Properties

Label 315.2.j.a.46.1
Level $315$
Weight $2$
Character 315.46
Analytic conductor $2.515$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(46,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.46");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 46.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 315.46
Dual form 315.2.j.a.226.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-0.500000 + 2.59808i) q^{7} +(1.00000 - 1.73205i) q^{10} +(-3.00000 + 5.19615i) q^{11} -3.00000 q^{13} +(5.00000 - 1.73205i) q^{14} +(2.00000 + 3.46410i) q^{16} +(-2.00000 + 3.46410i) q^{17} +(-0.500000 - 0.866025i) q^{19} -2.00000 q^{20} +12.0000 q^{22} +(-2.00000 - 3.46410i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(3.00000 + 5.19615i) q^{26} +(-4.00000 - 3.46410i) q^{28} +8.00000 q^{29} +(-0.500000 + 0.866025i) q^{31} +(4.00000 - 6.92820i) q^{32} +8.00000 q^{34} +(-2.50000 + 0.866025i) q^{35} +(-3.50000 - 6.06218i) q^{37} +(-1.00000 + 1.73205i) q^{38} +6.00000 q^{41} +1.00000 q^{43} +(-6.00000 - 10.3923i) q^{44} +(-4.00000 + 6.92820i) q^{46} +(1.00000 + 1.73205i) q^{47} +(-6.50000 - 2.59808i) q^{49} +2.00000 q^{50} +(3.00000 - 5.19615i) q^{52} +(2.00000 - 3.46410i) q^{53} -6.00000 q^{55} +(-8.00000 - 13.8564i) q^{58} +(-4.00000 + 6.92820i) q^{59} +(7.00000 + 12.1244i) q^{61} +2.00000 q^{62} -8.00000 q^{64} +(-1.50000 - 2.59808i) q^{65} +(-3.50000 + 6.06218i) q^{67} +(-4.00000 - 6.92820i) q^{68} +(4.00000 + 3.46410i) q^{70} -6.00000 q^{71} +(-0.500000 + 0.866025i) q^{73} +(-7.00000 + 12.1244i) q^{74} +2.00000 q^{76} +(-12.0000 - 10.3923i) q^{77} +(0.500000 + 0.866025i) q^{79} +(-2.00000 + 3.46410i) q^{80} +(-6.00000 - 10.3923i) q^{82} -2.00000 q^{83} -4.00000 q^{85} +(-1.00000 - 1.73205i) q^{86} +(-6.00000 - 10.3923i) q^{89} +(1.50000 - 7.79423i) q^{91} +8.00000 q^{92} +(2.00000 - 3.46410i) q^{94} +(0.500000 - 0.866025i) q^{95} -6.00000 q^{97} +(2.00000 + 13.8564i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} + q^{5} - q^{7} + 2 q^{10} - 6 q^{11} - 6 q^{13} + 10 q^{14} + 4 q^{16} - 4 q^{17} - q^{19} - 4 q^{20} + 24 q^{22} - 4 q^{23} - q^{25} + 6 q^{26} - 8 q^{28} + 16 q^{29} - q^{31}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −0.500000 + 2.59808i −0.188982 + 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 1.00000 1.73205i 0.316228 0.547723i
\(11\) −3.00000 + 5.19615i −0.904534 + 1.56670i −0.0829925 + 0.996550i \(0.526448\pi\)
−0.821541 + 0.570149i \(0.806886\pi\)
\(12\) 0 0
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) 5.00000 1.73205i 1.33631 0.462910i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −2.00000 + 3.46410i −0.485071 + 0.840168i −0.999853 0.0171533i \(-0.994540\pi\)
0.514782 + 0.857321i \(0.327873\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i \(-0.203260\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 12.0000 2.55841
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 3.00000 + 5.19615i 0.588348 + 1.01905i
\(27\) 0 0
\(28\) −4.00000 3.46410i −0.755929 0.654654i
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.0898027 + 0.155543i −0.907428 0.420208i \(-0.861957\pi\)
0.817625 + 0.575751i \(0.195290\pi\)
\(32\) 4.00000 6.92820i 0.707107 1.22474i
\(33\) 0 0
\(34\) 8.00000 1.37199
\(35\) −2.50000 + 0.866025i −0.422577 + 0.146385i
\(36\) 0 0
\(37\) −3.50000 6.06218i −0.575396 0.996616i −0.995998 0.0893706i \(-0.971514\pi\)
0.420602 0.907245i \(-0.361819\pi\)
\(38\) −1.00000 + 1.73205i −0.162221 + 0.280976i
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) −6.00000 10.3923i −0.904534 1.56670i
\(45\) 0 0
\(46\) −4.00000 + 6.92820i −0.589768 + 1.02151i
\(47\) 1.00000 + 1.73205i 0.145865 + 0.252646i 0.929695 0.368329i \(-0.120070\pi\)
−0.783830 + 0.620975i \(0.786737\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 2.00000 0.282843
\(51\) 0 0
\(52\) 3.00000 5.19615i 0.416025 0.720577i
\(53\) 2.00000 3.46410i 0.274721 0.475831i −0.695344 0.718677i \(-0.744748\pi\)
0.970065 + 0.242846i \(0.0780811\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) −8.00000 13.8564i −1.05045 1.81944i
\(59\) −4.00000 + 6.92820i −0.520756 + 0.901975i 0.478953 + 0.877841i \(0.341016\pi\)
−0.999709 + 0.0241347i \(0.992317\pi\)
\(60\) 0 0
\(61\) 7.00000 + 12.1244i 0.896258 + 1.55236i 0.832240 + 0.554416i \(0.187058\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 2.00000 0.254000
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −1.50000 2.59808i −0.186052 0.322252i
\(66\) 0 0
\(67\) −3.50000 + 6.06218i −0.427593 + 0.740613i −0.996659 0.0816792i \(-0.973972\pi\)
0.569066 + 0.822292i \(0.307305\pi\)
\(68\) −4.00000 6.92820i −0.485071 0.840168i
\(69\) 0 0
\(70\) 4.00000 + 3.46410i 0.478091 + 0.414039i
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −0.500000 + 0.866025i −0.0585206 + 0.101361i −0.893801 0.448463i \(-0.851972\pi\)
0.835281 + 0.549823i \(0.185305\pi\)
\(74\) −7.00000 + 12.1244i −0.813733 + 1.40943i
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) −12.0000 10.3923i −1.36753 1.18431i
\(78\) 0 0
\(79\) 0.500000 + 0.866025i 0.0562544 + 0.0974355i 0.892781 0.450490i \(-0.148751\pi\)
−0.836527 + 0.547926i \(0.815418\pi\)
\(80\) −2.00000 + 3.46410i −0.223607 + 0.387298i
\(81\) 0 0
\(82\) −6.00000 10.3923i −0.662589 1.14764i
\(83\) −2.00000 −0.219529 −0.109764 0.993958i \(-0.535010\pi\)
−0.109764 + 0.993958i \(0.535010\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) −1.00000 1.73205i −0.107833 0.186772i
