Properties

Label 315.4.g.a.314.18
Level $315$
Weight $4$
Character 315.314
Analytic conductor $18.586$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(314,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.314");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 314.18
Character \(\chi\) \(=\) 315.314
Dual form 315.4.g.a.314.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41590 q^{2} -5.99524 q^{4} +(-2.48890 + 10.8998i) q^{5} +(-5.69164 - 17.6240i) q^{7} +19.8158 q^{8} +(3.52402 - 15.4330i) q^{10} -30.5871i q^{11} -16.5994 q^{13} +(8.05877 + 24.9538i) q^{14} +19.9047 q^{16} -81.3047i q^{17} +87.9721i q^{19} +(14.9215 - 65.3468i) q^{20} +43.3082i q^{22} +51.9402 q^{23} +(-112.611 - 54.2569i) q^{25} +23.5030 q^{26} +(34.1227 + 105.660i) q^{28} +160.205i q^{29} +306.111i q^{31} -186.710 q^{32} +115.119i q^{34} +(206.264 - 18.1734i) q^{35} +104.929i q^{37} -124.559i q^{38} +(-49.3195 + 215.988i) q^{40} +477.920 q^{41} -265.819i q^{43} +183.377i q^{44} -73.5419 q^{46} +140.739i q^{47} +(-278.210 + 200.619i) q^{49} +(159.445 + 76.8222i) q^{50} +99.5173 q^{52} +305.963 q^{53} +(333.393 + 76.1282i) q^{55} +(-112.784 - 349.234i) q^{56} -226.833i q^{58} +134.064 q^{59} +303.805i q^{61} -433.422i q^{62} +105.123 q^{64} +(41.3142 - 180.930i) q^{65} +671.592i q^{67} +487.441i q^{68} +(-292.048 + 25.7316i) q^{70} +616.486i q^{71} +1021.48 q^{73} -148.568i q^{74} -527.413i q^{76} +(-539.067 + 174.091i) q^{77} -558.731 q^{79} +(-49.5409 + 216.958i) q^{80} -676.686 q^{82} +335.471i q^{83} +(886.204 + 202.359i) q^{85} +376.372i q^{86} -606.108i q^{88} +931.364 q^{89} +(94.4778 + 292.548i) q^{91} -311.394 q^{92} -199.272i q^{94} +(-958.877 - 218.953i) q^{95} +772.248 q^{97} +(393.917 - 284.056i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 192 q^{4} + 768 q^{16} - 432 q^{25} + 816 q^{46} + 456 q^{49} + 7968 q^{64} + 1464 q^{70} + 4368 q^{79} - 1440 q^{85} - 4392 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41590 −0.500595 −0.250298 0.968169i \(-0.580528\pi\)
−0.250298 + 0.968169i \(0.580528\pi\)
\(3\) 0 0
\(4\) −5.99524 −0.749405
\(5\) −2.48890 + 10.8998i −0.222614 + 0.974907i
\(6\) 0 0
\(7\) −5.69164 17.6240i −0.307320 0.951606i
\(8\) 19.8158 0.875743
\(9\) 0 0
\(10\) 3.52402 15.4330i 0.111439 0.488034i
\(11\) 30.5871i 0.838397i −0.907895 0.419198i \(-0.862311\pi\)
0.907895 0.419198i \(-0.137689\pi\)
\(12\) 0 0
\(13\) −16.5994 −0.354142 −0.177071 0.984198i \(-0.556662\pi\)
−0.177071 + 0.984198i \(0.556662\pi\)
\(14\) 8.05877 + 24.9538i 0.153843 + 0.476369i
\(15\) 0 0
\(16\) 19.9047 0.311012
\(17\) 81.3047i 1.15996i −0.814632 0.579979i \(-0.803061\pi\)
0.814632 0.579979i \(-0.196939\pi\)
\(18\) 0 0
\(19\) 87.9721i 1.06222i 0.847303 + 0.531110i \(0.178225\pi\)
−0.847303 + 0.531110i \(0.821775\pi\)
\(20\) 14.9215 65.3468i 0.166828 0.730600i
\(21\) 0 0
\(22\) 43.3082i 0.419697i
\(23\) 51.9402 0.470882 0.235441 0.971889i \(-0.424347\pi\)
0.235441 + 0.971889i \(0.424347\pi\)
\(24\) 0 0
\(25\) −112.611 54.2569i −0.900886 0.434055i
\(26\) 23.5030 0.177282
\(27\) 0 0
\(28\) 34.1227 + 105.660i 0.230307 + 0.713138i
\(29\) 160.205i 1.02584i 0.858437 + 0.512919i \(0.171436\pi\)
−0.858437 + 0.512919i \(0.828564\pi\)
\(30\) 0 0
\(31\) 306.111i 1.77352i 0.462226 + 0.886762i \(0.347051\pi\)
−0.462226 + 0.886762i \(0.652949\pi\)
\(32\) −186.710 −1.03143
\(33\) 0 0
\(34\) 115.119i 0.580669i
\(35\) 206.264 18.1734i 0.996141 0.0877674i
\(36\) 0 0
\(37\) 104.929i 0.466221i 0.972450 + 0.233111i \(0.0748904\pi\)
−0.972450 + 0.233111i \(0.925110\pi\)
\(38\) 124.559i 0.531742i
\(39\) 0 0
\(40\) −49.3195 + 215.988i −0.194952 + 0.853768i
\(41\) 477.920 1.82045 0.910227 0.414110i \(-0.135907\pi\)
0.910227 + 0.414110i \(0.135907\pi\)
\(42\) 0 0
\(43\) 265.819i 0.942720i −0.881941 0.471360i \(-0.843763\pi\)
0.881941 0.471360i \(-0.156237\pi\)
\(44\) 183.377i 0.628298i
\(45\) 0 0
\(46\) −73.5419 −0.235721
\(47\) 140.739i 0.436785i 0.975861 + 0.218393i \(0.0700813\pi\)
−0.975861 + 0.218393i \(0.929919\pi\)
\(48\) 0 0
\(49\) −278.210 + 200.619i −0.811109 + 0.584895i
\(50\) 159.445 + 76.8222i 0.450979 + 0.217286i
\(51\) 0 0
\(52\) 99.5173 0.265396
\(53\) 305.963 0.792966 0.396483 0.918042i \(-0.370231\pi\)
0.396483 + 0.918042i \(0.370231\pi\)
\(54\) 0 0
\(55\) 333.393 + 76.1282i 0.817358 + 0.186639i
\(56\) −112.784 349.234i −0.269133 0.833363i
\(57\) 0 0
\(58\) 226.833i 0.513529i
\(59\) 134.064 0.295825 0.147912 0.989000i \(-0.452745\pi\)
0.147912 + 0.989000i \(0.452745\pi\)
\(60\) 0 0
\(61\) 303.805i 0.637676i 0.947809 + 0.318838i \(0.103293\pi\)
−0.947809 + 0.318838i \(0.896707\pi\)
\(62\) 433.422i 0.887817i
\(63\) 0 0
\(64\) 105.123 0.205319
