Properties

Label 315.2.ce.a.107.4
Level $315$
Weight $2$
Character 315.107
Analytic conductor $2.515$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(53,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 107.4
Character \(\chi\) \(=\) 315.107
Dual form 315.2.ce.a.53.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.494677 - 1.84616i) q^{2} +(-1.43155 + 0.826508i) q^{4} +(0.541988 - 2.16939i) q^{5} +(2.64533 - 0.0471386i) q^{7} +(-0.468944 - 0.468944i) q^{8} +(-4.27315 + 0.0725500i) q^{10} +(0.971861 - 0.561104i) q^{11} +(0.830077 - 0.830077i) q^{13} +(-1.39561 - 4.86039i) q^{14} +(-2.28679 + 3.96083i) q^{16} +(2.16001 + 0.578772i) q^{17} +(-5.19853 - 3.00137i) q^{19} +(1.01713 + 3.55355i) q^{20} +(-1.51665 - 1.51665i) q^{22} +(0.641461 - 0.171879i) q^{23} +(-4.41250 - 2.35157i) q^{25} +(-1.94308 - 1.12184i) q^{26} +(-3.74797 + 2.25387i) q^{28} -9.88857 q^{29} +(4.19734 + 7.27001i) q^{31} +(7.16237 + 1.91915i) q^{32} -4.27403i q^{34} +(1.33148 - 5.76430i) q^{35} +(5.51429 - 1.47755i) q^{37} +(-2.96942 + 11.0820i) q^{38} +(-1.27148 + 0.763160i) q^{40} +3.31153i q^{41} +(5.26014 - 5.26014i) q^{43} +(-0.927514 + 1.60650i) q^{44} +(-0.634632 - 1.09922i) q^{46} +(2.55120 + 9.52122i) q^{47} +(6.99556 - 0.249395i) q^{49} +(-2.15861 + 9.30945i) q^{50} +(-0.502235 + 1.87437i) q^{52} +(0.211894 - 0.790799i) q^{53} +(-0.690516 - 2.41246i) q^{55} +(-1.26262 - 1.21841i) q^{56} +(4.89165 + 18.2559i) q^{58} +(1.75013 + 3.03132i) q^{59} +(2.57534 - 4.46061i) q^{61} +(11.3453 - 11.3453i) q^{62} -5.02510i q^{64} +(-1.35087 - 2.25065i) q^{65} +(1.66197 - 6.20255i) q^{67} +(-3.57052 + 0.956719i) q^{68} +(-11.3005 + 0.393349i) q^{70} -12.1470i q^{71} +(-4.49672 - 1.20489i) q^{73} +(-5.45559 - 9.44935i) q^{74} +9.92263 q^{76} +(2.54444 - 1.53012i) q^{77} +(9.12881 + 5.27052i) q^{79} +(7.35317 + 7.10765i) q^{80} +(6.11362 - 1.63814i) q^{82} +(11.5106 + 11.5106i) q^{83} +(2.42628 - 4.37221i) q^{85} +(-12.3131 - 7.10899i) q^{86} +(-0.718875 - 0.192622i) q^{88} +(1.76847 - 3.06308i) q^{89} +(2.15670 - 2.23496i) q^{91} +(-0.776226 + 0.776226i) q^{92} +(16.3157 - 9.41986i) q^{94} +(-9.32868 + 9.65092i) q^{95} +(10.6773 + 10.6773i) q^{97} +(-3.92097 - 12.7916i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{7} + 8 q^{10} + 32 q^{16} - 48 q^{22} - 16 q^{25} + 88 q^{28} + 32 q^{31} - 16 q^{37} - 40 q^{40} - 16 q^{43} - 80 q^{52} - 32 q^{55} - 88 q^{58} + 48 q^{61} - 32 q^{67} - 112 q^{70} - 88 q^{73}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.494677 1.84616i −0.349790 1.30543i −0.886916 0.461931i \(-0.847157\pi\)
0.537126 0.843502i \(-0.319510\pi\)
\(3\) 0 0
\(4\) −1.43155 + 0.826508i −0.715777 + 0.413254i
\(5\) 0.541988 2.16939i 0.242385 0.970180i
\(6\) 0 0
\(7\) 2.64533 0.0471386i 0.999841 0.0178167i
\(8\) −0.468944 0.468944i −0.165797 0.165797i
\(9\) 0 0
\(10\) −4.27315 + 0.0725500i −1.35129 + 0.0229423i
\(11\) 0.971861 0.561104i 0.293027 0.169179i −0.346279 0.938132i \(-0.612555\pi\)
0.639306 + 0.768952i \(0.279222\pi\)
\(12\) 0 0
\(13\) 0.830077 0.830077i 0.230222 0.230222i −0.582563 0.812785i \(-0.697950\pi\)
0.812785 + 0.582563i \(0.197950\pi\)
\(14\) −1.39561 4.86039i −0.372993 1.29899i
\(15\) 0 0
\(16\) −2.28679 + 3.96083i −0.571696 + 0.990207i
\(17\) 2.16001 + 0.578772i 0.523879 + 0.140373i 0.511060 0.859545i \(-0.329253\pi\)
0.0128185 + 0.999918i \(0.495920\pi\)
\(18\) 0 0
\(19\) −5.19853 3.00137i −1.19262 0.688562i −0.233723 0.972303i \(-0.575091\pi\)
−0.958901 + 0.283741i \(0.908424\pi\)
\(20\) 1.01713 + 3.55355i 0.227438 + 0.794599i
\(21\) 0 0
\(22\) −1.51665 1.51665i −0.323350 0.323350i
\(23\) 0.641461 0.171879i 0.133754 0.0358392i −0.191321 0.981528i \(-0.561277\pi\)
0.325075 + 0.945688i \(0.394610\pi\)
\(24\) 0 0
\(25\) −4.41250 2.35157i −0.882499 0.470313i
\(26\) −1.94308 1.12184i −0.381069 0.220010i
\(27\) 0 0
\(28\) −3.74797 + 2.25387i −0.708300 + 0.425941i
\(29\) −9.88857 −1.83626 −0.918131 0.396277i \(-0.870302\pi\)
−0.918131 + 0.396277i \(0.870302\pi\)
\(30\) 0 0
\(31\) 4.19734 + 7.27001i 0.753865 + 1.30573i 0.945937 + 0.324352i \(0.105146\pi\)
−0.192071 + 0.981381i \(0.561521\pi\)
\(32\) 7.16237 + 1.91915i 1.26614 + 0.339261i
\(33\) 0 0
\(34\) 4.27403i 0.732989i
\(35\) 1.33148 5.76430i 0.225061 0.974345i
\(36\) 0 0
\(37\) 5.51429 1.47755i 0.906543 0.242908i 0.224719 0.974424i \(-0.427854\pi\)
0.681824 + 0.731516i \(0.261187\pi\)
\(38\) −2.96942 + 11.0820i −0.481704 + 1.79774i
\(39\) 0 0
\(40\) −1.27148 + 0.763160i −0.201039 + 0.120666i
\(41\) 3.31153i 0.517175i 0.965988 + 0.258587i \(0.0832570\pi\)
−0.965988 + 0.258587i \(0.916743\pi\)
\(42\) 0 0
\(43\) 5.26014 5.26014i 0.802164 0.802164i −0.181270 0.983433i \(-0.558021\pi\)
0.983433 + 0.181270i \(0.0580207\pi\)
\(44\) −0.927514 + 1.60650i −0.139828 + 0.242189i
\(45\) 0 0
\(46\) −0.634632 1.09922i −0.0935714 0.162070i
\(47\) 2.55120 + 9.52122i 0.372131 + 1.38881i 0.857491 + 0.514498i \(0.172022\pi\)
−0.485360 + 0.874314i \(0.661311\pi\)
\(48\) 0 0
\(49\) 6.99556 0.249395i 0.999365 0.0356278i
\(50\) −2.15861 + 9.30945i −0.305273 + 1.31655i
\(51\) 0 0
\(52\) −0.502235 + 1.87437i −0.0696474 + 0.259928i
\(53\) 0.211894 0.790799i 0.0291059 0.108625i −0.949845 0.312722i \(-0.898759\pi\)
0.978951 + 0.204097i \(0.0654259\pi\)
\(54\) 0 0
\(55\) −0.690516 2.41246i −0.0931092 0.325296i
\(56\) −1.26262 1.21841i −0.168724 0.162816i
\(57\) 0 0
\(58\) 4.89165 + 18.2559i 0.642305 + 2.39712i
\(59\) 1.75013 + 3.03132i 0.227848 + 0.394644i 0.957170 0.289526i \(-0.0934978\pi\)
−0.729322 + 0.684170i \(0.760164\pi\)
\(60\) 0 0
\(61\) 2.57534 4.46061i 0.329738 0.571123i −0.652722 0.757598i \(-0.726373\pi\)
0.982460 + 0.186475i \(0.0597063\pi\)
\(62\) 11.3453 11.3453i 1.44085 1.44085i
\(63\) 0 0
\(64\) 5.02510i 0.628138i
\(65\) −1.35087 2.25065i −0.167555 0.279159i
\(66\) 0 0
\(67\) 1.66197 6.20255i 0.203042 0.757762i −0.786996 0.616958i \(-0.788365\pi\)
0.990038 0.140804i \(-0.0449687\pi\)
\(68\) −3.57052 + 0.956719i −0.432990 + 0.116019i
\(69\) 0 0
\(70\) −11.3005 + 0.393349i −1.35067 + 0.0470142i
\(71\) 12.1470i 1.44159i −0.693149 0.720795i \(-0.743777\pi\)
0.693149 0.720795i \(-0.256223\pi\)
\(72\) 0 0
\(73\) −4.49672 1.20489i −0.526301 0.141022i −0.0141212 0.999900i \(-0.504495\pi\)
−0.512179 + 0.858878i \(0.671162\pi\)
\(74\) −5.45559 9.44935i −0.634199 1.09846i
\(75\) 0 0
\(76\) 9.92263 1.13820
\(77\) 2.54444 1.53012i 0.289966 0.174373i
\(78\) 0 0
\(79\) 9.12881 + 5.27052i 1.02707 + 0.592980i 0.916144 0.400849i \(-0.131285\pi\)
0.110927 + 0.993829i \(0.464618\pi\)
\(80\) 7.35317 + 7.10765i 0.822109 + 0.794659i
\(81\) 0 0
\(82\) 6.11362 1.63814i 0.675137 0.180902i
\(83\) 11.5106 + 11.5106i 1.26345 + 1.26345i 0.949411 + 0.314036i \(0.101681\pi\)
0.314036 + 0.949411i \(0.398319\pi\)
\(84\) 0 0
\(85\) 2.42628 4.37221i 0.263167 0.474232i
\(86\) −12.3131 7.10899i −1.32776 0.766582i
\(87\) 0 0
\(88\) −0.718875 0.192622i −0.0766323 0.0205336i
\(89\) 1.76847 3.06308i 0.187457 0.324686i −0.756944 0.653479i \(-0.773309\pi\)
0.944402 + 0.328793i \(0.106642\pi\)
\(90\) 0 0
\(91\) 2.15670 2.23496i 0.226084 0.234287i
\(92\) −0.776226 + 0.776226i −0.0809272 + 0.0809272i
\(93\) 0 0
\(94\) 16.3157 9.41986i 1.68283 0.971585i
\(95\) −9.32868 + 9.65092i −0.957103 + 0.990164i
\(96\) 0 0
\(97\) 10.6773 + 10.6773i 1.08411 + 1.08411i 0.996121 + 0.0879901i \(0.0280444\pi\)
0.0879901 + 0.996121i \(0.471956\pi\)
\(98\) −3.92097 12.7916i −0.396077 1.29214i
\(99\) 0 0
\(100\) 8.26031 0.280570i 0.826031 0.0280570i
\(101\) 2.76599 1.59694i 0.275226 0.158902i −0.356034 0.934473i \(-0.615871\pi\)
0.631260 + 0.775571i \(0.282538\pi\)
\(102\) 0 0
\(103\) −0.554604 2.06981i −0.0546468 0.203945i 0.933205 0.359345i \(-0.117000\pi\)
−0.987852 + 0.155400i \(0.950333\pi\)
\(104\) −0.778519 −0.0763401
\(105\) 0 0
\(106\) −1.56476 −0.151983
\(107\) −0.164185 0.612745i −0.0158723 0.0592363i 0.957535 0.288315i \(-0.0930952\pi\)
−0.973408 + 0.229079i \(0.926429\pi\)
\(108\) 0 0
\(109\) −11.9861 + 6.92020i −1.14806 + 0.662835i −0.948415 0.317033i \(-0.897314\pi\)
−0.199649 + 0.979867i \(0.563980\pi\)
\(110\) −4.11220 + 2.46819i −0.392083 + 0.235333i
\(111\) 0 0
\(112\) −5.86260 + 10.5855i −0.553963 + 1.00024i
\(113\) 5.75515 + 5.75515i 0.541399 + 0.541399i 0.923939 0.382540i \(-0.124951\pi\)
−0.382540 + 0.923939i \(0.624951\pi\)
\(114\) 0 0
\(115\) −0.0252080 1.48473i −0.00235066 0.138452i
\(116\) 14.1560 8.17298i 1.31435 0.758842i
\(117\) 0 0
\(118\) 4.73055 4.73055i 0.435483 0.435483i
\(119\) 5.74122 + 1.42922i 0.526296 + 0.131017i
\(120\) 0 0
\(121\) −4.87032 + 8.43565i −0.442757 + 0.766877i
\(122\) −9.50897 2.54792i −0.860901 0.230678i
\(123\) 0 0
\(124\) −12.0174 6.93827i −1.07920 0.623075i
\(125\) −7.49298 + 8.29790i −0.670193 + 0.742187i
\(126\) 0 0
\(127\) −9.74796 9.74796i −0.864992 0.864992i 0.126921 0.991913i \(-0.459490\pi\)
−0.991913 + 0.126921i \(0.959490\pi\)
\(128\) 5.04759 1.35250i 0.446148 0.119545i
\(129\) 0 0
\(130\) −3.48682 + 3.60727i −0.305815 + 0.316378i
\(131\) 12.7957 + 7.38760i 1.11796 + 0.645457i 0.940881 0.338738i \(-0.110000\pi\)
0.177084 + 0.984196i \(0.443333\pi\)
\(132\) 0 0
\(133\) −13.8933 7.69457i −1.20470 0.667204i
\(134\) −12.2730 −1.06023
\(135\) 0 0
\(136\) −0.741510 1.28433i −0.0635840 0.110131i
\(137\) −19.2723 5.16400i −1.64655 0.441191i −0.687903 0.725803i \(-0.741469\pi\)
−0.958643 + 0.284612i \(0.908135\pi\)
\(138\) 0 0
\(139\) 1.87882i 0.159359i −0.996821 0.0796796i \(-0.974610\pi\)
0.996821 0.0796796i \(-0.0253897\pi\)
\(140\) 2.85816 + 9.35238i 0.241559 + 0.790420i
\(141\) 0 0
\(142\) −22.4254 + 6.00887i −1.88190 + 0.504253i
\(143\) 0.340960 1.27248i 0.0285125 0.106410i
\(144\) 0 0
\(145\) −5.35949 + 21.4522i −0.445081 + 1.78150i
\(146\) 8.89769i 0.736378i
\(147\) 0 0
\(148\) −6.67279 + 6.67279i −0.548500 + 0.548500i
\(149\) −11.0437 + 19.1282i −0.904731 + 1.56704i −0.0834535 + 0.996512i \(0.526595\pi\)
−0.821278 + 0.570529i \(0.806738\pi\)
\(150\) 0 0
\(151\) −2.38598 4.13263i −0.194168 0.336309i 0.752459 0.658639i \(-0.228867\pi\)
−0.946627 + 0.322330i \(0.895534\pi\)
\(152\) 1.03034 + 3.84529i 0.0835719 + 0.311894i
\(153\) 0 0
\(154\) −4.08352 3.94054i −0.329060 0.317538i
\(155\) 18.0464 5.16541i 1.44952 0.414896i
\(156\) 0 0
\(157\) −3.79660 + 14.1691i −0.303002 + 1.13082i 0.631650 + 0.775253i \(0.282378\pi\)
−0.934652 + 0.355564i \(0.884289\pi\)
\(158\) 5.21442 19.4605i 0.414837 1.54819i
\(159\) 0 0
\(160\) 8.04530 14.4978i 0.636037 1.14615i
\(161\) 1.68877 0.484914i 0.133094 0.0382166i
\(162\) 0 0
\(163\) −3.19404 11.9203i −0.250177 0.933672i −0.970711 0.240252i \(-0.922770\pi\)
0.720534 0.693420i \(-0.243897\pi\)
\(164\) −2.73701 4.74064i −0.213724 0.370182i
\(165\) 0 0
\(166\) 15.5563 26.9443i 1.20740 2.09129i
\(167\) 2.58291 2.58291i 0.199871 0.199871i −0.600073 0.799945i \(-0.704862\pi\)
0.799945 + 0.600073i \(0.204862\pi\)
\(168\) 0 0
\(169\) 11.6219i 0.893996i
\(170\) −9.27202 2.31647i −0.711132 0.177665i
\(171\) 0 0
\(172\) −3.18262 + 11.8777i −0.242673 + 0.905667i
\(173\) 2.71673 0.727945i 0.206549 0.0553446i −0.154061 0.988061i \(-0.549235\pi\)
0.360610 + 0.932717i \(0.382569\pi\)
\(174\) 0 0
\(175\) −11.7834 6.01267i −0.890739 0.454515i
\(176\) 5.13250i 0.386877i
\(177\) 0 0
\(178\) −6.52976 1.74964i −0.489426 0.131141i
\(179\) 2.82676 + 4.89609i 0.211282 + 0.365951i 0.952116 0.305737i \(-0.0989029\pi\)
−0.740834 + 0.671688i \(0.765570\pi\)
\(180\) 0 0
\(181\) −22.3247 −1.65938 −0.829690 0.558225i \(-0.811483\pi\)
−0.829690 + 0.558225i \(0.811483\pi\)
\(182\) −5.19296 2.87603i −0.384928 0.213186i
\(183\) 0 0
\(184\) −0.381411 0.220208i −0.0281180 0.0162339i
\(185\) −0.216699 12.7634i −0.0159320 0.938387i
\(186\) 0 0
\(187\) 2.42398 0.649503i 0.177259 0.0474964i
\(188\) −11.5215 11.5215i −0.840295 0.840295i
\(189\) 0 0
\(190\) 22.4318 + 12.4482i 1.62738 + 0.903084i
\(191\) 5.11137 + 2.95105i 0.369846 + 0.213531i 0.673391 0.739286i \(-0.264837\pi\)
−0.303545 + 0.952817i \(0.598170\pi\)
\(192\) 0 0
\(193\) −11.0380 2.95761i −0.794530 0.212894i −0.161349 0.986897i \(-0.551585\pi\)
−0.633181 + 0.774004i \(0.718251\pi\)
\(194\) 14.4301 24.9937i 1.03602 1.79445i
\(195\) 0 0
\(196\) −9.80839 + 6.13890i −0.700599 + 0.438493i
\(197\) 9.38019 9.38019i 0.668311 0.668311i −0.289014 0.957325i \(-0.593327\pi\)
0.957325 + 0.289014i \(0.0933274\pi\)
\(198\) 0 0
\(199\) 10.5579 6.09559i 0.748428 0.432105i −0.0766977 0.997054i \(-0.524438\pi\)
0.825126 + 0.564949i \(0.191104\pi\)
\(200\) 0.966461 + 3.17197i 0.0683391 + 0.224292i