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 10.3923i −0.635999 1.10158i −0.986303 0.164946i \(-0.947255\pi\)
0.350304 0.936636i \(-0.386078\pi\)
\(90\) 0 0
\(91\) 1.50000 7.79423i 0.157243 0.817057i
\(92\) 8.00000 0.834058
\(93\) 0 0
\(94\) 2.00000 3.46410i 0.206284 0.357295i
\(95\) 0.500000 0.866025i 0.0512989 0.0888523i
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 2.00000 + 13.8564i 0.202031 + 1.39971i
\(99\) 0 0
\(100\) −1.00000 1.73205i −0.100000 0.173205i
\(101\) −5.00000 + 8.66025i −0.497519 + 0.861727i −0.999996 0.00286291i \(-0.999089\pi\)
0.502477 + 0.864590i \(0.332422\pi\)
\(102\) 0 0
\(103\) 9.50000 + 16.4545i 0.936063 + 1.62131i 0.772728 + 0.634738i \(0.218892\pi\)
0.163335 + 0.986571i \(0.447775\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −8.00000 −0.777029
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 0 0
\(109\) 7.50000 12.9904i 0.718370 1.24425i −0.243276 0.969957i \(-0.578222\pi\)
0.961645 0.274296i \(-0.0884447\pi\)
\(110\) 6.00000 + 10.3923i 0.572078 + 0.990867i
\(111\) 0 0
\(112\) −10.0000 + 3.46410i −0.944911 + 0.327327i
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 2.00000 3.46410i 0.186501 0.323029i
\(116\) −8.00000 + 13.8564i −0.742781 + 1.28654i
\(117\) 0 0
\(118\) 16.0000 1.47292
\(119\) −8.00000 6.92820i −0.733359 0.635107i
\(120\) 0 0
\(121\) −12.5000 21.6506i −1.13636 1.96824i
\(122\) 14.0000 24.2487i 1.26750 2.19538i
\(123\) 0 0
\(124\) −1.00000 1.73205i −0.0898027 0.155543i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 5.00000 0.443678 0.221839 0.975083i \(-0.428794\pi\)
0.221839 + 0.975083i \(0.428794\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) −3.00000 + 5.19615i −0.263117 + 0.455733i
\(131\) 1.00000 + 1.73205i 0.0873704 + 0.151330i 0.906399 0.422423i \(-0.138820\pi\)
−0.819028 + 0.573753i \(0.805487\pi\)
\(132\) 0 0
\(133\) 2.50000 0.866025i 0.216777 0.0750939i
\(134\) 14.0000 1.20942
\(135\) 0 0
\(136\) 0 0
\(137\) 4.00000 6.92820i 0.341743 0.591916i −0.643013 0.765855i \(-0.722316\pi\)
0.984757 + 0.173939i \(0.0556494\pi\)
\(138\) 0 0
\(139\) 21.0000 1.78120 0.890598 0.454791i \(-0.150286\pi\)
0.890598 + 0.454791i \(0.150286\pi\)
\(140\) 1.00000 5.19615i 0.0845154 0.439155i
\(141\) 0 0
\(142\) 6.00000 + 10.3923i 0.503509 + 0.872103i
\(143\) 9.00000 15.5885i 0.752618 1.30357i
\(144\) 0 0
\(145\) 4.00000 + 6.92820i 0.332182 + 0.575356i
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) 14.0000 1.15079
\(149\) −2.00000 3.46410i −0.163846 0.283790i 0.772399 0.635138i \(-0.219057\pi\)
−0.936245 + 0.351348i \(0.885723\pi\)
\(150\) 0 0
\(151\) −4.00000 + 6.92820i −0.325515 + 0.563809i −0.981617 0.190864i \(-0.938871\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −6.00000 + 31.1769i −0.483494 + 2.51231i
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) −5.00000 + 8.66025i −0.399043 + 0.691164i −0.993608 0.112884i \(-0.963991\pi\)
0.594565 + 0.804048i \(0.297324\pi\)
\(158\) 1.00000 1.73205i 0.0795557 0.137795i
\(159\) 0 0
\(160\) 8.00000 0.632456
\(161\) 10.0000 3.46410i 0.788110 0.273009i
\(162\) 0 0
\(163\) 6.00000 + 10.3923i 0.469956 + 0.813988i 0.999410 0.0343508i \(-0.0109363\pi\)
−0.529454 + 0.848339i \(0.677603\pi\)
\(164\) −6.00000 + 10.3923i −0.468521 + 0.811503i
\(165\) 0 0
\(166\) 2.00000 + 3.46410i 0.155230 + 0.268866i
\(167\) 10.0000 0.773823 0.386912 0.922117i \(-0.373542\pi\)
0.386912 + 0.922117i \(0.373542\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 4.00000 + 6.92820i 0.306786 + 0.531369i
\(171\) 0 0
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) 12.0000 + 20.7846i 0.912343 + 1.58022i 0.810745 + 0.585399i \(0.199062\pi\)
0.101598 + 0.994826i \(0.467605\pi\)
\(174\) 0 0
\(175\) −2.00000 1.73205i −0.151186 0.130931i
\(176\) −24.0000 −1.80907
\(177\) 0 0
\(178\) −12.0000 + 20.7846i −0.899438 + 1.55787i
\(179\) 9.00000 15.5885i 0.672692 1.16514i −0.304446 0.952529i \(-0.598471\pi\)
0.977138 0.212607i \(-0.0681952\pi\)
\(180\) 0 0
\(181\) 13.0000 0.966282 0.483141 0.875542i \(-0.339496\pi\)
0.483141 + 0.875542i \(0.339496\pi\)
\(182\) −15.0000 + 5.19615i −1.11187 + 0.385164i
\(183\) 0 0
\(184\) 0 0
\(185\) 3.50000 6.06218i 0.257325 0.445700i
\(186\) 0 0
\(187\) −12.0000 20.7846i −0.877527 1.51992i
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) −2.00000 −0.145095
\(191\) 5.00000 + 8.66025i 0.361787 + 0.626634i 0.988255 0.152813i \(-0.0488333\pi\)
−0.626468 + 0.779447i \(0.715500\pi\)
\(192\) 0 0
\(193\) 4.50000 7.79423i 0.323917 0.561041i −0.657376 0.753563i \(-0.728333\pi\)
0.981293 + 0.192522i \(0.0616668\pi\)
\(194\) 6.00000 + 10.3923i 0.430775 + 0.746124i
\(195\) 0 0
\(196\) 11.0000 8.66025i 0.785714 0.618590i
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) −4.00000 + 6.92820i −0.283552 + 0.491127i −0.972257 0.233915i \(-0.924846\pi\)
0.688705 + 0.725042i \(0.258180\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 20.0000 1.40720
\(203\) −4.00000 + 20.7846i −0.280745 + 1.45879i
\(204\) 0 0
\(205\) 3.00000 + 5.19615i 0.209529 + 0.362915i
\(206\) 19.0000 32.9090i 1.32379 2.29288i
\(207\) 0 0
\(208\) −6.00000 10.3923i −0.416025 0.720577i
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 4.00000 + 6.92820i 0.274721 + 0.475831i
\(213\) 0 0
\(214\) 12.0000 20.7846i 0.820303 1.42081i
\(215\) 0.500000 + 0.866025i 0.0340997 + 0.0590624i
\(216\) 0 0
\(217\) −2.00000 1.73205i −0.135769 0.117579i
\(218\) −30.0000 −2.03186
\(219\) 0 0