\(65\) 41.3142 180.930i 0.0788368 0.345255i
\(66\) 0 0
\(67\) 671.592i 1.22460i 0.790626 + 0.612299i \(0.209755\pi\)
−0.790626 + 0.612299i \(0.790245\pi\)
\(68\) 487.441i 0.869277i
\(69\) 0 0
\(70\) −292.048 + 25.7316i −0.498663 + 0.0439359i
\(71\) 616.486i 1.03047i 0.857049 + 0.515236i \(0.172296\pi\)
−0.857049 + 0.515236i \(0.827704\pi\)
\(72\) 0 0
\(73\) 1021.48 1.63774 0.818871 0.573977i \(-0.194600\pi\)
0.818871 + 0.573977i \(0.194600\pi\)
\(74\) 148.568i 0.233388i
\(75\) 0 0
\(76\) 527.413i 0.796033i
\(77\) −539.067 + 174.091i −0.797823 + 0.257656i
\(78\) 0 0
\(79\) −558.731 −0.795723 −0.397862 0.917445i \(-0.630248\pi\)
−0.397862 + 0.917445i \(0.630248\pi\)
\(80\) −49.5409 + 216.958i −0.0692355 + 0.303207i
\(81\) 0 0
\(82\) −676.686 −0.911310
\(83\) 335.471i 0.443648i 0.975087 + 0.221824i \(0.0712010\pi\)
−0.975087 + 0.221824i \(0.928799\pi\)
\(84\) 0 0
\(85\) 886.204 + 202.359i 1.13085 + 0.258222i
\(86\) 376.372i 0.471921i
\(87\) 0 0
\(88\) 606.108i 0.734220i
\(89\) 931.364 1.10926 0.554632 0.832096i \(-0.312859\pi\)
0.554632 + 0.832096i \(0.312859\pi\)
\(90\) 0 0
\(91\) 94.4778 + 292.548i 0.108835 + 0.337004i
\(92\) −311.394 −0.352881
\(93\) 0 0
\(94\) 199.272i 0.218653i
\(95\) −958.877 218.953i −1.03557 0.236465i
\(96\) 0 0
\(97\) 772.248 0.808350 0.404175 0.914682i \(-0.367559\pi\)
0.404175 + 0.914682i \(0.367559\pi\)
\(98\) 393.917 284.056i 0.406037 0.292795i
\(99\) 0 0
\(100\) 675.128 + 325.283i 0.675128 + 0.325283i
\(101\) −889.653 −0.876473 −0.438237 0.898860i \(-0.644397\pi\)
−0.438237 + 0.898860i \(0.644397\pi\)
\(102\) 0 0
\(103\) −1586.47 −1.51766 −0.758831 0.651288i \(-0.774229\pi\)
−0.758831 + 0.651288i \(0.774229\pi\)
\(104\) −328.931 −0.310137
\(105\) 0 0
\(106\) −433.211 −0.396955
\(107\) −767.328 −0.693275 −0.346638 0.937999i \(-0.612677\pi\)
−0.346638 + 0.937999i \(0.612677\pi\)
\(108\) 0 0
\(109\) −814.720 −0.715927 −0.357963 0.933736i \(-0.616529\pi\)
−0.357963 + 0.933736i \(0.616529\pi\)
\(110\) −472.050 107.790i −0.409166 0.0934303i
\(111\) 0 0
\(112\) −113.291 350.801i −0.0955800 0.295961i
\(113\) 1649.68 1.37335 0.686676 0.726964i \(-0.259069\pi\)
0.686676 + 0.726964i \(0.259069\pi\)
\(114\) 0 0
\(115\) −129.274 + 566.137i −0.104825 + 0.459066i
\(116\) 960.466i 0.768767i
\(117\) 0 0
\(118\) −189.821 −0.148088
\(119\) −1432.91 + 462.757i −1.10382 + 0.356478i
\(120\) 0 0
\(121\) 395.428 0.297091
\(122\) 430.156i 0.319217i
\(123\) 0 0
\(124\) 1835.21i 1.32909i
\(125\) 871.665 1092.39i 0.623713 0.781654i
\(126\) 0 0
\(127\) 173.846i 0.121467i 0.998154 + 0.0607337i \(0.0193440\pi\)
−0.998154 + 0.0607337i \(0.980656\pi\)
\(128\) 1344.83 0.928652
\(129\) 0 0
\(130\) −58.4966 + 256.178i −0.0394653 + 0.172833i
\(131\) 468.800 0.312666 0.156333 0.987704i \(-0.450033\pi\)
0.156333 + 0.987704i \(0.450033\pi\)
\(132\) 0 0
\(133\) 1550.42 500.705i 1.01082 0.326441i
\(134\) 950.906i 0.613028i
\(135\) 0 0
\(136\) 1611.12i 1.01583i
\(137\) 1374.98 0.857463 0.428731 0.903432i \(-0.358961\pi\)
0.428731 + 0.903432i \(0.358961\pi\)
\(138\) 0 0
\(139\) 1723.01i 1.05140i −0.850671 0.525698i \(-0.823804\pi\)
0.850671 0.525698i \(-0.176196\pi\)
\(140\) −1236.60 + 108.954i −0.746513 + 0.0657733i
\(141\) 0 0
\(142\) 872.881i 0.515849i
\(143\) 507.728i 0.296911i
\(144\) 0 0
\(145\) −1746.20 398.733i −1.00010 0.228365i
\(146\) −1446.31 −0.819846
\(147\) 0 0
\(148\) 629.073i 0.349388i
\(149\) 621.643i 0.341792i −0.985289 0.170896i \(-0.945334\pi\)
0.985289 0.170896i \(-0.0546662\pi\)
\(150\) 0 0
\(151\) 2791.64 1.50451 0.752253 0.658874i \(-0.228967\pi\)
0.752253 + 0.658874i \(0.228967\pi\)
\(152\) 1743.24i 0.930232i
\(153\) 0 0
\(154\) 763.263 246.495i 0.399387 0.128981i
\(155\) −3336.55 761.880i −1.72902 0.394811i
\(156\) 0 0
\(157\) −1735.14 −0.882034 −0.441017 0.897499i \(-0.645382\pi\)
−0.441017 + 0.897499i \(0.645382\pi\)
\(158\) 791.105 0.398335
\(159\) 0 0
\(160\) 464.701 2035.09i 0.229611 1.00555i
\(161\) −295.625 915.393i −0.144711 0.448094i
\(162\) 0 0
\(163\) 995.750i 0.478486i −0.970960 0.239243i \(-0.923101\pi\)
0.970960 0.239243i \(-0.0768992\pi\)
\(164\) −2865.25 −1.36426
\(165\) 0 0
\(166\) 474.993i 0.222088i
\(167\) 1877.32i 0.869888i −0.900457 0.434944i \(-0.856768\pi\)
0.900457 0.434944i \(-0.143232\pi\)
\(168\) 0 0
\(169\) −1921.46 −0.874584
\(170\) −1254.77 286.519i −0.566098 0.129265i
\(171\) 0 0
\(172\) 1593.64i 0.706478i
\(173\) 2654.34i 1.16651i 0.812291 + 0.583253i \(0.198220\pi\)
−0.812291 + 0.583253i \(0.801780\pi\)
\(174\) 0 0
\(175\) −315.283 + 2293.46i −0.136190 + 0.990683i
\(176\) 608.829i 0.260751i
\(177\) 0 0
\(178\) −1318.72 −0.555292
\(179\) 4472.92i 1.86772i 0.357642 + 0.933859i \(0.383581\pi\)
−0.357642 + 0.933859i \(0.616419\pi\)
\(180\) 0 0
\(181\) 396.033i 0.162635i −0.996688 0.0813173i \(-0.974087\pi\)
0.996688 0.0813173i \(-0.0259127\pi\)
\(182\) −133.771 414.217i −0.0544821 0.168702i
\(183\) 0 0
\(184\) 1029.24 0.412371
\(185\) −1143.70 261.157i −0.454522 0.103787i
\(186\) 0 0
\(187\) −2486.87 −0.972504
\(188\) 843.764i 0.327329i
\(189\) 0 0
\(190\) 1357.67 + 310.015i 0.518399 + 0.118373i
\(191\) 1297.93i 0.491702i −0.969308 0.245851i \(-0.920933\pi\)
0.969308 0.245851i \(-0.0790673\pi\)
\(192\) 0 0
\(193\) 4471.94i 1.66786i −0.551868 0.833931i \(-0.686085\pi\)
0.551868 0.833931i \(-0.313915\pi\)
\(194\) −1093.42 −0.404656
\(195\) 0 0
\(196\) 1667.94 1202.76i 0.607849 0.438323i
\(197\) 21.6839 0.00784220 0.00392110 0.999992i \(-0.498752\pi\)
0.00392110 + 0.999992i \(0.498752\pi\)
\(198\) 0 0
\(199\) 1699.27i 0.605316i 0.953099 + 0.302658i \(0.0978740\pi\)
−0.953099 + 0.302658i \(0.902126\pi\)
\(200\) −2231.47 1075.14i −0.788945 0.380121i
\(201\) 0 0
\(202\) 1259.66 0.438758
\(203\) 2823.45 911.828i 0.976193 0.315260i
\(204\) 0 0
\(205\) −1189.49 + 5209.23i −0.405258 + 1.77477i
\(206\) 2246.27 0.759734
\(207\) 0 0
\(208\) −330.407 −0.110142
\(209\) 2690.81 0.890562
\(210\) 0 0
\(211\) −1882.71 −0.614269 −0.307135 0.951666i \(-0.599370\pi\)
−0.307135 + 0.951666i \(0.599370\pi\)
\(212\) −1834.32 −0.594252
\(213\) 0 0
\(214\) 1086.46 0.347050
\(215\) 2897.37 + 661.595i 0.919064 + 0.209862i
\(216\) 0 0
\(217\) 5394.91 1742.28i 1.68770 0.545039i
\(218\) 1153.56 0.358389
\(219\) 0 0
\(220\) −1998.77 456.406i −0.612532 0.139868i
\(221\) 1349.61i 0.410790i
\(222\) 0 0
\(223\) 5818.27 1.74717 0.873587 0.486668i \(-0.161788\pi\)
0.873587 + 0.486668i \(0.161788\pi\)
\(224\) 1062.68 + 3290.57i 0.316980 + 0.981519i
\(225\) 0 0
\(226\) −2335.77 −0.687493
\(227\) 2706.94i 0.791480i 0.918363 + 0.395740i \(0.129512\pi\)
−0.918363 + 0.395740i \(0.870488\pi\)
\(228\) 0 0
\(229\) 6228.53i 1.79735i 0.438616 + 0.898674i \(0.355469\pi\)
−0.438616 + 0.898674i \(0.644531\pi\)
\(230\) 183.038 801.592i 0.0524747 0.229806i
\(231\) 0 0
\(232\) 3174.59i 0.898370i
\(233\) 4128.59 1.16083 0.580414 0.814322i \(-0.302891\pi\)
0.580414 + 0.814322i \(0.302891\pi\)
\(234\) 0 0
\(235\) −1534.03 350.285i −0.425825 0.0972344i
\(236\) −803.746 −0.221692
\(237\) 0 0
\(238\) 2028.86 655.216i 0.552568 0.178451i
\(239\) 4645.24i 1.25722i −0.777721 0.628610i \(-0.783624\pi\)
0.777721 0.628610i \(-0.216376\pi\)
\(240\) 0 0
\(241\) 6926.50i 1.85135i 0.378320 + 0.925675i \(0.376502\pi\)
−0.378320 + 0.925675i \(0.623498\pi\)
\(242\) −559.886 −0.148722
\(243\) 0 0
\(244\) 1821.38i 0.477877i
\(245\) −1494.27 3531.76i −0.389654 0.920961i
\(246\) 0 0
\(247\) 1460.28i 0.376177i
\(248\) 6065.85i 1.55315i
\(249\) 0 0
\(250\) −1234.19 + 1546.72i −0.312228 + 0.391292i
\(251\) 5572.63 1.40136 0.700680 0.713476i \(-0.252880\pi\)
0.700680 + 0.713476i \(0.252880\pi\)
\(252\) 0 0
\(253\) 1588.70i 0.394785i
\(254\) 246.148i 0.0608060i
\(255\) 0 0
\(256\) −2745.13 −0.670198
\(257\) 2220.94i 0.539060i 0.962992 + 0.269530i \(0.0868683\pi\)
−0.962992 + 0.269530i \(0.913132\pi\)
\(258\) 0 0
\(259\) 1849.26 597.217i 0.443659 0.143279i
\(260\) −247.688 + 1084.72i −0.0590807 + 0.258736i
\(261\) 0 0
\(262\) −663.772 −0.156519
\(263\) 4665.04 1.09376 0.546880 0.837211i \(-0.315816\pi\)
0.546880 + 0.837211i \(0.315816\pi\)
\(264\) 0 0
\(265\) −761.509 + 3334.93i −0.176525 + 0.773068i
\(266\) −2195.23 + 708.947i −0.506009 + 0.163415i
\(267\) 0 0
\(268\) 4026.36i 0.917719i
\(269\) 4373.91 0.991384 0.495692 0.868498i \(-0.334915\pi\)
0.495692 + 0.868498i \(0.334915\pi\)
\(270\) 0 0
\(271\) 1610.82i 0.361071i 0.983568 + 0.180535i \(0.0577830\pi\)
−0.983568 + 0.180535i \(0.942217\pi\)
\(272\) 1618.35i 0.360760i
\(273\) 0 0
\(274\) −1946.83 −0.429242
\(275\) −1659.56 + 3444.44i −0.363910 + 0.755300i
\(276\) 0 0
\(277\) 4785.35i 1.03799i 0.854777 + 0.518996i \(0.173694\pi\)
−0.854777 + 0.518996i \(0.826306\pi\)
\(278\) 2439.61i 0.526324i
\(279\) 0 0
\(280\) 4087.28 360.120i 0.872364 0.0768617i
\(281\) 4559.34i 0.967927i 0.875088 + 0.483964i \(0.160803\pi\)
−0.875088 + 0.483964i \(0.839197\pi\)
\(282\) 0 0
\(283\) −3503.70 −0.735949 −0.367975 0.929836i \(-0.619949\pi\)
−0.367975 + 0.929836i \(0.619949\pi\)
\(284\) 3695.98i 0.772240i
\(285\) 0 0
\(286\) 718.890i 0.148632i
\(287\) −2720.15 8422.87i −0.559461 1.73236i
\(288\) 0 0
\(289\) −1697.45 −0.345501
\(290\) 2472.44 + 564.565i 0.500643 + 0.114319i
\(291\) 0 0
\(292\) −6124.02 −1.22733
\(293\) 5727.17i 1.14193i −0.820975 0.570964i \(-0.806569\pi\)
0.820975 0.570964i \(-0.193431\pi\)
\(294\) 0 0