\(201\) 0 0
\(202\) −4.31648 4.31648i −0.303707 0.303707i
\(203\) −26.1586 + 0.466134i −1.83597 + 0.0327162i
\(204\) 0 0
\(205\) 7.18401 + 1.79481i 0.501753 + 0.125355i
\(206\) −3.54685 + 2.04778i −0.247121 + 0.142675i
\(207\) 0 0
\(208\) 1.38959 + 5.18600i 0.0963504 + 0.359585i
\(209\) −6.73633 −0.465962
\(210\) 0 0
\(211\) −3.48159 −0.239683 −0.119841 0.992793i \(-0.538239\pi\)
−0.119841 + 0.992793i \(0.538239\pi\)
\(212\) 0.350264 + 1.30720i 0.0240562 + 0.0897791i
\(213\) 0 0
\(214\) −1.05001 + 0.606222i −0.0717770 + 0.0414405i
\(215\) −8.56036 14.2622i −0.583811 0.972676i
\(216\) 0 0
\(217\) 11.4461 + 19.0337i 0.777009 + 1.29209i
\(218\) 18.7051 + 18.7051i 1.26687 + 1.26687i
\(219\) 0 0
\(220\) 2.98242 + 2.88284i 0.201075 + 0.194361i
\(221\) 2.27340 1.31255i 0.152925 0.0882915i
\(222\) 0 0
\(223\) 11.8362 11.8362i 0.792608 0.792608i −0.189310 0.981917i \(-0.560625\pi\)
0.981917 + 0.189310i \(0.0606250\pi\)
\(224\) 19.0373 + 4.73917i 1.27198 + 0.316649i
\(225\) 0 0
\(226\) 7.77799 13.4719i 0.517384 0.896135i
\(227\) −25.9887 6.96365i −1.72493 0.462194i −0.745926 0.666029i \(-0.767993\pi\)
−0.979005 + 0.203835i \(0.934659\pi\)
\(228\) 0 0
\(229\) −5.91912 3.41741i −0.391146 0.225829i 0.291510 0.956568i \(-0.405842\pi\)
−0.682657 + 0.730739i \(0.739176\pi\)
\(230\) −2.72859 + 0.781002i −0.179918 + 0.0514978i
\(231\) 0 0
\(232\) 4.63719 + 4.63719i 0.304446 + 0.304446i
\(233\) 6.88187 1.84399i 0.450846 0.120804i −0.0262490 0.999655i \(-0.508356\pi\)
0.477095 + 0.878852i \(0.341690\pi\)
\(234\) 0 0
\(235\) 22.0380 0.374163i 1.43760 0.0244077i
\(236\) −5.01082 2.89300i −0.326176 0.188318i
\(237\) 0 0
\(238\) −0.201472 11.3062i −0.0130595 0.732873i
\(239\) 18.7848 1.21509 0.607543 0.794287i \(-0.292155\pi\)
0.607543 + 0.794287i \(0.292155\pi\)
\(240\) 0 0
\(241\) 12.7838 + 22.1421i 0.823474 + 1.42630i 0.903080 + 0.429473i \(0.141301\pi\)
−0.0796052 + 0.996826i \(0.525366\pi\)
\(242\) 17.9828 + 4.81848i 1.15598 + 0.309743i
\(243\) 0 0
\(244\) 8.51414i 0.545062i
\(245\) 3.25048 15.3113i 0.207665 0.978200i
\(246\) 0 0
\(247\) −6.80655 + 1.82381i −0.433091 + 0.116046i
\(248\) 1.44091 5.37755i 0.0914978 0.341475i
\(249\) 0 0
\(250\) 19.0259 + 9.72847i 1.20330 + 0.615283i
\(251\) 2.18106i 0.137667i 0.997628 + 0.0688336i \(0.0219277\pi\)
−0.997628 + 0.0688336i \(0.978072\pi\)
\(252\) 0 0
\(253\) 0.526969 0.526969i 0.0331302 0.0331302i
\(254\) −13.1742 + 22.8184i −0.826623 + 1.43175i
\(255\) 0 0
\(256\) −10.0190 17.3533i −0.626185 1.08458i
\(257\) −1.98298 7.40059i −0.123695 0.461636i 0.876095 0.482139i \(-0.160140\pi\)
−0.999790 + 0.0205029i \(0.993473\pi\)
\(258\) 0 0
\(259\) 14.5175 4.16854i 0.902072 0.259021i
\(260\) 3.79402 + 2.10543i 0.235295 + 0.130573i
\(261\) 0 0
\(262\) 7.30895 27.2774i 0.451549 1.68520i
\(263\) −2.35526 + 8.78994i −0.145231 + 0.542011i 0.854514 + 0.519429i \(0.173855\pi\)
−0.999745 + 0.0225820i \(0.992811\pi\)
\(264\) 0 0
\(265\) −1.60071 0.888285i −0.0983307 0.0545669i
\(266\) −7.33271 + 29.4556i −0.449597 + 1.80604i
\(267\) 0 0
\(268\) 2.74726 + 10.2529i 0.167816 + 0.626296i
\(269\) −3.66156 6.34200i −0.223249 0.386679i 0.732544 0.680720i \(-0.238333\pi\)
−0.955793 + 0.294041i \(0.905000\pi\)
\(270\) 0 0
\(271\) −8.97448 + 15.5443i −0.545161 + 0.944246i 0.453436 + 0.891289i \(0.350198\pi\)
−0.998597 + 0.0529575i \(0.983135\pi\)
\(272\) −7.23189 + 7.23189i −0.438498 + 0.438498i
\(273\) 0 0
\(274\) 38.1343i 2.30378i
\(275\) −5.60781 + 0.190475i −0.338164 + 0.0114861i
\(276\) 0 0
\(277\) 7.24135 27.0251i 0.435091 1.62378i −0.305758 0.952109i \(-0.598910\pi\)
0.740849 0.671672i \(-0.234423\pi\)
\(278\) −3.46860 + 0.929408i −0.208033 + 0.0557422i
\(279\) 0 0
\(280\) −3.32752 + 2.07875i −0.198857 + 0.124229i
\(281\) 20.0659i 1.19703i −0.801111 0.598516i \(-0.795757\pi\)
0.801111 0.598516i \(-0.204243\pi\)
\(282\) 0 0
\(283\) −10.1980 2.73254i −0.606206 0.162432i −0.0573568 0.998354i \(-0.518267\pi\)
−0.548849 + 0.835921i \(0.684934\pi\)
\(284\) 10.0396 + 17.3891i 0.595742 + 1.03186i
\(285\) 0 0
\(286\) −2.51787 −0.148885
\(287\) 0.156101 + 8.76010i 0.00921436 + 0.517093i
\(288\) 0 0
\(289\) −10.3918 5.99970i −0.611281 0.352923i
\(290\) 42.2554 0.717416i 2.48132 0.0421281i
\(291\) 0 0
\(292\) 7.43314 1.99170i 0.434992 0.116556i
\(293\) −14.8561 14.8561i −0.867901 0.867901i 0.124339 0.992240i \(-0.460319\pi\)
−0.992240 + 0.124339i \(0.960319\pi\)
\(294\) 0 0
\(295\) 7.52466 2.15378i 0.438103 0.125398i
\(296\) −3.27878 1.89300i −0.190575 0.110029i
\(297\) 0 0
\(298\) 40.7767 + 10.9261i 2.36213 + 0.632931i
\(299\) 0.389789 0.675135i 0.0225421 0.0390441i
\(300\) 0 0
\(301\) 13.6669 14.1628i 0.787745 0.816328i
\(302\) −6.44922 + 6.44922i −0.371111 + 0.371111i
\(303\) 0 0
\(304\) 23.7758 13.7270i 1.36364 0.787297i
\(305\) −8.28100 8.00450i −0.474169 0.458337i
\(306\) 0 0
\(307\) −10.5560 10.5560i −0.602461 0.602461i 0.338504 0.940965i \(-0.390079\pi\)
−0.940965 + 0.338504i \(0.890079\pi\)
\(308\) −2.37785 + 4.29345i −0.135491 + 0.244642i
\(309\) 0 0
\(310\) −18.4633 30.7613i −1.04865 1.74713i
\(311\) 2.61258 1.50838i 0.148146 0.0855322i −0.424095 0.905618i \(-0.639408\pi\)
0.572241 + 0.820086i \(0.306074\pi\)
\(312\) 0 0
\(313\) 7.27876 + 27.1647i 0.411420 + 1.53544i 0.791900 + 0.610650i \(0.209092\pi\)
−0.380480 + 0.924789i \(0.624241\pi\)
\(314\) 28.0365 1.58219
\(315\) 0 0
\(316\) −17.4245 −0.980205
\(317\) 4.43708 + 16.5594i 0.249211 + 0.930069i 0.971220 + 0.238185i \(0.0765524\pi\)
−0.722009 + 0.691884i \(0.756781\pi\)
\(318\) 0 0
\(319\) −9.61032 + 5.54852i −0.538075 + 0.310657i
\(320\) −10.9014 2.72355i −0.609407 0.152251i
\(321\) 0 0
\(322\) −1.73063 2.87787i −0.0964441 0.160378i
\(323\) −9.49175 9.49175i −0.528135 0.528135i
\(324\) 0 0
\(325\) −5.61470 + 1.71073i −0.311447 + 0.0948943i
\(326\) −20.4268 + 11.7934i −1.13134 + 0.653177i
\(327\) 0 0
\(328\) 1.55292 1.55292i 0.0857459 0.0857459i
\(329\) 7.19760 + 25.0665i 0.396816 + 1.38196i
\(330\) 0 0
\(331\) −7.37160 + 12.7680i −0.405180 + 0.701792i −0.994342 0.106223i \(-0.966124\pi\)
0.589163 + 0.808014i \(0.299458\pi\)
\(332\) −25.9915 6.96441i −1.42647 0.382222i
\(333\) 0 0
\(334\) −6.04617 3.49076i −0.330832 0.191006i
\(335\) −12.5550 6.96717i −0.685952 0.380657i