\(220\) 6.00000 10.3923i 0.404520 0.700649i
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 0 0
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 16.0000 + 13.8564i 1.06904 + 0.925820i
\(225\) 0 0
\(226\) −6.00000 10.3923i −0.399114 0.691286i
\(227\) −5.00000 + 8.66025i −0.331862 + 0.574801i −0.982877 0.184263i \(-0.941010\pi\)
0.651015 + 0.759065i \(0.274343\pi\)
\(228\) 0 0
\(229\) −6.50000 11.2583i −0.429532 0.743971i 0.567300 0.823511i \(-0.307988\pi\)
−0.996832 + 0.0795401i \(0.974655\pi\)
\(230\) −8.00000 −0.527504
\(231\) 0 0
\(232\) 0 0
\(233\) 3.00000 + 5.19615i 0.196537 + 0.340411i 0.947403 0.320043i \(-0.103697\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 0 0
\(235\) −1.00000 + 1.73205i −0.0652328 + 0.112987i
\(236\) −8.00000 13.8564i −0.520756 0.901975i
\(237\) 0 0
\(238\) −4.00000 + 20.7846i −0.259281 + 1.34727i
\(239\) −14.0000 −0.905585 −0.452792 0.891616i \(-0.649572\pi\)
−0.452792 + 0.891616i \(0.649572\pi\)
\(240\) 0 0
\(241\) 9.00000 15.5885i 0.579741 1.00414i −0.415768 0.909471i \(-0.636487\pi\)
0.995509 0.0946700i \(-0.0301796\pi\)
\(242\) −25.0000 + 43.3013i −1.60706 + 2.78351i
\(243\) 0 0
\(244\) −28.0000 −1.79252
\(245\) −1.00000 6.92820i −0.0638877 0.442627i
\(246\) 0 0
\(247\) 1.50000 + 2.59808i 0.0954427 + 0.165312i
\(248\) 0 0
\(249\) 0 0
\(250\) 1.00000 + 1.73205i 0.0632456 + 0.109545i
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 24.0000 1.50887
\(254\) −5.00000 8.66025i −0.313728 0.543393i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −9.00000 15.5885i −0.561405 0.972381i −0.997374 0.0724199i \(-0.976928\pi\)
0.435970 0.899961i \(-0.356405\pi\)
\(258\) 0 0
\(259\) 17.5000 6.06218i 1.08740 0.376685i
\(260\) 6.00000 0.372104
\(261\) 0 0
\(262\) 2.00000 3.46410i 0.123560 0.214013i
\(263\) 2.00000 3.46410i 0.123325 0.213606i −0.797752 0.602986i \(-0.793977\pi\)
0.921077 + 0.389380i \(0.127311\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) −4.00000 3.46410i −0.245256 0.212398i
\(267\) 0 0
\(268\) −7.00000 12.1244i −0.427593 0.740613i
\(269\) −5.00000 + 8.66025i −0.304855 + 0.528025i −0.977229 0.212187i \(-0.931941\pi\)
0.672374 + 0.740212i \(0.265275\pi\)
\(270\) 0 0
\(271\) 12.0000 + 20.7846i 0.728948 + 1.26258i 0.957328 + 0.289003i \(0.0933238\pi\)
−0.228380 + 0.973572i \(0.573343\pi\)
\(272\) −16.0000 −0.970143
\(273\) 0 0
\(274\) −16.0000 −0.966595
\(275\) −3.00000 5.19615i −0.180907 0.313340i
\(276\) 0 0
\(277\) 3.50000 6.06218i 0.210295 0.364241i −0.741512 0.670940i \(-0.765891\pi\)
0.951807 + 0.306699i \(0.0992243\pi\)
\(278\) −21.0000 36.3731i −1.25950 2.18151i
\(279\) 0 0
\(280\) 0 0
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 0 0
\(283\) 3.50000 6.06218i 0.208053 0.360359i −0.743048 0.669238i \(-0.766621\pi\)
0.951101 + 0.308879i \(0.0999539\pi\)
\(284\) 6.00000 10.3923i 0.356034 0.616670i
\(285\) 0 0
\(286\) −36.0000 −2.12872
\(287\) −3.00000 + 15.5885i −0.177084 + 0.920158i
\(288\) 0 0
\(289\) 0.500000 + 0.866025i 0.0294118 + 0.0509427i
\(290\) 8.00000 13.8564i 0.469776 0.813676i
\(291\) 0 0
\(292\) −1.00000 1.73205i −0.0585206 0.101361i
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 0 0
\(298\) −4.00000 + 6.92820i −0.231714 + 0.401340i
\(299\) 6.00000 + 10.3923i 0.346989 + 0.601003i
\(300\) 0 0
\(301\) −0.500000 + 2.59808i −0.0288195 + 0.149751i
\(302\) 16.0000 0.920697
\(303\) 0 0
\(304\) 2.00000 3.46410i 0.114708 0.198680i
\(305\) −7.00000 + 12.1244i −0.400819 + 0.694239i
\(306\) 0 0
\(307\) 3.00000 0.171219 0.0856095 0.996329i \(-0.472716\pi\)
0.0856095 + 0.996329i \(0.472716\pi\)
\(308\) 30.0000 10.3923i 1.70941 0.592157i
\(309\) 0 0
\(310\) 1.00000 + 1.73205i 0.0567962 + 0.0983739i
\(311\) 3.00000 5.19615i 0.170114 0.294647i −0.768345 0.640036i \(-0.778920\pi\)
0.938460 + 0.345389i \(0.112253\pi\)
\(312\) 0 0
\(313\) −5.50000 9.52628i −0.310878 0.538457i 0.667674 0.744453i \(-0.267290\pi\)
−0.978553 + 0.205996i \(0.933957\pi\)
\(314\) 20.0000 1.12867
\(315\) 0 0
\(316\) −2.00000 −0.112509
\(317\) 10.0000 + 17.3205i 0.561656 + 0.972817i 0.997352 + 0.0727229i \(0.0231689\pi\)
−0.435696 + 0.900094i \(0.643498\pi\)
\(318\) 0 0
\(319\) −24.0000 + 41.5692i −1.34374 + 2.32743i
\(320\) −4.00000 6.92820i −0.223607 0.387298i
\(321\) 0 0
\(322\) −16.0000 13.8564i −0.891645 0.772187i
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) 1.50000 2.59808i 0.0832050 0.144115i
\(326\) 12.0000 20.7846i 0.664619 1.15115i
\(327\) 0 0
\(328\) 0 0
\(329\) −5.00000 + 1.73205i −0.275659 + 0.0954911i
\(330\) 0 0
\(331\) 4.50000 + 7.79423i 0.247342 + 0.428410i 0.962788 0.270259i \(-0.0871094\pi\)
−0.715445 + 0.698669i \(0.753776\pi\)
\(332\) 2.00000 3.46410i 0.109764 0.190117i
\(333\) 0 0
\(334\) −10.0000 17.3205i −0.547176 0.947736i
\(335\) −7.00000 −0.382451
\(336\) 0 0
\(337\) 25.0000 1.36184 0.680918 0.732359i \(-0.261581\pi\)
0.680918 + 0.732359i \(0.261581\pi\)
\(338\) 4.00000 + 6.92820i 0.217571 + 0.376845i
\(339\) 0 0
\(340\) 4.00000 6.92820i 0.216930 0.375735i
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 24.0000 41.5692i 1.29025 2.23478i
\(347\) 8.00000 13.8564i 0.429463 0.743851i −0.567363 0.823468i \(-0.692036\pi\)
0.996826 + 0.0796169i \(0.0253697\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) −1.00000 + 5.19615i −0.0534522 + 0.277746i
\(351\) 0 0
\(352\) 24.0000 + 41.5692i 1.27920 + 2.21565i
\(353\) −9.00000 + 15.5885i −0.479022 + 0.829690i −0.999711 0.0240566i \(-0.992342\pi\)
0.520689 + 0.853746i \(0.325675\pi\)
\(354\) 0 0
\(355\) −3.00000 5.19615i −0.159223 0.275783i
\(356\) 24.0000 1.27200
\(357\) 0 0
\(358\) −36.0000 −1.90266
\(359\) −12.0000 20.7846i −0.633336 1.09697i −0.986865 0.161546i \(-0.948352\pi\)
0.353529 0.935423i \(-0.384981\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) −13.0000 22.5167i −0.683265 1.18345i
\(363\) 0 0
\(364\) 12.0000 + 10.3923i 0.628971 + 0.544705i
\(365\) −1.00000 −0.0523424
\(366\) 0 0
\(367\) −9.50000 + 16.4545i −0.495896 + 0.858917i −0.999989 0.00473247i \(-0.998494\pi\)
0.504093 + 0.863649i \(0.331827\pi\)
\(368\) 8.00000 13.8564i 0.417029 0.722315i
\(369\) 0 0
\(370\) −14.0000 −0.727825
\(371\) 8.00000 + 6.92820i 0.415339 + 0.359694i
\(372\) 0 0
\(373\) −5.50000 9.52628i −0.284779 0.493252i 0.687776 0.725923i \(-0.258587\pi\)
−0.972556 + 0.232671i \(0.925254\pi\)
\(374\) −24.0000 + 41.5692i −1.24101 + 2.14949i
\(375\) 0 0
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) 11.0000 0.565032 0.282516 0.959263i \(-0.408831\pi\)
0.282516 + 0.959263i \(0.408831\pi\)
\(380\) 1.00000 + 1.73205i 0.0512989 + 0.0888523i
\(381\) 0 0
\(382\) 10.0000 17.3205i 0.511645 0.886194i
\(383\) 14.0000 + 24.2487i 0.715367 + 1.23905i 0.962818 + 0.270151i \(0.0870736\pi\)
−0.247451 + 0.968900i \(0.579593\pi\)
\(384\) 0 0
\(385\) 3.00000 15.5885i 0.152894 0.794461i
\(386\) −18.0000 −0.916176
\(387\) 0 0
\(388\) 6.00000 10.3923i 0.304604 0.527589i
\(389\) 3.00000 5.19615i 0.152106 0.263455i −0.779895 0.625910i \(-0.784728\pi\)
0.932002 + 0.362454i \(0.118061\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 12.0000 + 20.7846i 0.604551 + 1.04711i
\(395\) −0.500000 + 0.866025i −0.0251577 + 0.0435745i
\(396\) 0 0
\(397\) 18.5000 + 32.0429i 0.928488 + 1.60819i 0.785853 + 0.618414i \(0.212224\pi\)
0.142636 + 0.989775i \(0.454442\pi\)
\(398\) 16.0000 0.802008
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) −6.00000 10.3923i −0.299626 0.518967i 0.676425 0.736512i \(-0.263528\pi\)
−0.976050 + 0.217545i \(0.930195\pi\)
\(402\) 0 0
\(403\) 1.50000 2.59808i 0.0747203 0.129419i
\(404\) −10.0000 17.3205i −0.497519 0.861727i
\(405\) 0 0
\(406\) 40.0000 13.8564i 1.98517 0.687682i
\(407\) 42.0000 2.08186
\(408\) 0 0
\(409\) −2.50000 + 4.33013i −0.123617 + 0.214111i −0.921192 0.389109i \(-0.872783\pi\)
0.797574 + 0.603220i \(0.206116\pi\)
\(410\) 6.00000 10.3923i 0.296319 0.513239i
\(411\) 0 0
\(412\) −38.0000 −1.87213
\(413\) −16.0000 13.8564i −0.787309 0.681829i
\(414\) 0 0
\(415\) −1.00000 1.73205i −0.0490881 0.0850230i
\(416\) −12.0000 + 20.7846i −0.588348 + 1.01905i
\(417\) 0 0
\(418\) −6.00000 10.3923i −0.293470 0.508304i
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) 1.00000 0.0487370 0.0243685 0.999703i \(-0.492242\pi\)
0.0243685 + 0.999703i \(0.492242\pi\)
\(422\) 20.0000 + 34.6410i 0.973585 + 1.68630i
\(423\) 0 0
\(424\) 0 0
\(425\) −2.00000 3.46410i −0.0970143 0.168034i
\(426\) 0 0
\(427\) −35.0000 + 12.1244i −1.69377 + 0.586739i
\(428\) −24.0000 −1.16008
\(429\) 0 0
\(430\) 1.00000 1.73205i 0.0482243 0.0835269i
\(431\) −1.00000 + 1.73205i −0.0481683 + 0.0834300i −0.889104 0.457705i \(-0.848672\pi\)
0.840936 + 0.541135i \(0.182005\pi\)
\(432\) 0 0
\(433\) −5.00000 −0.240285 −0.120142 0.992757i \(-0.538335\pi\)
−0.120142 + 0.992757i \(0.538335\pi\)
\(434\) −1.00000 + 5.19615i −0.0480015 + 0.249423i
\(435\) 0 0
\(436\) 15.0000 + 25.9808i 0.718370 + 1.24425i
\(437\) −2.00000 + 3.46410i −0.0956730 + 0.165710i
\(438\) 0 0
\(439\) −8.00000 13.8564i −0.381819 0.661330i 0.609503 0.792784i \(-0.291369\pi\)
−0.991322 + 0.131453i \(0.958036\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −24.0000 −1.14156
\(443\) −18.0000 31.1769i −0.855206 1.48126i −0.876454 0.481486i \(-0.840097\pi\)
0.0212481 0.999774i \(-0.493236\pi\)
\(444\) 0 0
\(445\) 6.00000 10.3923i 0.284427 0.492642i
\(446\) 24.0000 + 41.5692i 1.13643 + 1.96836i
\(447\) 0 0
\(448\) 4.00000 20.7846i 0.188982 0.981981i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) −18.0000 + 31.1769i −0.847587 + 1.46806i
\(452\) −6.00000 + 10.3923i −0.282216 + 0.488813i
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) 7.50000 2.59808i 0.351605 0.121800i
\(456\) 0 0
\(457\) 7.50000 + 12.9904i 0.350835 + 0.607664i 0.986396 0.164386i \(-0.0525644\pi\)
−0.635561 + 0.772051i \(0.719231\pi\)
\(458\) −13.0000 + 22.5167i −0.607450 + 1.05213i
\(459\) 0 0
\(460\) 4.00000 + 6.92820i 0.186501 + 0.323029i
\(461\) 8.00000 0.372597 0.186299 0.982493i \(-0.440351\pi\)
0.186299 + 0.982493i \(0.440351\pi\)
\(462\) 0 0
\(463\) 3.00000 0.139422 0.0697109 0.997567i \(-0.477792\pi\)
0.0697109 + 0.997567i \(0.477792\pi\)
\(464\) 16.0000 + 27.7128i 0.742781 + 1.28654i
\(465\) 0 0
\(466\) 6.00000 10.3923i 0.277945 0.481414i
\(467\) 11.0000 + 19.0526i 0.509019 + 0.881647i 0.999945 + 0.0104461i \(0.00332515\pi\)
−0.490926 + 0.871201i \(0.663342\pi\)
\(468\) 0 0
\(469\) −14.0000 12.1244i −0.646460 0.559851i
\(470\) 4.00000 0.184506
\(471\) 0 0
\(472\) 0 0
\(473\) −3.00000 + 5.19615i −0.137940 + 0.238919i
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 20.0000 6.92820i 0.916698 0.317554i
\(477\) 0 0
\(478\) 14.0000 + 24.2487i 0.640345 + 1.10911i
\(479\) −2.00000 + 3.46410i −0.0913823 + 0.158279i −0.908093 0.418769i \(-0.862462\pi\)
0.816711 + 0.577047i \(0.195795\pi\)
\(480\) 0 0
\(481\) 10.5000 + 18.1865i 0.478759 + 0.829235i
\(482\) −36.0000 −1.63976
\(483\) 0 0
\(484\) 50.0000 2.27273