\(295\) −333.672 + 1461.27i −0.0658546 + 0.288401i
\(296\) 2079.25i 0.408290i
\(297\) 0 0
\(298\) 880.182i 0.171099i
\(299\) −862.176 −0.166759
\(300\) 0 0
\(301\) −4684.78 + 1512.94i −0.897098 + 0.289716i
\(302\) −3952.67 −0.753149
\(303\) 0 0
\(304\) 1751.06i 0.330363i
\(305\) −3311.41 756.139i −0.621674 0.141955i
\(306\) 0 0
\(307\) 1876.50 0.348852 0.174426 0.984670i \(-0.444193\pi\)
0.174426 + 0.984670i \(0.444193\pi\)
\(308\) 3231.84 1043.72i 0.597893 0.193088i
\(309\) 0 0
\(310\) 4724.21 + 1078.74i 0.865539 + 0.197640i
\(311\) −4517.34 −0.823650 −0.411825 0.911263i \(-0.635108\pi\)
−0.411825 + 0.911263i \(0.635108\pi\)
\(312\) 0 0
\(313\) −7150.40 −1.29126 −0.645630 0.763650i \(-0.723405\pi\)
−0.645630 + 0.763650i \(0.723405\pi\)
\(314\) 2456.78 0.441542
\(315\) 0 0
\(316\) 3349.72 0.596318
\(317\) −4062.32 −0.719756 −0.359878 0.932999i \(-0.617182\pi\)
−0.359878 + 0.932999i \(0.617182\pi\)
\(318\) 0 0
\(319\) 4900.20 0.860059
\(320\) −261.641 + 1145.82i −0.0457069 + 0.200167i
\(321\) 0 0
\(322\) 418.574 + 1296.10i 0.0724417 + 0.224314i
\(323\) 7152.54 1.23213
\(324\) 0 0
\(325\) 1869.27 + 900.632i 0.319042 + 0.153717i
\(326\) 1409.88i 0.239528i
\(327\) 0 0
\(328\) 9470.38 1.59425
\(329\) 2480.39 801.036i 0.415648 0.134233i
\(330\) 0 0
\(331\) −868.986 −0.144301 −0.0721507 0.997394i \(-0.522986\pi\)
−0.0721507 + 0.997394i \(0.522986\pi\)
\(332\) 2011.23i 0.332472i
\(333\) 0 0
\(334\) 2658.09i 0.435462i
\(335\) −7320.22 1671.52i −1.19387 0.272612i
\(336\) 0 0
\(337\) 1287.31i 0.208083i −0.994573 0.104042i \(-0.966823\pi\)
0.994573 0.104042i \(-0.0331775\pi\)
\(338\) 2720.59 0.437812
\(339\) 0 0
\(340\) −5313.00 1213.19i −0.847464 0.193513i
\(341\) 9363.07 1.48692
\(342\) 0 0
\(343\) 5119.18 + 3761.33i 0.805859 + 0.592107i
\(344\) 5267.41i 0.825580i
\(345\) 0 0
\(346\) 3758.27i 0.583947i
\(347\) 422.265 0.0653268 0.0326634 0.999466i \(-0.489601\pi\)
0.0326634 + 0.999466i \(0.489601\pi\)
\(348\) 0 0
\(349\) 4640.81i 0.711797i 0.934525 + 0.355898i \(0.115825\pi\)
−0.934525 + 0.355898i \(0.884175\pi\)
\(350\) 446.409 3247.31i 0.0681758 0.495931i
\(351\) 0 0
\(352\) 5710.91i 0.864751i
\(353\) 1539.01i 0.232048i 0.993246 + 0.116024i \(0.0370150\pi\)
−0.993246 + 0.116024i \(0.962985\pi\)
\(354\) 0 0
\(355\) −6719.57 1534.37i −1.00461 0.229397i
\(356\) −5583.75 −0.831287
\(357\) 0 0
\(358\) 6333.19i 0.934970i
\(359\) 1035.99i 0.152305i −0.997096 0.0761525i \(-0.975736\pi\)
0.997096 0.0761525i \(-0.0242636\pi\)
\(360\) 0 0
\(361\) −880.088 −0.128311
\(362\) 560.741i 0.0814141i
\(363\) 0 0
\(364\) −566.417 1753.89i −0.0815613 0.252552i
\(365\) −2542.36 + 11133.9i −0.364584 + 1.59665i
\(366\) 0 0
\(367\) −2278.61 −0.324094 −0.162047 0.986783i \(-0.551810\pi\)
−0.162047 + 0.986783i \(0.551810\pi\)
\(368\) 1033.86 0.146450
\(369\) 0 0
\(370\) 1619.36 + 369.771i 0.227532 + 0.0519554i
\(371\) −1741.43 5392.28i −0.243694 0.754591i
\(372\) 0 0
\(373\) 8610.23i 1.19523i −0.801783 0.597615i \(-0.796115\pi\)
0.801783 0.597615i \(-0.203885\pi\)
\(374\) 3521.16 0.486831
\(375\) 0 0
\(376\) 2788.86i 0.382512i
\(377\) 2659.30i 0.363292i
\(378\) 0 0
\(379\) −16.5038 −0.00223679 −0.00111840 0.999999i \(-0.500356\pi\)
−0.00111840 + 0.999999i \(0.500356\pi\)
\(380\) 5748.70 + 1312.68i 0.776057 + 0.177208i
\(381\) 0 0
\(382\) 1837.74i 0.246143i
\(383\) 9887.59i 1.31914i 0.751641 + 0.659572i \(0.229263\pi\)
−0.751641 + 0.659572i \(0.770737\pi\)
\(384\) 0 0
\(385\) −555.871 6309.01i −0.0735839 0.835161i
\(386\) 6331.81i 0.834924i
\(387\) 0 0
\(388\) −4629.81 −0.605781
\(389\) 279.292i 0.0364028i −0.999834 0.0182014i \(-0.994206\pi\)
0.999834 0.0182014i \(-0.00579400\pi\)
\(390\) 0 0
\(391\) 4222.98i 0.546203i
\(392\) −5512.97 + 3975.43i −0.710324 + 0.512218i
\(393\) 0 0
\(394\) −30.7021 −0.00392577
\(395\) 1390.62 6090.05i 0.177139 0.775756i
\(396\) 0 0
\(397\) −10894.0 −1.37721 −0.688607 0.725135i \(-0.741777\pi\)
−0.688607 + 0.725135i \(0.741777\pi\)
\(398\) 2405.99i 0.303018i
\(399\) 0 0
\(400\) −2241.49 1079.97i −0.280186 0.134996i
\(401\) 9631.75i 1.19947i −0.800200 0.599734i \(-0.795273\pi\)
0.800200 0.599734i \(-0.204727\pi\)
\(402\) 0 0
\(403\) 5081.27i 0.628079i
\(404\) 5333.68 0.656833
\(405\) 0 0
\(406\) −3997.71 + 1291.05i −0.488678 + 0.157818i
\(407\) 3209.47 0.390878
\(408\) 0 0
\(409\) 4082.30i 0.493538i −0.969074 0.246769i \(-0.920631\pi\)
0.969074 0.246769i \(-0.0793689\pi\)
\(410\) 1684.20 7375.73i 0.202870 0.888443i
\(411\) 0 0
\(412\) 9511.24 1.13734
\(413\) −763.044 2362.74i −0.0909127 0.281509i
\(414\) 0 0
\(415\) −3656.57 834.953i −0.432515 0.0987620i
\(416\) 3099.27 0.365274
\(417\) 0 0
\(418\) −3809.91 −0.445811
