911\) 0.818653i 0.0271232i 0.999908 + 0.0135616i \(0.00431692\pi\)
−0.999908 + 0.0135616i \(0.995683\pi\)
\(912\) 0 0
\(913\) −5.16112 1.38292i −0.170808 0.0457679i
\(914\) 38.2373 + 66.2290i 1.26478 + 2.19066i
\(915\) 0 0
\(916\) −87.8939 −2.90410
\(917\) −12.1275 24.9088i −0.400487 0.822563i
\(918\) 0 0
\(919\) −15.9425 9.20443i −0.525896 0.303626i 0.213448 0.976954i \(-0.431531\pi\)
−0.739343 + 0.673328i \(0.764864\pi\)
\(920\) −22.6377 + 52.1716i −0.746343 + 1.72005i
\(921\) 0 0
\(922\) 25.5830 6.85495i 0.842532 0.225756i
\(923\) −1.90406 1.90406i −0.0626730 0.0626730i
\(924\) 0 0
\(925\) −33.6303 + 17.9472i −1.10576 + 0.590102i
\(926\) −31.1760 17.9995i −1.02451 0.591499i
\(927\) 0 0
\(928\) 5.35009 + 1.43355i 0.175625 + 0.0470586i
\(929\) −18.2734 + 31.6505i −0.599532 + 1.03842i 0.393358 + 0.919386i \(0.371313\pi\)
−0.992890 + 0.119035i \(0.962020\pi\)
\(930\) 0 0
\(931\) −4.31480 + 30.3962i −0.141412 + 0.996196i
\(932\) −25.9790 + 25.9790i −0.850971 + 0.850971i
\(933\) 0 0
\(934\) 46.7373 26.9838i 1.52929 0.882938i
\(935\) 9.60292 + 24.3242i 0.314049 + 0.795485i
\(936\) 0 0
\(937\) −9.73540 9.73540i −0.318042 0.318042i 0.529973 0.848015i \(-0.322202\pi\)
−0.848015 + 0.529973i \(0.822202\pi\)
\(938\) 49.6380 + 33.5312i 1.62074 + 1.09483i
\(939\) 0 0
\(940\) 38.8065 48.8627i 1.26573 1.59372i
\(941\) −26.9972 + 15.5869i −0.880084 + 0.508117i −0.870686 0.491839i \(-0.836325\pi\)
−0.00939807 + 0.999956i \(0.502992\pi\)
\(942\) 0 0
\(943\) 20.8652 + 77.8701i 0.679465 + 2.53580i
\(944\) −6.09369 −0.198333
\(945\) 0 0
\(946\) −57.2462 −1.86123
\(947\) 2.02380 + 7.55291i 0.0657645 + 0.245437i 0.990981 0.134003i \(-0.0427833\pi\)
−0.925216 + 0.379440i \(0.876117\pi\)
\(948\) 0 0
\(949\) 4.66662 2.69427i 0.151485 0.0874598i
\(950\) −1.70957 + 51.1882i −0.0554657 + 1.66076i
\(951\) 0 0
\(952\) −2.45172 + 34.7162i −0.0794608 + 1.12516i
\(953\) −14.8359 14.8359i −0.480583 0.480583i 0.424735 0.905318i \(-0.360367\pi\)
−0.905318 + 0.424735i \(0.860367\pi\)
\(954\) 0 0
\(955\) 6.00794 13.8461i 0.194412 0.448049i
\(956\) 47.2305 27.2686i 1.52754 0.881928i
\(957\) 0 0
\(958\) −16.4139 + 16.4139i −0.530310 + 0.530310i
\(959\) −28.7519 33.1215i −0.928447 1.06955i
\(960\) 0 0
\(961\) 1.53342 2.65597i 0.0494653 0.0856764i
\(962\) 43.1634 + 11.5656i 1.39164 + 0.372889i
\(963\) 0 0
\(964\) −8.45023 4.87874i −0.272164 0.157134i
\(965\) 1.67869 11.2911i 0.0540389 0.363474i
\(966\) 0 0
\(967\) −38.1841 38.1841i −1.22792 1.22792i −0.964750 0.263167i \(-0.915233\pi\)
−0.263167 0.964750i \(-0.584767\pi\)
\(968\) −6.15277 + 1.64863i −0.197758 + 0.0529890i
\(969\) 0 0
\(970\) −18.2315 7.91080i −0.585378 0.254000i
\(971\) 34.5090 + 19.9238i 1.10745 + 0.639384i 0.938167 0.346184i \(-0.112523\pi\)
0.169279 + 0.985568i \(0.445856\pi\)
\(972\) 0 0
\(973\) −11.2275 + 16.6207i −0.359938 + 0.532834i
\(974\) 10.8308 0.347040
\(975\) 0 0
\(976\) 3.80767 + 6.59508i 0.121881 + 0.211103i
\(977\) 15.9726 + 4.27984i 0.511008 + 0.136924i 0.505104 0.863058i \(-0.331454\pi\)
0.00590397 + 0.999983i \(0.498121\pi\)
\(978\) 0 0
\(979\) 14.7536i 0.471526i
\(980\) −28.2831 + 46.0894i −0.903471 + 1.47227i
\(981\) 0 0
\(982\) −4.50621 + 1.20744i −0.143799 + 0.0385308i
\(983\) 0.230258 0.859334i 0.00734408 0.0274085i −0.962157 0.272497i \(-0.912150\pi\)
0.969501 + 0.245089i \(0.0788171\pi\)
\(984\) 0 0
\(985\) −13.2427 10.5173i −0.421948 0.335109i
\(986\) 11.3840i 0.362541i
\(987\) 0 0
\(988\) 26.8882 26.8882i 0.855428 0.855428i
\(989\) −30.3693 + 52.6012i −0.965689 + 1.67262i
\(990\) 0 0
\(991\) −25.8144 44.7119i −0.820021 1.42032i −0.905665 0.423993i \(-0.860628\pi\)
0.0856440 0.996326i \(-0.472705\pi\)
\(992\) −6.01795 22.4593i −0.191070 0.713083i
\(993\) 0 0
\(994\) −6.26750 2.16292i −0.198793 0.0686038i
\(995\) −22.9990 31.0319i −0.729116 0.983778i
\(996\) 0 0
\(997\) 6.08631 22.7144i 0.192755 0.719373i −0.800081 0.599892i \(-0.795210\pi\)
0.992836 0.119481i \(-0.0381230\pi\)
\(998\) 0.124776 0.465669i 0.00394970 0.0147405i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.ce.a.107.2 yes 64
3.2 odd 2 inner 315.2.ce.a.107.15 yes 64
5.3 odd 4 inner 315.2.ce.a.233.2 yes 64
7.4 even 3 inner 315.2.ce.a.242.15 yes 64
15.8 even 4 inner 315.2.ce.a.233.15 yes 64
21.11 odd 6 inner 315.2.ce.a.242.2 yes 64
35.18 odd 12 inner 315.2.ce.a.53.15 yes 64
105.53 even 12 inner 315.2.ce.a.53.2 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.ce.a.53.2 64 105.53 even 12 inner
315.2.ce.a.53.15 yes 64 35.18 odd 12 inner
315.2.ce.a.107.2 yes 64 1.1 even 1 trivial
315.2.ce.a.107.15 yes 64 3.2 odd 2 inner
315.2.ce.a.233.2 yes 64 5.3 odd 4 inner
315.2.ce.a.233.15 yes 64 15.8 even 4 inner
315.2.ce.a.242.2 yes 64 21.11 odd 6 inner
315.2.ce.a.242.15 yes 64 7.4 even 3 inner