\(485\) −3.00000 5.19615i −0.136223 0.235945i
\(486\) 0 0
\(487\) 6.50000 11.2583i 0.294543 0.510164i −0.680335 0.732901i \(-0.738166\pi\)
0.974879 + 0.222737i \(0.0714992\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −11.0000 + 8.66025i −0.496929 + 0.391230i
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −16.0000 + 27.7128i −0.720604 + 1.24812i
\(494\) 3.00000 5.19615i 0.134976 0.233786i
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 3.00000 15.5885i 0.134568 0.699238i
\(498\) 0 0
\(499\) −14.5000 25.1147i −0.649109 1.12429i −0.983336 0.181797i \(-0.941809\pi\)
0.334227 0.942493i \(-0.391525\pi\)
\(500\) 1.00000 1.73205i 0.0447214 0.0774597i
\(501\) 0 0
\(502\) 12.0000 + 20.7846i 0.535586 + 0.927663i
\(503\) 2.00000 0.0891756 0.0445878 0.999005i \(-0.485803\pi\)
0.0445878 + 0.999005i \(0.485803\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) −24.0000 41.5692i −1.06693 1.84798i
\(507\) 0 0
\(508\) −5.00000 + 8.66025i −0.221839 + 0.384237i
\(509\) 5.00000 + 8.66025i 0.221621 + 0.383859i 0.955300 0.295637i \(-0.0955319\pi\)
−0.733679 + 0.679496i \(0.762199\pi\)
\(510\) 0 0
\(511\) −2.00000 1.73205i −0.0884748 0.0766214i
\(512\) 32.0000 1.41421
\(513\) 0 0
\(514\) −18.0000 + 31.1769i −0.793946 + 1.37515i
\(515\) −9.50000 + 16.4545i −0.418620 + 0.725071i
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) −28.0000 24.2487i −1.23025 1.06543i
\(519\) 0 0
\(520\) 0 0
\(521\) 2.00000 3.46410i 0.0876216 0.151765i −0.818884 0.573959i \(-0.805407\pi\)
0.906505 + 0.422194i \(0.138740\pi\)
\(522\) 0 0
\(523\) −5.50000 9.52628i −0.240498 0.416555i 0.720358 0.693602i \(-0.243977\pi\)
−0.960856 + 0.277047i \(0.910644\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) −2.00000 3.46410i −0.0871214 0.150899i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) −4.00000 6.92820i −0.173749 0.300942i
\(531\) 0 0
\(532\) −1.00000 + 5.19615i −0.0433555 + 0.225282i
\(533\) −18.0000 −0.779667
\(534\) 0 0
\(535\) −6.00000 + 10.3923i −0.259403 + 0.449299i
\(536\) 0 0
\(537\) 0 0
\(538\) 20.0000 0.862261
\(539\) 33.0000 25.9808i 1.42141 1.11907i
\(540\) 0 0
\(541\) 1.50000 + 2.59808i 0.0644900 + 0.111700i 0.896468 0.443109i \(-0.146125\pi\)
−0.831978 + 0.554809i \(0.812791\pi\)
\(542\) 24.0000 41.5692i 1.03089 1.78555i
\(543\) 0 0
\(544\) 16.0000 + 27.7128i 0.685994 + 1.18818i
\(545\) 15.0000 0.642529
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) 8.00000 + 13.8564i 0.341743 + 0.591916i
\(549\) 0 0
\(550\) −6.00000 + 10.3923i −0.255841 + 0.443129i
\(551\) −4.00000 6.92820i −0.170406 0.295151i
\(552\) 0 0
\(553\) −2.50000 + 0.866025i −0.106311 + 0.0368271i
\(554\) −14.0000 −0.594803
\(555\) 0 0
\(556\) −21.0000 + 36.3731i −0.890598 + 1.54256i
\(557\) −5.00000 + 8.66025i −0.211857 + 0.366947i −0.952296 0.305177i \(-0.901284\pi\)
0.740439 + 0.672124i \(0.234618\pi\)
\(558\) 0 0
\(559\) −3.00000 −0.126886
\(560\) −8.00000 6.92820i −0.338062 0.292770i
\(561\) 0 0
\(562\) −12.0000 20.7846i −0.506189 0.876746i
\(563\) −13.0000 + 22.5167i −0.547885 + 0.948964i 0.450535 + 0.892759i \(0.351233\pi\)
−0.998419 + 0.0562051i \(0.982100\pi\)
\(564\) 0 0
\(565\) 3.00000 + 5.19615i 0.126211 + 0.218604i
\(566\) −14.0000 −0.588464
\(567\) 0 0
\(568\) 0 0
\(569\) 9.00000 + 15.5885i 0.377300 + 0.653502i 0.990668 0.136295i \(-0.0435194\pi\)
−0.613369 + 0.789797i \(0.710186\pi\)
\(570\) 0 0
\(571\) 1.50000 2.59808i 0.0627730 0.108726i −0.832931 0.553377i \(-0.813339\pi\)
0.895704 + 0.444651i \(0.146672\pi\)
\(572\) 18.0000 + 31.1769i 0.752618 + 1.30357i
\(573\) 0 0
\(574\) 30.0000 10.3923i 1.25218 0.433766i
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 14.5000 25.1147i 0.603643 1.04554i −0.388621 0.921397i \(-0.627049\pi\)
0.992264 0.124143i \(-0.0396180\pi\)
\(578\) 1.00000 1.73205i 0.0415945 0.0720438i
\(579\) 0 0
\(580\) −16.0000 −0.664364
\(581\) 1.00000 5.19615i 0.0414870 0.215573i
\(582\) 0 0
\(583\) 12.0000 + 20.7846i 0.496989 + 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) −16.0000 27.7128i −0.660954 1.14481i
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 1.00000 0.0412043
\(590\) 8.00000 + 13.8564i 0.329355 + 0.570459i
\(591\) 0 0
\(592\) 14.0000 24.2487i 0.575396 0.996616i
\(593\) −9.00000 15.5885i −0.369586 0.640141i 0.619915 0.784669i \(-0.287167\pi\)
−0.989501 + 0.144528i \(0.953834\pi\)
\(594\) 0 0
\(595\) 2.00000 10.3923i 0.0819920 0.426043i
\(596\) 8.00000 0.327693
\(597\) 0 0
\(598\) 12.0000 20.7846i 0.490716 0.849946i
\(599\) −2.00000 + 3.46410i −0.0817178 + 0.141539i −0.903988 0.427558i \(-0.859374\pi\)
0.822270 + 0.569097i \(0.192707\pi\)
\(600\) 0 0
\(601\) −33.0000 −1.34610 −0.673049 0.739598i \(-0.735016\pi\)
−0.673049 + 0.739598i \(0.735016\pi\)
\(602\) 5.00000 1.73205i 0.203785 0.0705931i
\(603\) 0 0
\(604\) −8.00000 13.8564i −0.325515 0.563809i
\(605\) 12.5000 21.6506i 0.508197 0.880223i
\(606\) 0 0
\(607\) −17.5000 30.3109i −0.710303 1.23028i −0.964743 0.263193i \(-0.915225\pi\)
0.254440 0.967088i \(-0.418109\pi\)
\(608\) −8.00000 −0.324443
\(609\) 0 0
\(610\) 28.0000 1.13369
\(611\) −3.00000 5.19615i −0.121367 0.210214i
\(612\) 0 0
\(613\) 15.0000 25.9808i 0.605844 1.04935i −0.386073 0.922468i \(-0.626169\pi\)
0.991917 0.126885i \(-0.0404979\pi\)
\(614\) −3.00000 5.19615i −0.121070 0.209700i
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) −1.50000 + 2.59808i −0.0602901 + 0.104425i −0.894595 0.446878i \(-0.852536\pi\)
0.834305 + 0.551303i \(0.185869\pi\)