\(419\) −15952.5 −1.85998 −0.929988 0.367589i \(-0.880183\pi\)
−0.929988 + 0.367589i \(0.880183\pi\)
\(420\) 0 0
\(421\) 16707.5 1.93415 0.967073 0.254499i \(-0.0819104\pi\)
0.967073 + 0.254499i \(0.0819104\pi\)
\(422\) 2665.72 0.307500
\(423\) 0 0
\(424\) 6062.90 0.694435
\(425\) −4411.34 + 9155.78i −0.503486 + 1.04499i
\(426\) 0 0
\(427\) 5354.26 1729.15i 0.606816 0.195970i
\(428\) 4600.31 0.519543
\(429\) 0 0
\(430\) −4102.37 936.750i −0.460079 0.105056i
\(431\) 1021.69i 0.114183i 0.998369 + 0.0570916i \(0.0181827\pi\)
−0.998369 + 0.0570916i \(0.981817\pi\)
\(432\) 0 0
\(433\) 1052.40 0.116802 0.0584008 0.998293i \(-0.481400\pi\)
0.0584008 + 0.998293i \(0.481400\pi\)
\(434\) −7638.63 + 2466.88i −0.844853 + 0.272844i
\(435\) 0 0
\(436\) 4884.44 0.536519
\(437\) 4569.29i 0.500180i
\(438\) 0 0
\(439\) 13540.8i 1.47213i −0.676909 0.736066i \(-0.736681\pi\)
0.676909 0.736066i \(-0.263319\pi\)
\(440\) 6606.45 + 1508.54i 0.715796 + 0.163447i
\(441\) 0 0
\(442\) 1910.91i 0.205639i
\(443\) −12799.7 −1.37276 −0.686380 0.727243i \(-0.740801\pi\)
−0.686380 + 0.727243i \(0.740801\pi\)
\(444\) 0 0
\(445\) −2318.07 + 10151.7i −0.246937 + 1.08143i
\(446\) −8238.06 −0.874627
\(447\) 0 0
\(448\) −598.325 1852.70i −0.0630986 0.195383i
\(449\) 523.887i 0.0550641i −0.999621 0.0275320i \(-0.991235\pi\)
0.999621 0.0275320i \(-0.00876482\pi\)
\(450\) 0 0
\(451\) 14618.2i 1.52626i
\(452\) −9890.21 −1.02920
\(453\) 0 0
\(454\) 3832.75i 0.396211i
\(455\) −3423.85 + 301.667i −0.352775 + 0.0310821i
\(456\) 0 0
\(457\) 5749.64i 0.588527i 0.955724 + 0.294263i \(0.0950743\pi\)
−0.955724 + 0.294263i \(0.904926\pi\)
\(458\) 8818.96i 0.899744i
\(459\) 0 0
\(460\) 775.027 3394.12i 0.0785561 0.344026i
\(461\) −14278.7 −1.44257 −0.721284 0.692640i \(-0.756448\pi\)
−0.721284 + 0.692640i \(0.756448\pi\)
\(462\) 0 0
\(463\) 16272.2i 1.63333i 0.577113 + 0.816664i \(0.304179\pi\)
−0.577113 + 0.816664i \(0.695821\pi\)
\(464\) 3188.84i 0.319047i
\(465\) 0 0
\(466\) −5845.66 −0.581105
\(467\) 15119.6i 1.49819i 0.662464 + 0.749094i \(0.269511\pi\)
−0.662464 + 0.749094i \(0.730489\pi\)
\(468\) 0 0
\(469\) 11836.1 3822.46i 1.16534 0.376343i
\(470\) 2172.02 + 495.967i 0.213166 + 0.0486751i
\(471\) 0 0
\(472\) 2656.59 0.259066
\(473\) −8130.62 −0.790373
\(474\) 0 0
\(475\) 4773.09 9906.61i 0.461062 0.956940i
\(476\) 8590.65 2774.34i 0.827210 0.267146i
\(477\) 0 0
\(478\) 6577.18i 0.629358i
\(479\) −13040.7 −1.24394 −0.621970 0.783041i \(-0.713667\pi\)
−0.621970 + 0.783041i \(0.713667\pi\)
\(480\) 0 0
\(481\) 1741.75i 0.165108i
\(482\) 9807.21i 0.926777i
\(483\) 0 0
\(484\) −2370.69 −0.222642
\(485\) −1922.05 + 8417.34i −0.179950 + 0.788066i
\(486\) 0 0
\(487\) 12919.7i 1.20215i −0.799192 0.601075i \(-0.794739\pi\)
0.799192 0.601075i \(-0.205261\pi\)
\(488\) 6020.14i 0.558440i
\(489\) 0 0
\(490\) 2115.73 + 5000.60i 0.195059 + 0.461029i
\(491\) 10382.4i 0.954275i −0.878829 0.477138i \(-0.841674\pi\)
0.878829 0.477138i \(-0.158326\pi\)
\(492\) 0 0
\(493\) 13025.4 1.18993
\(494\) 2067.61i 0.188312i
\(495\) 0 0
\(496\) 6093.07i 0.551587i
\(497\) 10865.0 3508.82i 0.980603 0.316684i
\(498\) 0 0
\(499\) 13113.5 1.17643 0.588217 0.808703i \(-0.299830\pi\)
0.588217 + 0.808703i \(0.299830\pi\)
\(500\) −5225.84 + 6549.16i −0.467413 + 0.585775i
\(501\) 0 0
\(502\) −7890.27 −0.701514
\(503\) 9544.92i 0.846097i 0.906107 + 0.423049i \(0.139040\pi\)
−0.906107 + 0.423049i \(0.860960\pi\)
\(504\) 0 0
\(505\) 2214.25 9697.03i 0.195115 0.854480i
\(506\) 2249.44i 0.197628i
\(507\) 0 0
\(508\) 1042.25i 0.0910282i
\(509\) 3806.73 0.331493 0.165747 0.986168i \(-0.446997\pi\)
0.165747 + 0.986168i \(0.446997\pi\)
\(510\) 0 0
\(511\) −5813.90 18002.6i −0.503311 1.55849i
\(512\) −6871.84 −0.593155
\(513\) 0 0
\(514\) 3144.62i 0.269851i
\(515\) 3948.55 17292.2i 0.337852 1.47958i
\(516\) 0 0
\(517\) 4304.80 0.366199
\(518\) −2618.37 + 845.597i −0.222094 + 0.0717247i
\(519\) 0 0
\(520\) 818.674 3585.27i 0.0690408 0.302355i
\(521\) 7738.68 0.650744 0.325372 0.945586i \(-0.394510\pi\)
0.325372 + 0.945586i \(0.394510\pi\)
\(522\) 0 0
\(523\) −19441.5 −1.62547 −0.812734 0.582635i \(-0.802022\pi\)
−0.812734 + 0.582635i \(0.802022\pi\)
\(524\) −2810.57 −0.234313
\(525\) 0 0
\(526\) −6605.21 −0.547530
\(527\) 24888.3 2.05721
\(528\) 0 0
\(529\) −9469.22 −0.778271
\(530\) 1078.22 4721.91i 0.0883676 0.386994i
\(531\) 0 0
\(532\) −9295.13 + 3001.85i −0.757510 + 0.244636i
\(533\) −7933.19 −0.644699
\(534\) 0 0
\(535\) 1909.80 8363.72i 0.154333 0.675879i
\(536\) 13308.1i 1.07243i
\(537\) 0 0
\(538\) −6193.01 −0.496282
\(539\) 6136.35 + 8509.66i 0.490374 + 0.680031i
\(540\) 0 0
\(541\) −10379.0 −0.824817 −0.412409 0.910999i \(-0.635312\pi\)