\(336\) 0 0
\(337\) −20.2173 20.2173i −1.10131 1.10131i −0.994253 0.107055i \(-0.965858\pi\)
−0.107055 0.994253i \(-0.534142\pi\)
\(338\) 21.4560 5.74911i 1.16705 0.312710i
\(339\) 0 0
\(340\) 0.140314 + 8.26439i 0.00760958 + 0.448199i
\(341\) 8.15847 + 4.71029i 0.441806 + 0.255077i
\(342\) 0 0
\(343\) 18.4938 0.989492i 0.998572 0.0534275i
\(344\) −4.93342 −0.265992
\(345\) 0 0
\(346\) −2.68781 4.65542i −0.144497 0.250277i
\(347\) 18.7190 + 5.01575i 1.00489 + 0.269260i 0.723493 0.690332i \(-0.242535\pi\)
0.281397 + 0.959591i \(0.409202\pi\)
\(348\) 0 0
\(349\) 19.5132i 1.04452i 0.852787 + 0.522258i \(0.174910\pi\)
−0.852787 + 0.522258i \(0.825090\pi\)
\(350\) −5.27140 + 24.7283i −0.281768 + 1.32178i
\(351\) 0 0
\(352\) 8.03767 2.15369i 0.428409 0.114792i
\(353\) −5.15540 + 19.2402i −0.274394 + 1.02405i 0.681852 + 0.731491i \(0.261175\pi\)
−0.956246 + 0.292564i \(0.905492\pi\)
\(354\) 0 0
\(355\) −26.3517 6.58356i −1.39860 0.349419i
\(356\) 5.84662i 0.309870i
\(357\) 0 0
\(358\) 7.64064 7.64064i 0.403820 0.403820i
\(359\) 3.47927 6.02627i 0.183629 0.318054i −0.759485 0.650525i \(-0.774549\pi\)
0.943114 + 0.332471i \(0.107882\pi\)
\(360\) 0 0
\(361\) 8.51646 + 14.7509i 0.448235 + 0.776366i
\(362\) 11.0435 + 41.2149i 0.580434 + 2.16621i
\(363\) 0 0
\(364\) −1.24022 + 4.98199i −0.0650053 + 0.261127i
\(365\) −5.05104 + 9.10209i −0.264384 + 0.476425i
\(366\) 0 0
\(367\) 1.03003 3.84412i 0.0537671 0.200662i −0.933817 0.357750i \(-0.883544\pi\)
0.987585 + 0.157088i \(0.0502107\pi\)
\(368\) −0.786100 + 2.93377i −0.0409783 + 0.152933i
\(369\) 0 0
\(370\) −23.4562 + 6.71385i −1.21943 + 0.349036i
\(371\) 0.523253 2.10191i 0.0271659 0.109126i
\(372\) 0 0
\(373\) 2.78464 + 10.3924i 0.144183 + 0.538099i 0.999790 + 0.0204732i \(0.00651727\pi\)
−0.855607 + 0.517625i \(0.826816\pi\)
\(374\) −2.39817 4.15376i −0.124007 0.214786i
\(375\) 0 0
\(376\) 3.26855 5.66129i 0.168562 0.291959i
\(377\) −8.20828 + 8.20828i −0.422748 + 0.422748i
\(378\) 0 0
\(379\) 13.4948i 0.693180i 0.938017 + 0.346590i \(0.112661\pi\)
−0.938017 + 0.346590i \(0.887339\pi\)
\(380\) 5.37795 21.5260i 0.275883 1.10426i
\(381\) 0 0
\(382\) 2.91964 10.8962i 0.149382 0.557500i
\(383\) 2.67081 0.715640i 0.136472 0.0365675i −0.189937 0.981796i \(-0.560828\pi\)
0.326408 + 0.945229i \(0.394162\pi\)
\(384\) 0 0
\(385\) −1.94036 6.34920i −0.0988901 0.323585i
\(386\) 21.8409i 1.11167i
\(387\) 0 0
\(388\) −24.1099 6.46023i −1.22399 0.327968i
\(389\) −8.29427 14.3661i −0.420536 0.728390i 0.575456 0.817833i \(-0.304825\pi\)
−0.995992 + 0.0894428i \(0.971491\pi\)
\(390\) 0 0
\(391\) 1.48504 0.0751016
\(392\) −3.39748 3.16357i −0.171598 0.159784i
\(393\) 0 0
\(394\) −21.9575 12.6772i −1.10620 0.638667i
\(395\) 16.3815 16.9474i 0.824244 0.852715i
\(396\) 0 0
\(397\) 13.5010 3.61757i 0.677594 0.181561i 0.0964210 0.995341i \(-0.469260\pi\)
0.581173 + 0.813780i \(0.302594\pi\)
\(398\) −16.4762 16.4762i −0.825876 0.825876i
\(399\) 0 0
\(400\) 19.4046 12.0996i 0.970229 0.604981i
\(401\) −7.99139 4.61383i −0.399071 0.230404i 0.287012 0.957927i \(-0.407338\pi\)
−0.686083 + 0.727523i \(0.740671\pi\)
\(402\) 0 0
\(403\) 9.51879 + 2.55055i 0.474165 + 0.127052i
\(404\) −2.63977 + 4.57222i −0.131333 + 0.227476i
\(405\) 0 0
\(406\) 13.8006 + 48.0623i 0.684912 + 2.38529i
\(407\) 4.53006 4.53006i 0.224547 0.224547i
\(408\) 0 0
\(409\) −14.8468 + 8.57179i −0.734125 + 0.423848i −0.819929 0.572465i \(-0.805987\pi\)
0.0858041 + 0.996312i \(0.472654\pi\)
\(410\) −0.240252 14.1507i −0.0118652 0.698852i
\(411\) 0 0
\(412\) 2.50466 + 2.50466i 0.123396 + 0.123396i
\(413\) 4.77257 + 7.93634i 0.234843 + 0.390522i
\(414\) 0 0
\(415\) 31.2094 18.7323i 1.53201 0.919531i
\(416\) 7.53836 4.35228i 0.369599 0.213388i
\(417\) 0 0
\(418\) 3.33231 + 12.4363i 0.162989 + 0.608282i
\(419\) 22.7475 1.11129 0.555645 0.831420i \(-0.312471\pi\)
0.555645 + 0.831420i \(0.312471\pi\)
\(420\) 0 0
\(421\) −8.08528 −0.394052 −0.197026 0.980398i \(-0.563128\pi\)
−0.197026 + 0.980398i \(0.563128\pi\)
\(422\) 1.72227 + 6.42758i 0.0838386 + 0.312890i
\(423\) 0 0
\(424\) −0.470207 + 0.271474i −0.0228353 + 0.0131839i
\(425\) −8.17000 7.63323i −0.396303 0.370266i
\(426\) 0 0
\(427\) 6.60235 11.9212i 0.319510 0.576907i
\(428\) 0.741478 + 0.741478i 0.0358407 + 0.0358407i
\(429\) 0 0
\(430\) −22.0957 + 22.8590i −1.06555 + 1.10236i
\(431\) −23.4131 + 13.5176i −1.12777 + 0.651119i −0.943373 0.331733i \(-0.892367\pi\)
−0.184398 + 0.982852i \(0.559034\pi\)
\(432\) 0 0
\(433\) −1.13772 + 1.13772i −0.0546754 + 0.0546754i −0.733916 0.679240i \(-0.762309\pi\)
0.679240 + 0.733916i \(0.262309\pi\)
\(434\) 29.4772 30.5468i 1.41495 1.46629i
\(435\) 0 0
\(436\) 11.4392 19.8133i 0.547838 0.948883i
\(437\) −3.85052 1.03174i −0.184196 0.0493551i
\(438\) 0 0
\(439\) −27.2646 15.7412i −1.30127 0.751287i −0.320646 0.947199i \(-0.603900\pi\)
−0.980621 + 0.195912i \(0.937233\pi\)
\(440\) −0.807493 + 1.45512i −0.0384957 + 0.0693701i
\(441\) 0 0
\(442\) −3.54777 3.54777i −0.168750 0.168750i
\(443\) 13.9059 3.72608i 0.660690 0.177031i 0.0871324 0.996197i \(-0.472230\pi\)
0.573557 + 0.819166i \(0.305563\pi\)
\(444\) 0 0
\(445\) −5.68652 5.49665i −0.269567 0.260566i
\(446\) −27.7065 15.9964i −1.31194 0.757450i
\(447\) 0 0
\(448\) −0.236876 13.2931i −0.0111914 0.628038i
\(449\) −13.1001 −0.618230 −0.309115 0.951025i \(-0.600033\pi\)
−0.309115 + 0.951025i \(0.600033\pi\)
\(450\) 0 0
\(451\) 1.85812 + 3.21835i 0.0874953 + 0.151546i
\(452\) −12.9955 3.48213i −0.611256 0.163785i
\(453\) 0 0
\(454\) 51.4241i 2.41345i
\(455\) −3.67959 5.89004i −0.172502 0.276130i
\(456\) 0 0
\(457\) 5.00463 1.34099i 0.234107 0.0627288i −0.139858 0.990172i \(-0.544665\pi\)
0.373965 + 0.927443i \(0.377998\pi\)
\(458\) −3.38103 + 12.6182i −0.157985 + 0.589608i
\(459\) 0 0
\(460\) 1.26323 + 2.10464i 0.0588985 + 0.0981294i
\(461\) 26.5137i 1.23486i −0.786624 0.617432i \(-0.788173\pi\)
0.786624 0.617432i \(-0.211827\pi\)
\(462\) 0 0
\(463\) −8.59270 + 8.59270i −0.399337 + 0.399337i −0.877999 0.478662i \(-0.841122\pi\)
0.478662 + 0.877999i \(0.341122\pi\)
\(464\) 22.6130 39.1669i 1.04978 1.81828i
\(465\) 0 0
\(466\) −6.80861 11.7929i −0.315403 0.546294i
\(467\) −2.64464 9.86992i −0.122379 0.456726i 0.877353 0.479845i \(-0.159307\pi\)