\(620\) 1.00000 1.73205i 0.0401610 0.0695608i
\(621\) 0 0
\(622\) −12.0000 −0.481156
\(623\) 30.0000 10.3923i 1.20192 0.416359i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −11.0000 + 19.0526i −0.439648 + 0.761493i
\(627\) 0 0
\(628\) −10.0000 17.3205i −0.399043 0.691164i
\(629\) 28.0000 1.11643
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 20.0000 34.6410i 0.794301 1.37577i
\(635\) 2.50000 + 4.33013i 0.0992095 + 0.171836i
\(636\) 0 0
\(637\) 19.5000 + 7.79423i 0.772618 + 0.308819i
\(638\) 96.0000 3.80068
\(639\) 0 0
\(640\) 0 0
\(641\) 6.00000 10.3923i 0.236986 0.410471i −0.722862 0.690992i \(-0.757174\pi\)
0.959848 + 0.280521i \(0.0905072\pi\)
\(642\) 0 0
\(643\) 1.00000 0.0394362 0.0197181 0.999806i \(-0.493723\pi\)
0.0197181 + 0.999806i \(0.493723\pi\)
\(644\) −4.00000 + 20.7846i −0.157622 + 0.819028i
\(645\) 0 0
\(646\) −4.00000 6.92820i −0.157378 0.272587i
\(647\) 15.0000 25.9808i 0.589711 1.02141i −0.404559 0.914512i \(-0.632575\pi\)
0.994270 0.106897i \(-0.0340916\pi\)
\(648\) 0 0
\(649\) −24.0000 41.5692i −0.942082 1.63173i
\(650\) −6.00000 −0.235339
\(651\) 0 0
\(652\) −24.0000 −0.939913
\(653\) 7.00000 + 12.1244i 0.273931 + 0.474463i 0.969865 0.243643i \(-0.0783426\pi\)
−0.695934 + 0.718106i \(0.745009\pi\)
\(654\) 0 0
\(655\) −1.00000 + 1.73205i −0.0390732 + 0.0676768i
\(656\) 12.0000 + 20.7846i 0.468521 + 0.811503i
\(657\) 0 0
\(658\) 8.00000 + 6.92820i 0.311872 + 0.270089i
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −11.5000 + 19.9186i −0.447298 + 0.774743i −0.998209 0.0598209i \(-0.980947\pi\)
0.550911 + 0.834564i \(0.314280\pi\)
\(662\) 9.00000 15.5885i 0.349795 0.605863i
\(663\) 0 0
\(664\) 0 0
\(665\) 2.00000 + 1.73205i 0.0775567 + 0.0671660i
\(666\) 0 0
\(667\) −16.0000 27.7128i −0.619522 1.07304i
\(668\) −10.0000 + 17.3205i −0.386912 + 0.670151i
\(669\) 0 0
\(670\) 7.00000 + 12.1244i 0.270434 + 0.468405i
\(671\) −84.0000 −3.24278
\(672\) 0 0
\(673\) −37.0000 −1.42625 −0.713123 0.701039i \(-0.752720\pi\)
−0.713123 + 0.701039i \(0.752720\pi\)
\(674\) −25.0000 43.3013i −0.962964 1.66790i
\(675\) 0 0
\(676\) 4.00000 6.92820i 0.153846 0.266469i
\(677\) 8.00000 + 13.8564i 0.307465 + 0.532545i 0.977807 0.209507i \(-0.0671860\pi\)
−0.670342 + 0.742052i \(0.733853\pi\)
\(678\) 0 0
\(679\) 3.00000 15.5885i 0.115129 0.598230i
\(680\) 0 0
\(681\) 0 0
\(682\) −6.00000 + 10.3923i −0.229752 + 0.397942i
\(683\) −24.0000 + 41.5692i −0.918334 + 1.59060i −0.116390 + 0.993204i \(0.537132\pi\)
−0.801945 + 0.597398i \(0.796201\pi\)
\(684\) 0 0
\(685\) 8.00000 0.305664
\(686\) −37.0000 1.73205i −1.41267 0.0661300i
\(687\) 0 0
\(688\) 2.00000 + 3.46410i 0.0762493 + 0.132068i
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 0 0
\(691\) −13.5000 23.3827i −0.513564 0.889519i −0.999876 0.0157341i \(-0.994991\pi\)
0.486312 0.873785i \(-0.338342\pi\)
\(692\) −48.0000 −1.82469
\(693\) 0 0
\(694\) −32.0000 −1.21470
\(695\) 10.5000 + 18.1865i 0.398288 + 0.689855i
\(696\) 0 0
\(697\) −12.0000 + 20.7846i −0.454532 + 0.787273i
\(698\) −2.00000 3.46410i −0.0757011 0.131118i
\(699\) 0 0
\(700\) 5.00000 1.73205i 0.188982 0.0654654i
\(701\) 44.0000 1.66186 0.830929 0.556379i \(-0.187810\pi\)
0.830929 + 0.556379i \(0.187810\pi\)
\(702\) 0 0
\(703\) −3.50000 + 6.06218i −0.132005 + 0.228639i
\(704\) 24.0000 41.5692i 0.904534 1.56670i
\(705\) 0 0
\(706\) 36.0000 1.35488
\(707\) −20.0000 17.3205i −0.752177 0.651405i
\(708\) 0 0
\(709\) 13.0000 + 22.5167i 0.488225 + 0.845631i 0.999908 0.0135434i \(-0.00431112\pi\)
−0.511683 + 0.859174i \(0.670978\pi\)
\(710\) −6.00000 + 10.3923i −0.225176 + 0.390016i
\(711\) 0 0
\(712\) 0 0
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) 18.0000 + 31.1769i 0.672692 + 1.16514i
\(717\) 0 0
\(718\) −24.0000 + 41.5692i −0.895672 + 1.55135i
\(719\) −17.0000 29.4449i −0.633993 1.09811i −0.986728 0.162385i \(-0.948081\pi\)
0.352735 0.935723i \(-0.385252\pi\)
\(720\) 0 0
\(721\) −47.5000 + 16.4545i −1.76899 + 0.612797i
\(722\) −36.0000 −1.33978
\(723\) 0 0
\(724\) −13.0000 + 22.5167i −0.483141 + 0.836825i
\(725\) −4.00000 + 6.92820i −0.148556 + 0.257307i
\(726\) 0 0
\(727\) 7.00000 0.259616 0.129808 0.991539i \(-0.458564\pi\)
0.129808 + 0.991539i \(0.458564\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.00000 + 1.73205i 0.0370117 + 0.0641061i
\(731\) −2.00000 + 3.46410i −0.0739727 + 0.128124i
\(732\) 0 0
\(733\) 21.5000 + 37.2391i 0.794121 + 1.37546i 0.923396 + 0.383849i \(0.125402\pi\)
−0.129275 + 0.991609i \(0.541265\pi\)
\(734\) 38.0000 1.40261
\(735\) 0 0
\(736\) −32.0000 −1.17954
\(737\) −21.0000 36.3731i −0.773545 1.33982i
\(738\) 0 0
\(739\) −20.5000 + 35.5070i −0.754105 + 1.30615i 0.191714 + 0.981451i \(0.438596\pi\)
−0.945818 + 0.324697i \(0.894738\pi\)
\(740\) 7.00000 + 12.1244i 0.257325 + 0.445700i
\(741\) 0 0
\(742\) 4.00000 20.7846i 0.146845 0.763027i
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 2.00000 3.46410i 0.0732743 0.126915i
\(746\) −11.0000 + 19.0526i −0.402739 + 0.697564i
\(747\) 0 0
\(748\) 48.0000 1.75505
\(749\) −30.0000 + 10.3923i −1.09618 + 0.379727i
\(750\) 0 0
\(751\) −14.5000 25.1147i −0.529113 0.916450i −0.999424 0.0339490i \(-0.989192\pi\)
0.470311 0.882501i \(-0.344142\pi\)
\(752\) −4.00000 + 6.92820i −0.145865 + 0.252646i
\(753\) 0 0
\(754\) 24.0000 + 41.5692i 0.874028 + 1.51386i
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −11.0000 19.0526i −0.399538 0.692020i