−0.412409 + 0.910999i \(0.635312\pi\)
\(542\) 2280.75i 0.180750i
\(543\) 0 0
\(544\) 15180.4i 1.19642i
\(545\) 2027.75 8880.28i 0.159375 0.697962i
\(546\) 0 0
\(547\) 16009.6i 1.25141i −0.780061 0.625703i \(-0.784812\pi\)
0.780061 0.625703i \(-0.215188\pi\)
\(548\) −8243.33 −0.642587
\(549\) 0 0
\(550\) 2349.77 4876.97i 0.182172 0.378099i
\(551\) −14093.6 −1.08967
\(552\) 0 0
\(553\) 3180.09 + 9847.07i 0.244541 + 0.757215i
\(554\) 6775.56i 0.519614i
\(555\) 0 0
\(556\) 10329.9i 0.787921i
\(557\) 11746.0 0.893526 0.446763 0.894652i \(-0.352577\pi\)
0.446763 + 0.894652i \(0.352577\pi\)
\(558\) 0 0
\(559\) 4412.43i 0.333857i
\(560\) 4105.63 361.736i 0.309812 0.0272967i
\(561\) 0 0
\(562\) 6455.56i 0.484540i
\(563\) 9594.88i 0.718252i −0.933289 0.359126i \(-0.883075\pi\)
0.933289 0.359126i \(-0.116925\pi\)
\(564\) 0 0
\(565\) −4105.88 + 17981.1i −0.305727 + 1.33889i
\(566\) 4960.88 0.368412
\(567\) 0 0
\(568\) 12216.2i 0.902428i
\(569\) 8438.18i 0.621700i −0.950459 0.310850i \(-0.899386\pi\)
0.950459 0.310850i \(-0.100614\pi\)
\(570\) 0 0
\(571\) 18415.6 1.34968 0.674841 0.737963i \(-0.264212\pi\)
0.674841 + 0.737963i \(0.264212\pi\)
\(572\) 3043.95i 0.222507i
\(573\) 0 0
\(574\) 3851.45 + 11925.9i 0.280064 + 0.867209i
\(575\) −5849.02 2818.11i −0.424211 0.204389i
\(576\) 0 0
\(577\) 5724.61 0.413030 0.206515 0.978443i \(-0.433788\pi\)
0.206515 + 0.978443i \(0.433788\pi\)
\(578\) 2403.41 0.172956
\(579\) 0 0
\(580\) 10468.9 + 2390.50i 0.749476 + 0.171138i
\(581\) 5912.35 1909.38i 0.422178 0.136342i
\(582\) 0 0
\(583\) 9358.51i 0.664820i
\(584\) 20241.5 1.43424
\(585\) 0 0
\(586\) 8109.09i 0.571644i
\(587\) 20033.2i 1.40862i 0.709894 + 0.704309i \(0.248743\pi\)
−0.709894 + 0.704309i \(0.751257\pi\)
\(588\) 0 0
\(589\) −26929.3 −1.88387
\(590\) 472.444 2069.01i 0.0329665 0.144372i
\(591\) 0 0
\(592\) 2088.58i 0.145000i
\(593\) 10763.1i 0.745341i −0.927964 0.372670i \(-0.878442\pi\)
0.927964 0.372670i \(-0.121558\pi\)
\(594\) 0 0
\(595\) −1477.58 16770.2i −0.101806 1.15548i
\(596\) 3726.90i 0.256140i
\(597\) 0 0
\(598\) 1220.75 0.0834787
\(599\) 12751.4i 0.869799i 0.900479 + 0.434899i \(0.143216\pi\)
−0.900479 + 0.434899i \(0.856784\pi\)
\(600\) 0 0
\(601\) 8319.06i 0.564628i 0.959322 + 0.282314i \(0.0911020\pi\)
−0.959322 + 0.282314i \(0.908898\pi\)
\(602\) 6633.17 2142.17i 0.449083 0.145031i
\(603\) 0 0
\(604\) −16736.5 −1.12748
\(605\) −984.181 + 4310.09i −0.0661366 + 0.289636i
\(606\) 0 0
\(607\) 12259.8 0.819786 0.409893 0.912134i \(-0.365566\pi\)
0.409893 + 0.912134i \(0.365566\pi\)
\(608\) 16425.2i 1.09561i
\(609\) 0 0
\(610\) 4688.61 + 1070.61i 0.311207 + 0.0710622i
\(611\) 2336.18i 0.154684i
\(612\) 0 0
\(613\) 23691.3i 1.56098i 0.625167 + 0.780491i \(0.285031\pi\)
−0.625167 + 0.780491i \(0.714969\pi\)
\(614\) −2656.93 −0.174634
\(615\) 0 0
\(616\) −10682.1 + 3449.75i −0.698689 + 0.225640i
\(617\) 8805.60 0.574554 0.287277 0.957848i \(-0.407250\pi\)
0.287277 + 0.957848i \(0.407250\pi\)
\(618\) 0 0
\(619\) 1540.85i 0.100051i −0.998748 0.0500257i \(-0.984070\pi\)
0.998748 0.0500257i \(-0.0159303\pi\)
\(620\) 20003.4 + 4567.65i 1.29574 + 0.295873i
\(621\) 0 0
\(622\) 6396.09 0.412315
\(623\) −5300.99 16414.4i −0.340898 1.05558i
\(624\) 0 0
\(625\) 9737.38 + 12219.8i 0.623192 + 0.782069i
\(626\) 10124.2 0.646399
\(627\) 0 0
\(628\) 10402.6 0.661000
\(629\) 8531.20 0.540797
\(630\) 0 0
\(631\) 4818.83 0.304017 0.152008 0.988379i \(-0.451426\pi\)
0.152008 + 0.988379i \(0.451426\pi\)
\(632\) −11071.7 −0.696849
\(633\) 0 0
\(634\) 5751.83 0.360306
\(635\) −1894.89 432.685i −0.118419 0.0270403i
\(636\) 0 0
\(637\) 4618.13 3330.15i 0.287248 0.207136i
\(638\) −6938.18 −0.430541
\(639\) 0 0
\(640\) −3347.15 + 14658.4i −0.206731 + 0.905350i
\(641\) 18206.7i 1.12187i 0.827858 + 0.560937i \(0.189559\pi\)
−0.827858 + 0.560937i \(0.810441\pi\)
\(642\) 0 0
\(643\) −18717.3 −1.14796 −0.573981 0.818868i \(-0.694602\pi\)
−0.573981 + 0.818868i \(0.694602\pi\)
\(644\) 1772.34 + 5488.00i 0.108447 + 0.335804i
\(645\) 0 0
\(646\) −10127.3 −0.616798
\(647\) 1556.10i 0.0945542i −0.998882 0.0472771i \(-0.984946\pi\)
0.998882 0.0472771i \(-0.0150544\pi\)
\(648\) 0 0
\(649\) 4100.63i 0.248018i
\(650\) −2646.70 1275.20i −0.159711 0.0769500i
\(651\) 0 0
\(652\) 5969.76i 0.358579i
\(653\) −29408.2 −1.76238 −0.881189 0.472765i \(-0.843256\pi\)
−0.881189 + 0.472765i \(0.843256\pi\)
\(654\) 0 0
\(655\) −1166.79 + 5109.82i −0.0696037 + 0.304820i
\(656\) 9512.88 0.566182
\(657\) 0 0
\(658\) −3511.97 + 1134.18i −0.208071 + 0.0671962i
\(659\) 15993.9i 0.945425i −0.881217 0.472713i \(-0.843275\pi\)
0.881217 0.472713i \(-0.156725\pi\)
\(660\) 0 0