−0.999733 + 0.0231190i \(0.992640\pi\)
\(468\) 0 0
\(469\) 4.10408 16.4861i 0.189509 0.761259i
\(470\) −11.5924 40.5005i −0.534719 1.86815i
\(471\) 0 0
\(472\) 0.600804 2.24223i 0.0276543 0.103207i
\(473\) 2.16064 8.06361i 0.0993462 0.370765i
\(474\) 0 0
\(475\) 15.8806 + 25.4682i 0.728650 + 1.16856i
\(476\) −9.40012 + 2.69915i −0.430854 + 0.123715i
\(477\) 0 0
\(478\) −9.29240 34.6797i −0.425025 1.58621i
\(479\) −2.60300 4.50853i −0.118934 0.206000i 0.800411 0.599451i \(-0.204614\pi\)
−0.919346 + 0.393451i \(0.871281\pi\)
\(480\) 0 0
\(481\) 3.35081 5.80377i 0.152784 0.264629i
\(482\) 34.5541 34.5541i 1.57390 1.57390i
\(483\) 0 0
\(484\) 16.1014i 0.731884i
\(485\) 28.9501 17.3762i 1.31456 0.789012i
\(486\) 0 0
\(487\) −6.88081 + 25.6796i −0.311799 + 1.16365i 0.615133 + 0.788423i \(0.289102\pi\)
−0.926932 + 0.375228i \(0.877564\pi\)
\(488\) −3.29946 + 0.884089i −0.149360 + 0.0400208i
\(489\) 0 0
\(490\) −29.8750 + 1.57323i −1.34961 + 0.0710712i
\(491\) 5.16035i 0.232883i −0.993198 0.116442i \(-0.962851\pi\)
0.993198 0.116442i \(-0.0371488\pi\)
\(492\) 0 0
\(493\) −21.3594 5.72323i −0.961978 0.257761i
\(494\) 6.73409 + 11.6638i 0.302981 + 0.524779i
\(495\) 0 0
\(496\) −38.3937 −1.72393
\(497\) −0.572595 32.1330i −0.0256844 1.44136i
\(498\) 0 0
\(499\) 6.70115 + 3.86891i 0.299985 + 0.173196i 0.642436 0.766339i \(-0.277924\pi\)
−0.342451 + 0.939536i \(0.611257\pi\)
\(500\) 3.86833 18.0719i 0.172997 0.808200i
\(501\) 0 0
\(502\) 4.02658 1.07892i 0.179715 0.0481545i
\(503\) −3.22778 3.22778i −0.143920 0.143920i 0.631476 0.775395i \(-0.282449\pi\)
−0.775395 + 0.631476i \(0.782449\pi\)
\(504\) 0 0
\(505\) −1.96526 6.86602i −0.0874528 0.305534i
\(506\) −1.23355 0.712190i −0.0548379 0.0316607i
\(507\) 0 0
\(508\) 22.0115 + 5.89796i 0.976602 + 0.261680i
\(509\) −8.98621 + 15.5646i −0.398307 + 0.689887i −0.993517 0.113682i \(-0.963735\pi\)
0.595210 + 0.803570i \(0.297069\pi\)
\(510\) 0 0
\(511\) −11.9521 2.97537i −0.528730 0.131623i
\(512\) −19.6907 + 19.6907i −0.870216 + 0.870216i
\(513\) 0 0
\(514\) −12.6817 + 7.32181i −0.559368 + 0.322951i
\(515\) −4.79081 + 0.0813390i −0.211109 + 0.00358422i
\(516\) 0 0
\(517\) 7.82181 + 7.82181i 0.344003 + 0.344003i
\(518\) −14.8773 24.7395i −0.653669 1.08699i
\(519\) 0 0
\(520\) −0.421948 + 1.68891i −0.0185037 + 0.0740637i
\(521\) −24.8083 + 14.3231i −1.08687 + 0.627505i −0.932741 0.360546i \(-0.882590\pi\)
−0.154129 + 0.988051i \(0.549257\pi\)
\(522\) 0 0
\(523\) −0.195886 0.731058i −0.00856551 0.0319669i 0.961511 0.274767i \(-0.0886007\pi\)
−0.970076 + 0.242800i \(0.921934\pi\)
\(524\) −24.4236 −1.06695
\(525\) 0 0
\(526\) 17.3927 0.758359
\(527\) 4.85861 + 18.1326i 0.211644 + 0.789868i
\(528\) 0 0
\(529\) −19.5367 + 11.2795i −0.849420 + 0.490413i
\(530\) −0.848083 + 3.39458i −0.0368384 + 0.147451i
\(531\) 0 0
\(532\) 26.2486 0.467739i 1.13802 0.0202791i
\(533\) 2.74883 + 2.74883i 0.119065 + 0.119065i
\(534\) 0 0
\(535\) −1.41827 + 0.0240795i −0.0613171 + 0.00104105i
\(536\) −3.68802 + 2.12928i −0.159298 + 0.0919708i
\(537\) 0 0
\(538\) −9.89706 + 9.89706i −0.426693 + 0.426693i
\(539\) 6.65877 4.16761i 0.286814 0.179512i
\(540\) 0 0
\(541\) 20.4118 35.3542i 0.877571 1.52000i 0.0235718 0.999722i \(-0.492496\pi\)
0.853999 0.520275i \(-0.174170\pi\)
\(542\) 33.1367 + 8.87895i 1.42334 + 0.381383i
\(543\) 0 0
\(544\) 14.3600 + 8.29076i 0.615681 + 0.355463i
\(545\) 8.51626 + 29.7533i 0.364796 + 1.27449i
\(546\) 0 0
\(547\) −15.8647 15.8647i −0.678325 0.678325i 0.281296 0.959621i \(-0.409236\pi\)
−0.959621 + 0.281296i \(0.909236\pi\)
\(548\) 31.8574 8.53618i 1.36088 0.364647i
\(549\) 0 0
\(550\) 3.12570 + 10.2587i 0.133280 + 0.437432i
\(551\) 51.4060 + 29.6793i 2.18997 + 1.26438i
\(552\) 0 0
\(553\) 24.3972 + 13.5120i 1.03747 + 0.574587i
\(554\) −53.4748 −2.27193
\(555\) 0 0
\(556\) 1.55286 + 2.68963i 0.0658558 + 0.114066i
\(557\) 5.32480 + 1.42678i 0.225619 + 0.0604544i 0.369857 0.929089i \(-0.379407\pi\)
−0.144238 + 0.989543i \(0.546073\pi\)
\(558\) 0 0
\(559\) 8.73265i 0.369352i
\(560\) 19.7866 + 18.4555i 0.836137 + 0.779886i
\(561\) 0 0
\(562\) −37.0449 + 9.92615i −1.56264 + 0.418709i
\(563\) −10.0547 + 37.5245i −0.423753 + 1.58147i 0.342877 + 0.939380i \(0.388599\pi\)
−0.766630 + 0.642089i \(0.778068\pi\)
\(564\) 0 0
\(565\) 15.6044 9.36593i 0.656481 0.394028i
\(566\) 20.1788i 0.848179i
\(567\) 0 0
\(568\) −5.69628 + 5.69628i −0.239011 + 0.239011i
\(569\) −2.56024 + 4.43446i −0.107331 + 0.185902i −0.914688 0.404161i \(-0.867564\pi\)
0.807357 + 0.590063i \(0.200897\pi\)
\(570\) 0 0
\(571\) 17.4000 + 30.1377i 0.728169 + 1.26123i 0.957656 + 0.287914i \(0.0929617\pi\)
−0.229487 + 0.973312i \(0.573705\pi\)
\(572\) 0.563612 + 2.10343i 0.0235658 + 0.0879488i
\(573\) 0 0
\(574\) 16.0953 4.62161i 0.671807 0.192902i
\(575\) −3.23463 0.750023i −0.134893 0.0312781i
\(576\) 0 0
\(577\) −1.89014 + 7.05409i −0.0786874 + 0.293666i −0.994044 0.108978i \(-0.965242\pi\)
0.915357 + 0.402644i \(0.131909\pi\)
\(578\) −5.93583 + 22.1528i −0.246898 + 0.921435i
\(579\) 0 0
\(580\) −10.0580 35.1396i −0.417635 1.45909i
\(581\) 30.9918 + 29.9066i 1.28576 + 1.24074i
\(582\) 0 0
\(583\) −0.237789 0.887442i −0.00984823 0.0367541i
\(584\) 1.54368 + 2.67373i 0.0638780 + 0.110640i
\(585\) 0 0
\(586\) −20.0777 + 34.7757i −0.829403 + 1.43657i
\(587\) −21.2623 + 21.2623i −0.877588 + 0.877588i −0.993285 0.115696i \(-0.963090\pi\)
0.115696 + 0.993285i \(0.463090\pi\)
\(588\) 0 0
\(589\) 50.3912i 2.07633i
\(590\) −7.69850 12.8263i −0.316942 0.528051i
\(591\) 0 0
\(592\) −6.75767 + 25.2200i −0.277739 + 1.03653i
\(593\) −23.5608 + 6.31310i −0.967527 + 0.259248i −0.707783 0.706430i \(-0.750305\pi\)
−0.259744 + 0.965678i \(0.583638\pi\)
\(594\) 0 0
\(595\) 6.21222 11.6803i 0.254676 0.478846i
\(596\) 36.5107i 1.49553i
\(597\) 0 0
\(598\) −1.43923 0.385640i −0.0588544 0.0157700i
\(599\) 6.90412 + 11.9583i 0.282095 + 0.488602i 0.971900 0.235392i \(-0.0756374\pi\)
−0.689806 + 0.723994i \(0.742304\pi\)
\(600\) 0 0
\(601\) 2.66574 0.108738 0.0543690 0.998521i \(-0.482685\pi\)
0.0543690 + 0.998521i \(0.482685\pi\)
\(602\) −32.9074 18.2252i −1.34121 0.742804i
\(603\) 0 0
\(604\) 6.83130 + 3.94406i 0.277962 + 0.160481i
\(605\) 15.6605 + 15.1377i 0.636692 + 0.615433i
\(606\) 0 0
\(607\) 4.14832 1.11154i 0.168375 0.0451159i −0.173647 0.984808i \(-0.555555\pi\)
0.342022 + 0.939692i \(0.388888\pi\)
\(608\) −31.4737 31.4737i −1.27643 1.27643i
\(609\) 0 0
\(610\) −10.6812 + 19.2477i −0.432468 + 0.779317i
\(611\) 10.0210 + 5.78565i 0.405408 + 0.234062i
\(612\) 0 0
\(613\) −24.4122 6.54122i −0.985998 0.264197i −0.270429 0.962740i \(-0.587166\pi\)
−0.715568 + 0.698543i \(0.753832\pi\)
\(614\) −14.2662 + 24.7098i −0.575738 + 0.997208i
\(615\) 0 0
\(616\) −1.91074 0.475662i −0.0769860 0.0191650i
\(617\) −10.0544 + 10.0544i −0.404774 + 0.404774i −0.879911 0.475138i \(-0.842398\pi\)
0.475138 + 0.879911i \(0.342398\pi\)
\(618\) 0 0
\(619\) −9.47268 + 5.46905i −0.380739 + 0.219820i −0.678140 0.734933i \(-0.737214\pi\)
0.297401 + 0.954753i \(0.403880\pi\)
\(620\) −21.5651 + 22.3100i −0.866076 + 0.895993i
\(621\) 0 0
\(622\) −4.07709 4.07709i −0.163476 0.163476i
\(623\) 4.53380 8.18622i 0.181643 0.327974i
\(624\) 0 0
\(625\) 13.9403 + 20.7526i 0.557611 + 0.830103i
\(626\) 46.5498 26.8755i 1.86050 1.07416i
\(627\) 0 0
\(628\) −6.27584 23.4217i −0.250433 0.934629i
\(629\) 12.7661 0.509016
\(630\) 0 0
\(631\) −14.9321 −0.594439 −0.297219 0.954809i \(-0.596059\pi\)
−0.297219 + 0.954809i \(0.596059\pi\)
\(632\) −1.80932 6.75248i −0.0719709 0.268599i
\(633\) 0 0
\(634\) 28.3764 16.3831i 1.12697 0.650657i
\(635\) −26.4304 + 15.8638i −1.04886 + 0.629537i
\(636\) 0 0
\(637\) 5.59984 6.01387i 0.221874 0.238278i
\(638\) 14.9975 + 14.9975i 0.593755 + 0.593755i
\(639\) 0 0
\(640\) −0.198359 11.6832i −0.00784083 0.461820i
\(641\) 8.48248 4.89736i 0.335038 0.193434i −0.323038 0.946386i \(-0.604704\pi\)
0.658075 + 0.752952i \(0.271371\pi\)
\(642\) 0 0
\(643\) −3.43776 + 3.43776i −0.135572 + 0.135572i −0.771636 0.636064i \(-0.780561\pi\)
0.636064 + 0.771636i \(0.280561\pi\)
\(644\) −2.01679 + 2.08997i −0.0794725 + 0.0823562i
\(645\) 0 0
\(646\) −12.8279 + 22.2186i −0.504709 + 0.874181i
\(647\) 18.7678 + 5.02881i 0.737837 + 0.197703i 0.608117 0.793848i \(-0.291925\pi\)
0.129720 + 0.991551i \(0.458592\pi\)
\(648\) 0 0
\(649\) 3.40177 + 1.96401i 0.133531 + 0.0770943i
\(650\) 5.93575 + 9.51937i 0.232819 + 0.373381i
\(651\) 0 0
\(652\) 14.4247 + 14.4247i 0.564914 + 0.564914i
\(653\) 12.5364 3.35912i 0.490588 0.131453i −0.00504043 0.999987i \(-0.501604\pi\)
0.495629 + 0.868535i \(0.334938\pi\)
\(654\) 0 0
\(655\) 22.9617 23.7548i 0.897187 0.928179i
\(656\) −13.1164 7.57277i −0.512110 0.295667i
\(657\) 0 0
\(658\) 42.7163 25.6878i 1.66526 1.00141i
\(659\) −1.48624 −0.0578959 −0.0289479 0.999581i \(-0.509216\pi\)
−0.0289479 + 0.999581i \(0.509216\pi\)
\(660\) 0 0
\(661\) −9.29471 16.0989i −0.361522 0.626175i 0.626689 0.779269i \(-0.284410\pi\)
−0.988212 + 0.153094i \(0.951076\pi\)
\(662\) 27.2183 + 7.29312i 1.05787 + 0.283455i
\(663\) 0 0
\(664\) 10.7956i 0.418951i
\(665\) −24.2225 + 25.9696i −0.939309 + 1.00706i
\(666\) 0 0
\(667\) −6.34313 + 1.69964i −0.245607 + 0.0658102i
\(668\) −1.56278 + 5.83237i −0.0604657 + 0.225661i
\(669\) 0 0
\(670\) −6.65185 + 26.6250i −0.256983 + 1.02861i
\(671\) 5.78013i 0.223139i
\(672\) 0 0
\(673\) 9.44812 9.44812i 0.364198 0.364198i −0.501158 0.865356i \(-0.667092\pi\)
0.865356 + 0.501158i \(0.167092\pi\)
\(674\) −27.3234 + 47.3255i −1.05246 + 1.82291i
\(675\) 0 0
\(676\) −9.60563 16.6374i −0.369447 0.639901i
\(677\) −11.0601 41.2767i −0.425072 1.58639i −0.763765 0.645495i \(-0.776651\pi\)
0.338692 0.940897i \(-0.390015\pi\)
\(678\) 0 0
\(679\) 28.7482 + 27.7416i 1.10325 + 1.06462i
\(680\) −3.18811 + 0.912531i −0.122258 + 0.0349940i
\(681\) 0 0
\(682\) 4.66015 17.3919i 0.178446 0.665971i
\(683\) −0.687686 + 2.56648i −0.0263136 + 0.0982036i −0.977834 0.209383i \(-0.932855\pi\)
0.951520 + 0.307586i \(0.0995213\pi\)
\(684\) 0 0
\(685\) −21.6481 + 39.0103i −0.827132 + 1.49051i
\(686\) −10.9752 33.6531i −0.419036 1.28488i
\(687\) 0 0
\(688\) 8.80570 + 32.8633i 0.335714 + 1.25290i
\(689\) −0.480536 0.832313i −0.0183070 0.0317086i
\(690\) 0 0
\(691\) 15.5622 26.9545i 0.592014 1.02540i −0.401947 0.915663i \(-0.631667\pi\)
0.993961 0.109735i \(-0.0350002\pi\)
\(692\) −3.28749 + 3.28749i −0.124972 + 0.124972i
\(693\) 0 0
\(694\) 37.0395i 1.40600i
\(695\) −4.07588 1.01830i −0.154607 0.0386262i
\(696\) 0 0
\(697\) −1.91662 + 7.15294i −0.0725973 + 0.270937i
\(698\) 36.0245 9.65273i 1.36355 0.365361i
\(699\) 0 0
\(700\) 21.8380 1.13158i 0.825400 0.0427697i
\(701\) 24.8143i 0.937224i 0.883404 + 0.468612i \(0.155246\pi\)
−0.883404 + 0.468612i \(0.844754\pi\)
\(702\) 0 0
\(703\) −33.1009 8.86935i −1.24842 0.334514i
\(704\) −2.81961 4.88370i −0.106268 0.184061i
\(705\) 0 0
\(706\) 38.0708 1.43281
\(707\) 7.24167 4.35483i 0.272351 0.163780i
\(708\) 0 0
\(709\) −14.3464 8.28290i −0.538791 0.311071i 0.205798 0.978594i \(-0.434021\pi\)
−0.744589 + 0.667524i \(0.767354\pi\)
\(710\) 0.881269 + 51.9062i 0.0330734 + 1.94800i
\(711\) 0 0
\(712\) −2.26573 + 0.607099i −0.0849117 + 0.0227520i
\(713\) 3.94199 + 3.94199i 0.147629 + 0.147629i
\(714\) 0 0
\(715\) −2.57571 1.42934i −0.0963260 0.0534544i
\(716\) −8.09331 4.67268i −0.302461 0.174626i
\(717\) 0 0
\(718\) −12.8466 3.44223i −0.479430 0.128463i
\(719\) 8.28531 14.3506i 0.308990 0.535186i −0.669152 0.743126i \(-0.733342\pi\)
0.978142 + 0.207939i \(0.0666757\pi\)
\(720\) 0 0
\(721\) −1.56468 5.44919i −0.0582717 0.202939i
\(722\) 23.0197 23.0197i 0.856705 0.856705i
\(723\) 0 0
\(724\) 31.9589 18.4515i 1.18774 0.685745i
\(725\) 43.6333 + 23.2536i 1.62050 + 0.863618i
\(726\) 0 0
\(727\) 10.4810 + 10.4810i 0.388721 + 0.388721i 0.874231 0.485510i \(-0.161366\pi\)
−0.485510 + 0.874231i \(0.661366\pi\)
\(728\) −2.05944 + 0.0366983i −0.0763280 + 0.00136013i
\(729\) 0 0
\(730\) 19.3026 + 4.82244i 0.714420 + 0.178487i
\(731\) 14.4064 8.31752i 0.532838 0.307634i
\(732\) 0 0
\(733\) 7.08056 + 26.4250i 0.261527 + 0.976030i 0.964342 + 0.264658i \(0.0852592\pi\)
−0.702816 + 0.711372i \(0.748074\pi\)
\(734\) −7.60640 −0.280757
\(735\) 0 0
\(736\) 4.92424 0.181510
\(737\) −1.86508 6.96055i −0.0687009 0.256395i
\(738\) 0 0
\(739\) 24.2950 14.0267i 0.893707 0.515982i 0.0185537 0.999828i \(-0.494094\pi\)
0.875153 + 0.483846i \(0.160760\pi\)