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 10.3923i −0.217500 0.376721i 0.736543 0.676391i \(-0.236457\pi\)
−0.954043 + 0.299670i \(0.903123\pi\)
\(762\) 0 0
\(763\) 30.0000 + 25.9808i 1.08607 + 0.940567i
\(764\) −20.0000 −0.723575
\(765\) 0 0
\(766\) 28.0000 48.4974i 1.01168 1.75228i
\(767\) 12.0000 20.7846i 0.433295 0.750489i
\(768\) 0 0
\(769\) −49.0000 −1.76699 −0.883493 0.468445i \(-0.844814\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) −30.0000 + 10.3923i −1.08112 + 0.374513i
\(771\) 0 0
\(772\) 9.00000 + 15.5885i 0.323917 + 0.561041i
\(773\) 9.00000 15.5885i 0.323708 0.560678i −0.657542 0.753418i \(-0.728404\pi\)
0.981250 + 0.192740i \(0.0617373\pi\)
\(774\) 0 0
\(775\) −0.500000 0.866025i −0.0179605 0.0311086i
\(776\) 0 0
\(777\) 0 0
\(778\) −12.0000 −0.430221
\(779\) −3.00000 5.19615i −0.107486 0.186171i
\(780\) 0 0
\(781\) 18.0000 31.1769i 0.644091 1.11560i
\(782\) −16.0000 27.7128i −0.572159 0.991008i
\(783\) 0 0
\(784\) −4.00000 27.7128i −0.142857 0.989743i
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) 16.0000 27.7128i 0.570338 0.987855i −0.426193 0.904632i \(-0.640145\pi\)
0.996531 0.0832226i \(-0.0265213\pi\)
\(788\) 12.0000 20.7846i 0.427482 0.740421i
\(789\) 0 0
\(790\) 2.00000 0.0711568
\(791\) −3.00000 + 15.5885i −0.106668 + 0.554262i
\(792\) 0 0
\(793\) −21.0000 36.3731i −0.745732 1.29165i
\(794\) 37.0000 64.0859i 1.31308 2.27432i
\(795\) 0 0
\(796\) −8.00000 13.8564i −0.283552 0.491127i
\(797\) 36.0000 1.27519 0.637593 0.770374i \(-0.279930\pi\)
0.637593 + 0.770374i \(0.279930\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 4.00000 + 6.92820i 0.141421 + 0.244949i
\(801\) 0 0
\(802\) −12.0000 + 20.7846i −0.423735 + 0.733930i
\(803\) −3.00000 5.19615i −0.105868 0.183368i
\(804\) 0 0
\(805\) 8.00000 + 6.92820i 0.281963 + 0.244187i
\(806\) −6.00000 −0.211341
\(807\) 0 0
\(808\) 0 0
\(809\) −21.0000 + 36.3731i −0.738321 + 1.27881i 0.214930 + 0.976629i \(0.431048\pi\)
−0.953251 + 0.302180i \(0.902286\pi\)
\(810\) 0 0
\(811\) −48.0000 −1.68551 −0.842754 0.538299i \(-0.819067\pi\)
−0.842754 + 0.538299i \(0.819067\pi\)
\(812\) −32.0000 27.7128i −1.12298 0.972529i
\(813\) 0 0
\(814\) −42.0000 72.7461i −1.47210 2.54975i
\(815\) −6.00000 + 10.3923i −0.210171 + 0.364027i
\(816\) 0 0
\(817\) −0.500000 0.866025i −0.0174928 0.0302984i
\(818\) 10.0000 0.349642
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) 27.0000 + 46.7654i 0.942306 + 1.63212i 0.761056 + 0.648686i \(0.224681\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(822\) 0 0
\(823\) −4.00000 + 6.92820i −0.139431 + 0.241502i −0.927281 0.374365i \(-0.877861\pi\)
0.787850 + 0.615867i \(0.211194\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −8.00000 + 41.5692i −0.278356 + 1.44638i
\(827\) 30.0000 1.04320 0.521601 0.853189i \(-0.325335\pi\)
0.521601 + 0.853189i \(0.325335\pi\)
\(828\) 0 0
\(829\) −28.5000 + 49.3634i −0.989846 + 1.71446i −0.371822 + 0.928304i \(0.621267\pi\)
−0.618024 + 0.786159i \(0.712066\pi\)
\(830\) −2.00000 + 3.46410i −0.0694210 + 0.120241i
\(831\) 0 0
\(832\) 24.0000 0.832050
\(833\) 22.0000 17.3205i 0.762255 0.600120i
\(834\) 0 0
\(835\) 5.00000 + 8.66025i 0.173032 + 0.299700i
\(836\) −6.00000 + 10.3923i −0.207514 + 0.359425i
\(837\) 0 0
\(838\) 6.00000 + 10.3923i 0.207267 + 0.358996i
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) −1.00000 1.73205i −0.0344623 0.0596904i
\(843\) 0 0
\(844\) 20.0000 34.6410i 0.688428 1.19239i
\(845\) −2.00000 3.46410i −0.0688021 0.119169i
\(846\) 0 0
\(847\) 62.5000 21.6506i 2.14753 0.743925i
\(848\) 16.0000 0.549442
\(849\) 0 0
\(850\) −4.00000 + 6.92820i −0.137199 + 0.237635i
\(851\) −14.0000 + 24.2487i −0.479914 + 0.831235i
\(852\) 0 0
\(853\) −9.00000 −0.308154 −0.154077 0.988059i \(-0.549240\pi\)
−0.154077 + 0.988059i \(0.549240\pi\)
\(854\) 56.0000 + 48.4974i 1.91628 + 1.65955i
\(855\) 0 0
\(856\) 0 0
\(857\) −6.00000 + 10.3923i −0.204956 + 0.354994i −0.950119 0.311888i \(-0.899038\pi\)
0.745163 + 0.666883i \(0.232372\pi\)
\(858\) 0 0
\(859\) 20.0000 + 34.6410i 0.682391 + 1.18194i 0.974249 + 0.225475i \(0.0723932\pi\)
−0.291858 + 0.956462i \(0.594273\pi\)
\(860\) −2.00000 −0.0681994
\(861\) 0 0
\(862\) 4.00000 0.136241
\(863\) −3.00000 5.19615i −0.102121 0.176879i 0.810437 0.585826i \(-0.199230\pi\)
−0.912558 + 0.408946i \(0.865896\pi\)
\(864\) 0 0
\(865\) −12.0000 + 20.7846i −0.408012 + 0.706698i
\(866\) 5.00000 + 8.66025i 0.169907 + 0.294287i
\(867\) 0 0
\(868\) 5.00000 1.73205i 0.169711 0.0587896i
\(869\) −6.00000 −0.203536
\(870\) 0 0
\(871\) 10.5000 18.1865i 0.355779 0.616227i
\(872\) 0 0
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) 0.500000 2.59808i 0.0169031 0.0878310i
\(876\) 0 0
\(877\) 11.0000 + 19.0526i 0.371444 + 0.643359i 0.989788 0.142548i \(-0.0455296\pi\)
−0.618344 + 0.785907i \(0.712196\pi\)
\(878\) −16.0000 + 27.7128i −0.539974 + 0.935262i
\(879\) 0 0
\(880\) −12.0000 20.7846i −0.404520 0.700649i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 7.00000 0.235569 0.117784 0.993039i \(-0.462421\pi\)
0.117784 + 0.993039i \(0.462421\pi\)
\(884\) 12.0000 + 20.7846i 0.403604 + 0.699062i
\(885\) 0 0
\(886\) −36.0000 + 62.3538i −1.20944 + 2.09482i
\(887\) 5.00000 + 8.66025i 0.167884 + 0.290783i 0.937676 0.347512i \(-0.112973\pi\)
−0.769792 + 0.638295i \(0.779640\pi\)
\(888\) 0 0
\(889\) −2.50000 + 12.9904i −0.0838473 + 0.435683i
\(890\) −24.0000 −0.804482
\(891\) 0 0
\(892\) 24.0000 41.5692i 0.803579 1.39184i
\(893\) 1.00000 1.73205i 0.0334637 0.0579609i