\(661\) 17299.8i 1.01798i 0.860773 + 0.508988i \(0.169980\pi\)
−0.860773 + 0.508988i \(0.830020\pi\)
\(662\) 1230.39 0.0722366
\(663\) 0 0
\(664\) 6647.64i 0.388522i
\(665\) 1598.75 + 18145.5i 0.0932283 + 1.05812i
\(666\) 0 0
\(667\) 8321.07i 0.483048i
\(668\) 11255.0i 0.651898i
\(669\) 0 0
\(670\) 10364.7 + 2366.71i 0.597645 + 0.136468i
\(671\) 9292.51 0.534625
\(672\) 0 0
\(673\) 17783.4i 1.01857i 0.860597 + 0.509287i \(0.170091\pi\)
−0.860597 + 0.509287i \(0.829909\pi\)
\(674\) 1822.69i 0.104165i
\(675\) 0 0
\(676\) 11519.6 0.655417
\(677\) 12701.0i 0.721032i −0.932753 0.360516i \(-0.882601\pi\)
0.932753 0.360516i \(-0.117399\pi\)
\(678\) 0 0
\(679\) −4395.36 13610.1i −0.248422 0.769231i
\(680\) 17560.8 + 4009.91i 0.990335 + 0.226137i
\(681\) 0 0
\(682\) −13257.1 −0.744343
\(683\) −27112.0 −1.51891 −0.759453 0.650562i \(-0.774533\pi\)
−0.759453 + 0.650562i \(0.774533\pi\)
\(684\) 0 0
\(685\) −3422.18 + 14987.0i −0.190883 + 0.835946i
\(686\) −7248.23 5325.66i −0.403409 0.296406i
\(687\) 0 0
\(688\) 5291.05i 0.293197i
\(689\) −5078.80 −0.280822
\(690\) 0 0
\(691\) 521.160i 0.0286916i −0.999897 0.0143458i \(-0.995433\pi\)
0.999897 0.0143458i \(-0.00456656\pi\)
\(692\) 15913.4i 0.874185i
\(693\) 0 0
\(694\) −597.884 −0.0327023
\(695\) 18780.5 + 4288.40i 1.02501 + 0.234055i
\(696\) 0 0
\(697\) 38857.1i 2.11165i
\(698\) 6570.91i 0.356322i
\(699\) 0 0
\(700\) 1890.20 13749.9i 0.102061 0.742422i
\(701\) 3411.27i 0.183797i 0.995768 + 0.0918987i \(0.0292936\pi\)
−0.995768 + 0.0918987i \(0.970706\pi\)
\(702\) 0 0
\(703\) −9230.80 −0.495230
\(704\) 3215.42i 0.172139i
\(705\) 0 0
\(706\) 2179.07i 0.116162i
\(707\) 5063.58 + 15679.2i 0.269357 + 0.834057i
\(708\) 0 0
\(709\) −6386.93 −0.338316 −0.169158 0.985589i \(-0.554105\pi\)
−0.169158 + 0.985589i \(0.554105\pi\)
\(710\) 9514.22 + 2172.51i 0.502905 + 0.114835i
\(711\) 0 0
\(712\) 18455.7 0.971430
\(713\) 15899.5i 0.835120i
\(714\) 0 0
\(715\) −5534.12 1263.68i −0.289461 0.0660965i
\(716\) 26816.2i 1.39968i
\(717\) 0 0
\(718\) 1466.86i 0.0762431i
\(719\) 1659.01 0.0860510 0.0430255 0.999074i \(-0.486300\pi\)
0.0430255 + 0.999074i \(0.486300\pi\)
\(720\) 0 0
\(721\) 9029.60 + 27959.9i 0.466407 + 1.44422i
\(722\) 1246.11 0.0642321
\(723\) 0 0
\(724\) 2374.31i 0.121879i
\(725\) 8692.21 18040.8i 0.445270 0.924163i
\(726\) 0 0
\(727\) −25833.8 −1.31791 −0.658955 0.752182i \(-0.729001\pi\)
−0.658955 + 0.752182i \(0.729001\pi\)
\(728\) 1872.15 + 5797.07i 0.0953113 + 0.295129i
\(729\) 0 0
\(730\) 3599.72 15764.5i 0.182509 0.799273i
\(731\) −21612.3 −1.09351
\(732\) 0 0
\(733\) 17410.3 0.877304 0.438652 0.898657i \(-0.355456\pi\)
0.438652 + 0.898657i \(0.355456\pi\)
\(734\) 3226.28 0.162240
\(735\) 0 0
\(736\) −9697.73 −0.485683
\(737\) 20542.1 1.02670
\(738\) 0 0
\(739\) −26348.6 −1.31157 −0.655784 0.754949i \(-0.727662\pi\)
−0.655784 + 0.754949i \(0.727662\pi\)
\(740\) 6856.76 + 1565.70i 0.340621 + 0.0777786i
\(741\) 0 0
\(742\) 2465.68 + 7634.92i 0.121992 + 0.377745i
\(743\) −27257.0 −1.34585 −0.672923 0.739713i \(-0.734961\pi\)
−0.672923 + 0.739713i \(0.734961\pi\)
\(744\) 0 0
\(745\) 6775.78 + 1547.20i 0.333215 + 0.0760875i
\(746\) 12191.2i 0.598326i
\(747\) 0 0
\(748\) 14909.4 0.728799
\(749\) 4367.36 + 13523.4i 0.213057 + 0.659725i
\(750\) 0 0
\(751\) 12085.2 0.587210 0.293605 0.955927i \(-0.405145\pi\)
0.293605 + 0.955927i \(0.405145\pi\)
\(752\) 2801.38i 0.135845i
\(753\) 0 0
\(754\) 3765.30i 0.181862i
\(755\) −6948.10 + 30428.3i −0.334924 + 1.46675i
\(756\) 0 0
\(757\) 1931.31i 0.0927275i −0.998925 0.0463638i \(-0.985237\pi\)
0.998925 0.0463638i \(-0.0147633\pi\)
\(758\) 23.3677 0.00111973
\(759\) 0 0
\(760\) −19000.9 4338.74i −0.906890 0.207082i
\(761\) 26856.6 1.27931 0.639653 0.768664i \(-0.279078\pi\)
0.639653 + 0.768664i \(0.279078\pi\)
\(762\) 0 0
\(763\) 4637.09 + 14358.6i 0.220018 + 0.681280i
\(764\) 7781.40i 0.368483i
\(765\) 0 0
\(766\) 13999.8i 0.660357i
\(767\) −2225.38 −0.104764
\(768\) 0 0
\(769\) 2772.05i 0.129990i −0.997886 0.0649952i \(-0.979297\pi\)
0.997886 0.0649952i \(-0.0207032\pi\)
\(770\) 787.056 + 8932.91i 0.0368357 + 0.418078i
\(771\) 0 0
\(772\) 26810.3i 1.24990i
\(773\) 18591.8i 0.865071i −0.901617 0.432535i \(-0.857619\pi\)
0.901617 0.432535i \(-0.142381\pi\)
\(774\) 0 0
\(775\) 16608.7 34471.5i 0.769807 1.59774i
\(776\) 15302.7 0.707907
\(777\) 0 0
\(778\) 395.449i 0.0182230i
\(779\) 42043.6i 1.93372i
\(780\) 0 0
\(781\) 18856.5 0.863944
\(782\) 5979.30i 0.273426i
\(783\) 0 0
\(784\) −5537.71 + 3993.27i −0.252264 + 0.181909i
\(785\) 4318.59 18912.7i 0.196353 0.859901i
\(786\) 0 0
\(787\) 10211.2 0.462504 0.231252 0.972894i \(-0.425718\pi\)