\(740\) 10.8593 + 18.0925i 0.399196 + 0.665092i
\(741\) 0 0
\(742\) −4.13931 + 0.0737607i −0.151959 + 0.00270784i
\(743\) −13.7752 13.7752i −0.505363 0.505363i 0.407737 0.913100i \(-0.366318\pi\)
−0.913100 + 0.407737i \(0.866318\pi\)
\(744\) 0 0
\(745\) 35.5109 + 34.3252i 1.30102 + 1.25758i
\(746\) 17.8086 10.2818i 0.652018 0.376443i
\(747\) 0 0
\(748\) −2.93323 + 2.93323i −0.107250 + 0.107250i
\(749\) −0.463207 1.61317i −0.0169252 0.0589441i
\(750\) 0 0
\(751\) 17.1719 29.7426i 0.626611 1.08532i −0.361617 0.932327i \(-0.617775\pi\)
0.988227 0.152994i \(-0.0488916\pi\)
\(752\) −43.5460 11.6681i −1.58796 0.425492i
\(753\) 0 0
\(754\) 19.2143 + 11.0934i 0.699742 + 0.403996i
\(755\) −10.2585 + 2.93627i −0.373344 + 0.106862i
\(756\) 0 0
\(757\) 14.6354 + 14.6354i 0.531932 + 0.531932i 0.921147 0.389215i \(-0.127254\pi\)
−0.389215 + 0.921147i \(0.627254\pi\)
\(758\) 24.9135 6.67556i 0.904900 0.242467i
\(759\) 0 0
\(760\) 8.90037 0.151111i 0.322850 0.00548139i
\(761\) −31.8819 18.4070i −1.15572 0.667254i −0.205443 0.978669i \(-0.565864\pi\)
−0.950274 + 0.311415i \(0.899197\pi\)
\(762\) 0 0
\(763\) −31.3811 + 18.8712i −1.13607 + 0.683184i
\(764\) −9.75627 −0.352969
\(765\) 0 0
\(766\) −2.64237 4.57673i −0.0954728 0.165364i
\(767\) 3.96897 + 1.06348i 0.143311 + 0.0384002i
\(768\) 0 0
\(769\) 24.6011i 0.887139i −0.896240 0.443569i \(-0.853712\pi\)
0.896240 0.443569i \(-0.146288\pi\)
\(770\) −10.7618 + 6.72303i −0.387828 + 0.242281i
\(771\) 0 0
\(772\) 18.2459 4.88898i 0.656685 0.175958i
\(773\) 2.47156 9.22398i 0.0888958 0.331764i −0.907128 0.420856i \(-0.861730\pi\)
0.996023 + 0.0890921i \(0.0283966\pi\)
\(774\) 0 0
\(775\) −1.42485 41.9492i −0.0511821 1.50686i
\(776\) 10.0141i 0.359484i
\(777\) 0 0
\(778\) −22.4191 + 22.4191i −0.803765 + 0.803765i
\(779\) 9.93914 17.2151i 0.356107 0.616795i
\(780\) 0 0
\(781\) −6.81576 11.8052i −0.243887 0.422425i
\(782\) −0.734615 2.74162i −0.0262698 0.0980401i
\(783\) 0 0
\(784\) −15.0095 + 28.2785i −0.536055 + 1.00995i
\(785\) 28.6806 + 15.9158i 1.02365 + 0.568059i
\(786\) 0 0
\(787\) −10.2341 + 38.1941i −0.364806 + 1.36147i 0.502879 + 0.864357i \(0.332274\pi\)
−0.867684 + 0.497116i \(0.834392\pi\)
\(788\) −5.67545 + 21.1810i −0.202179 + 0.754544i
\(789\) 0 0
\(790\) −39.3912 21.8594i −1.40147 0.777724i
\(791\) 15.4956 + 14.9530i 0.550959 + 0.531667i
\(792\) 0 0
\(793\) −1.56493 5.84038i −0.0555721 0.207398i
\(794\) −13.3572 23.1354i −0.474031 0.821046i
\(795\) 0 0
\(796\) −10.0761 + 17.4523i −0.357138 + 0.618581i
\(797\) 10.0038 10.0038i 0.354354 0.354354i −0.507373 0.861727i \(-0.669383\pi\)
0.861727 + 0.507373i \(0.169383\pi\)
\(798\) 0 0
\(799\) 22.0425i 0.779806i
\(800\) −27.0909 25.3110i −0.957809 0.894880i
\(801\) 0 0
\(802\) −4.56472 + 17.0358i −0.161186 + 0.601553i
\(803\) −5.04625 + 1.35214i −0.178078 + 0.0477160i
\(804\) 0 0
\(805\) −0.136672 3.92643i −0.00481705 0.138388i
\(806\) 18.8349i 0.663432i
\(807\) 0 0
\(808\) −2.04597 0.548215i −0.0719769 0.0192862i
\(809\) −2.99072 5.18008i −0.105148 0.182122i 0.808651 0.588289i \(-0.200198\pi\)
−0.913799 + 0.406167i \(0.866865\pi\)
\(810\) 0 0
\(811\) 4.80074 0.168577 0.0842883 0.996441i \(-0.473138\pi\)
0.0842883 + 0.996441i \(0.473138\pi\)
\(812\) 37.0621 22.2875i 1.30062 0.782139i
\(813\) 0 0
\(814\) −10.6041 6.12230i −0.371675 0.214587i
\(815\) −27.5910 + 0.468442i −0.966469 + 0.0164088i
\(816\) 0 0
\(817\) −43.1326 + 11.5574i −1.50902 + 0.404340i
\(818\) 23.1693 + 23.1693i 0.810094 + 0.810094i
\(819\) 0 0
\(820\) −11.7677 + 3.36827i −0.410946 + 0.117625i
\(821\) −22.5254 13.0050i −0.786142 0.453879i 0.0524609 0.998623i \(-0.483294\pi\)
−0.838602 + 0.544744i \(0.816627\pi\)
\(822\) 0 0
\(823\) 11.2027 + 3.00174i 0.390500 + 0.104634i 0.448726 0.893669i \(-0.351878\pi\)
−0.0582263 + 0.998303i \(0.518545\pi\)
\(824\) −0.710547 + 1.23070i −0.0247531 + 0.0428736i
\(825\) 0 0
\(826\) 12.2909 12.7369i 0.427655 0.443172i
\(827\) −9.82938 + 9.82938i −0.341801 + 0.341801i −0.857044 0.515243i \(-0.827702\pi\)
0.515243 + 0.857044i \(0.327702\pi\)
\(828\) 0 0
\(829\) 33.1815 19.1573i 1.15244 0.665362i 0.202960 0.979187i \(-0.434944\pi\)
0.949481 + 0.313825i \(0.101611\pi\)
\(830\) −50.0214 48.3512i −1.73627 1.67830i
\(831\) 0 0
\(832\) −4.17123 4.17123i −0.144611 0.144611i
\(833\) 15.2548 + 3.51014i 0.528547 + 0.121619i
\(834\) 0 0
\(835\) −4.20343 7.00324i −0.145466 0.242357i
\(836\) 9.64341 5.56763i 0.333524 0.192560i
\(837\) 0 0
\(838\) −11.2527 41.9956i −0.388718 1.45071i
\(839\) 23.9846 0.828039 0.414020 0.910268i \(-0.364124\pi\)
0.414020 + 0.910268i \(0.364124\pi\)
\(840\) 0 0
\(841\) 68.7839 2.37186
\(842\) 3.99960 + 14.9267i 0.137835 + 0.514409i
\(843\) 0 0
\(844\) 4.98409 2.87756i 0.171559 0.0990498i
\(845\) 25.2125 + 6.29896i 0.867337 + 0.216691i
\(846\) 0 0
\(847\) −12.4860 + 22.5447i −0.429023 + 0.774644i
\(848\) 2.64766 + 2.64766i 0.0909212 + 0.0909212i
\(849\) 0 0
\(850\) −10.0507 + 18.8591i −0.344735 + 0.646863i
\(851\) 3.28324 1.89558i 0.112548 0.0649796i
\(852\) 0 0
\(853\) 32.7833 32.7833i 1.12248 1.12248i 0.131111 0.991368i \(-0.458146\pi\)
0.991368 0.131111i \(-0.0418544\pi\)
\(854\) −25.2745 6.29185i −0.864875 0.215303i
\(855\) 0 0
\(856\) −0.210350 + 0.364336i −0.00718961 + 0.0124528i
\(857\) −6.84801 1.83492i −0.233924 0.0626796i 0.139953 0.990158i \(-0.455305\pi\)
−0.373876 + 0.927479i \(0.621972\pi\)
\(858\) 0 0
\(859\) 35.3255 + 20.3952i 1.20529 + 0.695874i 0.961727 0.274011i \(-0.0883504\pi\)
0.243563 + 0.969885i \(0.421684\pi\)
\(860\) 24.0424 + 13.3419i 0.819841 + 0.454956i
\(861\) 0 0
\(862\) 36.5376 + 36.5376i 1.24448 + 1.24448i
\(863\) −26.6975 + 7.15357i −0.908793 + 0.243510i −0.682789 0.730616i \(-0.739233\pi\)
−0.226004 + 0.974126i \(0.572566\pi\)
\(864\) 0 0
\(865\) −0.106761 6.28818i −0.00363000 0.213804i
\(866\) 2.66322 + 1.53761i 0.0904999 + 0.0522501i
\(867\) 0 0
\(868\) −32.1172 17.7875i −1.09013 0.603749i
\(869\) 11.8292 0.401280
\(870\) 0 0
\(871\) −3.76903 6.52816i −0.127709 0.221198i
\(872\) 8.86601 + 2.37564i 0.300241 + 0.0804493i
\(873\) 0 0
\(874\) 7.61907i 0.257719i
\(875\) −19.4303 + 22.3039i −0.656863 + 0.754010i
\(876\) 0 0
\(877\) 6.53819 1.75190i 0.220779 0.0591576i −0.146734 0.989176i \(-0.546876\pi\)