\(894\) 0 0
\(895\) 18.0000 0.601674
\(896\) 0 0
\(897\) 0 0
\(898\) 30.0000 + 51.9615i 1.00111 + 1.73398i
\(899\) −4.00000 + 6.92820i −0.133407 + 0.231069i
\(900\) 0 0
\(901\) 8.00000 + 13.8564i 0.266519 + 0.461624i
\(902\) 72.0000 2.39734
\(903\) 0 0
\(904\) 0 0
\(905\) 6.50000 + 11.2583i 0.216067 + 0.374240i
\(906\) 0 0
\(907\) −15.5000 + 26.8468i −0.514669 + 0.891433i 0.485186 + 0.874411i \(0.338752\pi\)
−0.999855 + 0.0170220i \(0.994581\pi\)
\(908\) −10.0000 17.3205i −0.331862 0.574801i
\(909\) 0 0
\(910\) −12.0000 10.3923i −0.397796 0.344502i
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 6.00000 10.3923i 0.198571 0.343935i
\(914\) 15.0000 25.9808i 0.496156 0.859367i
\(915\) 0 0
\(916\) 26.0000 0.859064
\(917\) −5.00000 + 1.73205i −0.165115 + 0.0571974i
\(918\) 0 0
\(919\) 4.50000 + 7.79423i 0.148441 + 0.257108i 0.930652 0.365907i \(-0.119241\pi\)
−0.782210 + 0.623015i \(0.785908\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −8.00000 13.8564i −0.263466 0.456336i
\(923\) 18.0000 0.592477
\(924\) 0 0
\(925\) 7.00000 0.230159
\(926\) −3.00000 5.19615i −0.0985861 0.170756i
\(927\) 0 0
\(928\) 32.0000 55.4256i 1.05045 1.81944i
\(929\) −7.00000 12.1244i −0.229663 0.397787i 0.728046 0.685529i \(-0.240429\pi\)
−0.957708 + 0.287742i \(0.907096\pi\)
\(930\) 0 0
\(931\) 1.00000 + 6.92820i 0.0327737 + 0.227063i
\(932\) −12.0000 −0.393073
\(933\) 0 0
\(934\) 22.0000 38.1051i 0.719862 1.24684i
\(935\) 12.0000 20.7846i 0.392442 0.679729i
\(936\) 0 0
\(937\) −29.0000 −0.947389 −0.473694 0.880689i \(-0.657080\pi\)
−0.473694 + 0.880689i \(0.657080\pi\)
\(938\) −7.00000 + 36.3731i −0.228558 + 1.18762i
\(939\) 0 0
\(940\) −2.00000 3.46410i −0.0652328 0.112987i
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0 0
\(943\) −12.0000 20.7846i −0.390774 0.676840i
\(944\) −32.0000 −1.04151
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) 13.0000 + 22.5167i 0.422443 + 0.731693i 0.996178 0.0873481i \(-0.0278392\pi\)
−0.573735 + 0.819041i \(0.694506\pi\)
\(948\) 0 0
\(949\) 1.50000 2.59808i 0.0486921 0.0843371i
\(950\) −1.00000 1.73205i −0.0324443 0.0561951i
\(951\) 0 0
\(952\) 0 0
\(953\) −4.00000 −0.129573 −0.0647864 0.997899i \(-0.520637\pi\)
−0.0647864 + 0.997899i \(0.520637\pi\)
\(954\) 0 0
\(955\) −5.00000 + 8.66025i −0.161796 + 0.280239i
\(956\) 14.0000 24.2487i 0.452792 0.784259i
\(957\) 0 0
\(958\) 8.00000 0.258468
\(959\) 16.0000 + 13.8564i 0.516667 + 0.447447i
\(960\) 0 0
\(961\) 15.0000 + 25.9808i 0.483871 + 0.838089i
\(962\) 21.0000 36.3731i 0.677067 1.17271i
\(963\) 0 0
\(964\) 18.0000 + 31.1769i 0.579741 + 1.00414i
\(965\) 9.00000 0.289720
\(966\) 0 0
\(967\) 55.0000 1.76868 0.884340 0.466843i \(-0.154609\pi\)
0.884340 + 0.466843i \(0.154609\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −6.00000 + 10.3923i −0.192648 + 0.333677i
\(971\) −26.0000 45.0333i −0.834380 1.44519i −0.894534 0.446999i \(-0.852493\pi\)
0.0601548 0.998189i \(-0.480841\pi\)
\(972\) 0 0
\(973\) −10.5000 + 54.5596i −0.336615 + 1.74910i
\(974\) −26.0000 −0.833094
\(975\) 0 0
\(976\) −28.0000 + 48.4974i −0.896258 + 1.55236i
\(977\) −11.0000 + 19.0526i −0.351921 + 0.609545i −0.986586 0.163242i \(-0.947805\pi\)
0.634665 + 0.772787i \(0.281138\pi\)
\(978\) 0 0
\(979\) 72.0000 2.30113
\(980\) 13.0000 + 5.19615i 0.415270 + 0.165985i
\(981\) 0 0
\(982\) −12.0000 20.7846i −0.382935 0.663264i
\(983\) 16.0000 27.7128i 0.510321 0.883901i −0.489608 0.871943i \(-0.662860\pi\)
0.999928 0.0119587i \(-0.00380665\pi\)
\(984\) 0 0
\(985\) −6.00000 10.3923i −0.191176 0.331126i
\(986\) 64.0000 2.03818
\(987\) 0 0
\(988\) −6.00000 −0.190885
\(989\) −2.00000 3.46410i −0.0635963 0.110152i
\(990\) 0 0
\(991\) 7.50000 12.9904i 0.238245 0.412653i −0.721966 0.691929i \(-0.756761\pi\)
0.960211 + 0.279276i \(0.0900944\pi\)
\(992\) 4.00000 + 6.92820i 0.127000 + 0.219971i
\(993\) 0 0
\(994\) −30.0000 + 10.3923i −0.951542 + 0.329624i
\(995\) −8.00000 −0.253617
\(996\) 0 0
\(997\) 12.5000 21.6506i 0.395879 0.685682i −0.597334 0.801993i \(-0.703773\pi\)
0.993213 + 0.116310i \(0.0371066\pi\)
\(998\) −29.0000 + 50.2295i −0.917979 + 1.58999i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.j.a.46.1 2
3.2 odd 2 105.2.i.b.46.1 yes 2
7.2 even 3 inner 315.2.j.a.226.1 2
7.3 odd 6 2205.2.a.m.1.1 1
7.4 even 3 2205.2.a.k.1.1 1
12.11 even 2 1680.2.bg.l.1201.1 2
15.2 even 4 525.2.r.d.424.1 4
15.8 even 4 525.2.r.d.424.2 4
15.14 odd 2 525.2.i.a.151.1 2
21.2 odd 6 105.2.i.b.16.1 2
21.5 even 6 735.2.i.f.226.1 2
21.11 odd 6 735.2.a.b.1.1 1
21.17 even 6 735.2.a.a.1.1 1
21.20 even 2 735.2.i.f.361.1 2
84.23 even 6 1680.2.bg.l.961.1 2
105.2 even 12 525.2.r.d.499.2 4
105.23 even 12 525.2.r.d.499.1 4
105.44 odd 6 525.2.i.a.226.1 2
105.59 even 6 3675.2.a.p.1.1 1
105.74 odd 6 3675.2.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.i.b.16.1 2 21.2 odd 6
105.2.i.b.46.1 yes 2 3.2 odd 2
315.2.j.a.46.1 2 1.1 even 1 trivial
315.2.j.a.226.1 2 7.2 even 3 inner
525.2.i.a.151.1 2 15.14 odd 2
525.2.i.a.226.1 2 105.44 odd 6
525.2.r.d.424.1 4 15.2 even 4
525.2.r.d.424.2 4 15.8 even 4
525.2.r.d.499.1 4 105.23 even 12
525.2.r.d.499.2 4 105.2 even 12
735.2.a.a.1.1 1 21.17 even 6
735.2.a.b.1.1 1 21.11 odd 6
735.2.i.f.226.1 2 21.5 even 6
735.2.i.f.361.1 2 21.20 even 2
1680.2.bg.l.961.1 2 84.23 even 6
1680.2.bg.l.1201.1 2 12.11 even 2
2205.2.a.k.1.1 1 7.4 even 3
2205.2.a.m.1.1 1 7.3 odd 6
3675.2.a.o.1.1 1 105.74 odd 6
3675.2.a.p.1.1 1 105.59 even 6