Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [315,4,Mod(1,315)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(315, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("315.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 315.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 35) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 315.4.a.c | 1 | |
3.b | odd | 2 | 1 | 35.4.a.a | ✓ | 1 | |
5.b | even | 2 | 1 | 1575.4.a.g | 1 | ||
7.b | odd | 2 | 1 | 2205.4.a.i | 1 | ||
12.b | even | 2 | 1 | 560.4.a.p | 1 | ||
15.d | odd | 2 | 1 | 175.4.a.a | 1 | ||
15.e | even | 4 | 2 | 175.4.b.a | 2 | ||
21.c | even | 2 | 1 | 245.4.a.d | 1 | ||
21.g | even | 6 | 2 | 245.4.e.b | 2 | ||
21.h | odd | 6 | 2 | 245.4.e.e | 2 | ||
24.f | even | 2 | 1 | 2240.4.a.b | 1 | ||
24.h | odd | 2 | 1 | 2240.4.a.bk | 1 | ||
105.g | even | 2 | 1 | 1225.4.a.e | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.4.a.a | ✓ | 1 | 3.b | odd | 2 | 1 | |
175.4.a.a | 1 | 15.d | odd | 2 | 1 | ||
175.4.b.a | 2 | 15.e | even | 4 | 2 | ||
245.4.a.d | 1 | 21.c | even | 2 | 1 | ||
245.4.e.b | 2 | 21.g | even | 6 | 2 | ||
245.4.e.e | 2 | 21.h | odd | 6 | 2 | ||
315.4.a.c | 1 | 1.a | even | 1 | 1 | trivial | |
560.4.a.p | 1 | 12.b | even | 2 | 1 | ||
1225.4.a.e | 1 | 105.g | even | 2 | 1 | ||
1575.4.a.g | 1 | 5.b | even | 2 | 1 | ||
2205.4.a.i | 1 | 7.b | odd | 2 | 1 | ||
2240.4.a.b | 1 | 24.f | even | 2 | 1 | ||
2240.4.a.bk | 1 | 24.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .