Properties

Label 315.4.a.c
Level 315315
Weight 44
Character orbit 315.a
Self dual yes
Analytic conductor 18.58618.586
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 315=3257 315 = 3^{2} \cdot 5 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 18.585601651818.5856016518
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 35)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq27q4+5q5+7q7+15q85q1012q1178q137q14+41q16+94q17+40q1935q20+12q2232q23+25q25+78q2649q28+49q98+O(q100) q - q^{2} - 7 q^{4} + 5 q^{5} + 7 q^{7} + 15 q^{8} - 5 q^{10} - 12 q^{11} - 78 q^{13} - 7 q^{14} + 41 q^{16} + 94 q^{17} + 40 q^{19} - 35 q^{20} + 12 q^{22} - 32 q^{23} + 25 q^{25} + 78 q^{26} - 49 q^{28}+ \cdots - 49 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−1.00000 0 −7.00000 5.00000 0 7.00000 15.0000 0 −5.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.4.a.c 1
3.b odd 2 1 35.4.a.a 1
5.b even 2 1 1575.4.a.g 1
7.b odd 2 1 2205.4.a.i 1
12.b even 2 1 560.4.a.p 1
15.d odd 2 1 175.4.a.a 1
15.e even 4 2 175.4.b.a 2
21.c even 2 1 245.4.a.d 1
21.g even 6 2 245.4.e.b 2
21.h odd 6 2 245.4.e.e 2
24.f even 2 1 2240.4.a.b 1
24.h odd 2 1 2240.4.a.bk 1
105.g even 2 1 1225.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.a.a 1 3.b odd 2 1
175.4.a.a 1 15.d odd 2 1
175.4.b.a 2 15.e even 4 2
245.4.a.d 1 21.c even 2 1
245.4.e.b 2 21.g even 6 2
245.4.e.e 2 21.h odd 6 2
315.4.a.c 1 1.a even 1 1 trivial
560.4.a.p 1 12.b even 2 1
1225.4.a.e 1 105.g even 2 1
1575.4.a.g 1 5.b even 2 1
2205.4.a.i 1 7.b odd 2 1
2240.4.a.b 1 24.f even 2 1
2240.4.a.bk 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2+1 T_{2} + 1 acting on S4new(Γ0(315))S_{4}^{\mathrm{new}}(\Gamma_0(315)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1 T + 1 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T5 T - 5 Copy content Toggle raw display
77 T7 T - 7 Copy content Toggle raw display
1111 T+12 T + 12 Copy content Toggle raw display
1313 T+78 T + 78 Copy content Toggle raw display
1717 T94 T - 94 Copy content Toggle raw display
1919 T40 T - 40 Copy content Toggle raw display
2323 T+32 T + 32 Copy content Toggle raw display
2929 T50 T - 50 Copy content Toggle raw display
3131 T+248 T + 248 Copy content Toggle raw display
3737 T+434 T + 434 Copy content Toggle raw display
4141 T+402 T + 402 Copy content Toggle raw display
4343 T+68 T + 68 Copy content Toggle raw display
4747 T+536 T + 536 Copy content Toggle raw display
5353 T+22 T + 22 Copy content Toggle raw display
5959 T560 T - 560 Copy content Toggle raw display
6161 T+278 T + 278 Copy content Toggle raw display
6767 T+164 T + 164 Copy content Toggle raw display
7171 T+672 T + 672 Copy content Toggle raw display
7373 T82 T - 82 Copy content Toggle raw display
7979 T+1000 T + 1000 Copy content Toggle raw display
8383 T448 T - 448 Copy content Toggle raw display
8989 T870 T - 870 Copy content Toggle raw display
9797 T1026 T - 1026 Copy content Toggle raw display
show more
show less