0.367513 + 0.930018i \(0.380209\pi\)
\(878\) −15.5736 + 58.1216i −0.525585 + 1.96151i
\(879\) 0 0
\(880\) 11.1344 + 2.78175i 0.375340 + 0.0937729i
\(881\) 54.4886i 1.83577i −0.396848 0.917884i \(-0.629896\pi\)
0.396848 0.917884i \(-0.370104\pi\)
\(882\) 0 0
\(883\) −26.9366 + 26.9366i −0.906490 + 0.906490i −0.995987 0.0894971i \(-0.971474\pi\)
0.0894971 + 0.995987i \(0.471474\pi\)
\(884\) −2.16966 + 3.75796i −0.0729736 + 0.126394i
\(885\) 0 0
\(886\) −13.7579 23.8293i −0.462205 0.800562i
\(887\) −11.7970 44.0271i −0.396105 1.47829i −0.819889 0.572522i \(-0.805965\pi\)
0.423784 0.905763i \(-0.360702\pi\)
\(888\) 0 0
\(889\) −26.2461 25.3271i −0.880266 0.849443i
\(890\) −7.33471 + 13.2173i −0.245860 + 0.443045i
\(891\) 0 0
\(892\) −7.16142 + 26.7268i −0.239782 + 0.894879i
\(893\) 15.3142 57.1534i 0.512471 1.91257i
\(894\) 0 0
\(895\) 12.1536 3.47872i 0.406250 0.116281i
\(896\) 13.2888 3.81574i 0.443947 0.127475i
\(897\) 0 0
\(898\) 6.48030 + 24.1848i 0.216251 + 0.807058i
\(899\) −41.5057 71.8900i −1.38429 2.39767i
\(900\) 0 0
\(901\) 0.915385 1.58549i 0.0304959 0.0528205i
\(902\) 5.02243 5.02243i 0.167228 0.167228i
\(903\) 0 0
\(904\) 5.39768i 0.179524i
\(905\) −12.0997 + 48.4309i −0.402208 + 1.60990i
\(906\) 0 0
\(907\) 0.102828 0.383760i 0.00341435 0.0127425i −0.964198 0.265185i \(-0.914567\pi\)
0.967612 + 0.252442i \(0.0812337\pi\)
\(908\) 42.9597 11.5110i 1.42567 0.382007i
\(909\) 0 0
\(910\) −9.05376 + 9.70678i −0.300129 + 0.321777i
\(911\) 21.8995i 0.725562i 0.931874 + 0.362781i \(0.118173\pi\)
−0.931874 + 0.362781i \(0.881827\pi\)
\(912\) 0 0
\(913\) 17.6453 + 4.72804i 0.583973 + 0.156475i
\(914\) −4.95136 8.57600i −0.163776 0.283669i
\(915\) 0 0
\(916\) 11.2980 0.373298
\(917\) 34.1971 + 18.9395i 1.12929 + 0.625436i
\(918\) 0 0
\(919\) −27.8860 16.1000i −0.919875 0.531090i −0.0362798 0.999342i \(-0.511551\pi\)
−0.883595 + 0.468252i \(0.844884\pi\)
\(920\) −0.684436 + 0.708078i −0.0225652 + 0.0233446i
\(921\) 0 0
\(922\) −48.9485 + 13.1157i −1.61203 + 0.431943i
\(923\) −10.0830 10.0830i −0.331886 0.331886i
\(924\) 0 0
\(925\) −27.8063 6.44753i −0.914267 0.211994i
\(926\) 20.1141 + 11.6129i 0.660991 + 0.381623i
\(927\) 0 0
\(928\) −70.8256 18.9777i −2.32496 0.622972i
\(929\) −27.1770 + 47.0719i −0.891647 + 1.54438i −0.0537466 + 0.998555i \(0.517116\pi\)
−0.837900 + 0.545823i \(0.816217\pi\)
\(930\) 0 0
\(931\) −37.1151 19.6998i −1.21640 0.645634i
\(932\) −8.32769 + 8.32769i −0.272783 + 0.272783i
\(933\) 0 0
\(934\) −16.9132 + 9.76486i −0.553418 + 0.319516i
\(935\) −0.0952570 5.61057i −0.00311524 0.183485i
\(936\) 0 0
\(937\) −16.8346 16.8346i −0.549964 0.549964i 0.376467 0.926430i \(-0.377139\pi\)
−0.926430 + 0.376467i \(0.877139\pi\)
\(938\) −32.4663 + 0.578534i −1.06006 + 0.0188898i
\(939\) 0 0
\(940\) −31.2393 + 18.7502i −1.01891 + 0.611563i
\(941\) 10.4837 6.05274i 0.341757 0.197314i −0.319292 0.947657i \(-0.603445\pi\)
0.661049 + 0.750343i \(0.270112\pi\)
\(942\) 0 0
\(943\) 0.569183 + 2.12422i 0.0185351 + 0.0691741i
\(944\) −16.0087 −0.521039
\(945\) 0 0
\(946\) −15.9555 −0.518759
\(947\) 5.75096 + 21.4629i 0.186881 + 0.697450i 0.994220 + 0.107362i \(0.0342404\pi\)
−0.807339 + 0.590088i \(0.799093\pi\)
\(948\) 0 0
\(949\) −4.73278 + 2.73247i −0.153632 + 0.0886997i
\(950\) 39.1627 41.9166i 1.27061 1.35996i
\(951\) 0 0
\(952\) −2.02208 3.36253i −0.0655361 0.108980i
\(953\) 20.5298 + 20.5298i 0.665024 + 0.665024i 0.956560 0.291536i \(-0.0941663\pi\)
−0.291536 + 0.956560i \(0.594166\pi\)
\(954\) 0 0
\(955\) 9.17228 9.48911i 0.296808 0.307061i
\(956\) −26.8914 + 15.5258i −0.869730 + 0.502139i
\(957\) 0 0
\(958\) −7.03582 + 7.03582i −0.227317 + 0.227317i
\(959\) −51.2251 12.7520i −1.65414 0.411785i
\(960\) 0 0
\(961\) −19.7354 + 34.1827i −0.636625 + 1.10267i
\(962\) −12.3723 3.31513i −0.398897 0.106884i
\(963\) 0 0
\(964\) −36.6013 21.1318i −1.17885 0.680608i
\(965\) −12.3987 + 22.3427i −0.399127 + 0.719236i
\(966\) 0 0
\(967\) −12.1981 12.1981i −0.392263 0.392263i 0.483230 0.875493i \(-0.339463\pi\)
−0.875493 + 0.483230i \(0.839463\pi\)
\(968\) 6.23975 1.67194i 0.200553 0.0537381i
\(969\) 0 0
\(970\) −46.4002 44.8509i −1.48982 1.44008i
\(971\) −16.6289 9.60073i −0.533648 0.308102i 0.208853 0.977947i \(-0.433027\pi\)
−0.742501 + 0.669845i \(0.766360\pi\)
\(972\) 0 0
\(973\) −0.0885648 4.97009i −0.00283926 0.159334i
\(974\) 50.8124 1.62813
\(975\) 0 0
\(976\) 11.7785 + 20.4009i 0.377020 + 0.653018i
\(977\) 8.86259 + 2.37472i 0.283539 + 0.0759741i 0.397786 0.917478i \(-0.369779\pi\)
−0.114247 + 0.993452i \(0.536445\pi\)
\(978\) 0 0
\(979\) 3.96918i 0.126856i
\(980\) 8.00164 + 24.6054i 0.255603 + 0.785991i
\(981\) 0 0
\(982\) −9.52683 + 2.55271i −0.304013 + 0.0814601i
\(983\) 11.5884 43.2486i 0.369614 1.37942i −0.491443 0.870910i \(-0.663531\pi\)
0.861057 0.508508i \(-0.169803\pi\)
\(984\) 0 0
\(985\) −15.2653 25.4332i −0.486394 0.810371i
\(986\) 42.2640i 1.34596i
\(987\) 0 0
\(988\) 8.23655 8.23655i 0.262040 0.262040i
\(989\) 2.47007 4.27828i 0.0785435 0.136041i
\(990\) 0 0
\(991\) 22.5543 + 39.0653i 0.716462 + 1.24095i 0.962393 + 0.271662i \(0.0875732\pi\)
−0.245930 + 0.969287i \(0.579093\pi\)
\(992\) 16.1107 + 60.1258i 0.511514 + 1.90900i
\(993\) 0 0
\(994\) −59.0394 + 16.9525i −1.87262 + 0.537702i
\(995\) −7.50147 26.2079i −0.237812 0.830845i
\(996\) 0 0
\(997\) 13.3278 49.7401i 0.422096 1.57529i −0.348087 0.937462i \(-0.613169\pi\)
0.770183 0.637823i \(-0.220165\pi\)
\(998\) 3.82772 14.2853i 0.121164 0.452192i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.ce.a.107.4 yes 64
3.2 odd 2 inner 315.2.ce.a.107.13 yes 64
5.3 odd 4 inner 315.2.ce.a.233.4 yes 64
7.4 even 3 inner 315.2.ce.a.242.13 yes 64
15.8 even 4 inner 315.2.ce.a.233.13 yes 64
21.11 odd 6 inner 315.2.ce.a.242.4 yes 64
35.18 odd 12 inner 315.2.ce.a.53.13 yes 64
105.53 even 12 inner 315.2.ce.a.53.4 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.ce.a.53.4 64 105.53 even 12 inner
315.2.ce.a.53.13 yes 64 35.18 odd 12 inner
315.2.ce.a.107.4 yes 64 1.1 even 1 trivial
315.2.ce.a.107.13 yes 64 3.2 odd 2 inner
315.2.ce.a.233.4 yes 64 5.3 odd 4 inner
315.2.ce.a.233.13 yes 64 15.8 even 4 inner
315.2.ce.a.242.4 yes 64 21.11 odd 6 inner
315.2.ce.a.242.13 yes 64 7.4 even 3 inner