0.231252 + 0.972894i \(0.425718\pi\)
\(788\) −130.000 −0.00587698
\(789\) 0 0
\(790\) −1968.98 + 8622.88i −0.0886748 + 0.388340i
\(791\) −9389.37 29073.9i −0.422058 1.30689i
\(792\) 0 0
\(793\) 5042.98i 0.225828i
\(794\) 15424.8 0.689427
\(795\) 0 0
\(796\) 10187.5i 0.453627i
\(797\) 15129.4i 0.672412i 0.941788 + 0.336206i \(0.109144\pi\)
−0.941788 + 0.336206i \(0.890856\pi\)
\(798\) 0 0
\(799\) 11442.7 0.506652
\(800\) 21025.5 + 10130.3i 0.929205 + 0.447699i
\(801\) 0 0
\(802\) 13637.6i 0.600448i
\(803\) 31244.1i 1.37308i
\(804\) 0 0
\(805\) 10713.4 943.928i 0.469064 0.0413281i
\(806\) 7194.55i 0.314413i
\(807\) 0 0
\(808\) −17629.2 −0.767565
\(809\) 27312.2i 1.18695i −0.804851 0.593477i \(-0.797755\pi\)
0.804851 0.593477i \(-0.202245\pi\)
\(810\) 0 0
\(811\) 955.054i 0.0413520i −0.999786 0.0206760i \(-0.993418\pi\)
0.999786 0.0206760i \(-0.00658184\pi\)
\(812\) −16927.2 + 5466.62i −0.731564 + 0.236257i
\(813\) 0 0
\(814\) −4544.28 −0.195672
\(815\) 10853.5 + 2478.32i 0.466479 + 0.106517i
\(816\) 0 0
\(817\) 23384.6 1.00138
\(818\) 5780.12i 0.247063i
\(819\) 0 0
\(820\) 7131.30 31230.6i 0.303702 1.33002i
\(821\) 4863.55i 0.206747i −0.994643 0.103373i \(-0.967036\pi\)
0.994643 0.103373i \(-0.0329636\pi\)
\(822\) 0 0
\(823\) 24899.9i 1.05463i 0.849671 + 0.527313i \(0.176800\pi\)
−0.849671 + 0.527313i \(0.823200\pi\)
\(824\) −31437.1 −1.32908
\(825\) 0 0
\(826\) 1080.39 + 3345.40i 0.0455105 + 0.140922i
\(827\) 4217.13 0.177321 0.0886603 0.996062i \(-0.471741\pi\)
0.0886603 + 0.996062i \(0.471741\pi\)
\(828\) 0 0
\(829\) 15003.0i 0.628561i 0.949330 + 0.314280i \(0.101763\pi\)
−0.949330 + 0.314280i \(0.898237\pi\)
\(830\) 5177.32 + 1182.21i 0.216515 + 0.0494398i
\(831\) 0 0
\(832\) −1744.99 −0.0727122
\(833\) 16311.2 + 22619.8i 0.678453 + 0.940852i
\(834\) 0 0
\(835\) 20462.4 + 4672.45i 0.848060 + 0.193649i
\(836\) −16132.1 −0.667391
\(837\) 0 0
\(838\) 22587.1 0.931095
\(839\) 2205.65 0.0907597 0.0453798 0.998970i \(-0.485550\pi\)
0.0453798 + 0.998970i \(0.485550\pi\)
\(840\) 0 0
\(841\) −1276.58 −0.0523425
\(842\) −23656.1 −0.968224
\(843\) 0 0
\(844\) 11287.3 0.460336
\(845\) 4782.32 20943.5i 0.194694 0.852637i
\(846\) 0 0
\(847\) −2250.64 6969.03i −0.0913020 0.282714i
\(848\) 6090.11 0.246622
\(849\) 0 0
\(850\) 6246.00 12963.6i 0.252042 0.523117i
\(851\) 5450.02i 0.219535i
\(852\) 0 0
\(853\) −41922.9 −1.68278 −0.841391 0.540426i \(-0.818263\pi\)
−0.841391 + 0.540426i \(0.818263\pi\)
\(854\) −7581.07 + 2448.29i −0.303769 + 0.0981018i
\(855\) 0 0
\(856\) −15205.2 −0.607131
\(857\) 5480.18i 0.218436i −0.994018 0.109218i \(-0.965165\pi\)
0.994018 0.109218i \(-0.0348346\pi\)
\(858\) 0 0
\(859\) 13807.4i 0.548431i −0.961668 0.274216i \(-0.911582\pi\)
0.961668 0.274216i \(-0.0884182\pi\)
\(860\) −17370.4 3966.42i −0.688751 0.157272i
\(861\) 0 0
\(862\) 1446.60i 0.0571595i
\(863\) −36042.1 −1.42165 −0.710827 0.703367i \(-0.751679\pi\)
−0.710827 + 0.703367i \(0.751679\pi\)
\(864\) 0 0
\(865\) −28931.7 6606.37i −1.13723 0.259680i
\(866\) −1490.09 −0.0584703
\(867\) 0 0
\(868\) −32343.7 + 10445.4i −1.26477 + 0.408455i
\(869\) 17090.0i 0.667131i
\(870\) 0 0
\(871\) 11148.0i 0.433681i
\(872\) −16144.3 −0.626968
\(873\) 0 0
\(874\) 6469.64i 0.250388i
\(875\) −24213.6 9144.71i −0.935506 0.353312i
\(876\) 0 0
\(877\) 25249.1i 0.972180i −0.873909 0.486090i \(-0.838423\pi\)
0.873909 0.486090i \(-0.161577\pi\)
\(878\) 19172.4i 0.736943i
\(879\) 0 0
\(880\) 6636.11 + 1515.31i 0.254208 + 0.0580468i
\(881\) −7038.44 −0.269161 −0.134581 0.990903i \(-0.542969\pi\)
−0.134581 + 0.990903i \(0.542969\pi\)
\(882\) 0 0
\(883\) 17328.3i 0.660413i 0.943909 + 0.330207i \(0.107118\pi\)
−0.943909 + 0.330207i \(0.892882\pi\)
\(884\) 8091.22i 0.307848i
\(885\) 0 0
\(886\) 18123.1 0.687197
\(887\) 23764.0i 0.899570i −0.893137 0.449785i \(-0.851501\pi\)
0.893137 0.449785i \(-0.148499\pi\)
\(888\) 0 0
\(889\) 3063.86 989.470i 0.115589 0.0373293i
\(890\) 3282.15 14373.7i 0.123616 0.541358i
\(891\) 0 0
\(892\) −34881.9 −1.30934
\(893\) −12381.1 −0.463962
\(894\) 0 0
\(895\) −48753.8 11132.6i −1.82085 0.415779i
\(896\) −7654.30 23701.3i −0.285393 0.883712i
\(897\) 0 0
\(898\) 741.770i 0.0275648i
\(899\) −49040.5 −1.81935
\(900\) 0 0
\(901\) 24876.2i 0.919807i
\(902\) 20697.9i 0.764039i
\(903\) 0 0
\(904\) 32689.7 1.20270
\(905\) 4316.67 + 985.684i 0.158554 + 0.0362047i
\(906\) 0 0
\(907\) 16998.5i 0.622301i 0.950361 + 0.311151i \(0.100714\pi\)
−0.950361 + 0.311151i \(0.899286\pi\)
\(908\) 16228.8i 0.593139i
\(909\) 0 0
\(910\) 4847.82 427.129i 0.176598 0.0155596i
\(911\) 40955.7i 1.48949i 0.667351 + 0.744743i \(0.267428\pi\)
−0.667351 + 0.744743i \(0.732572\pi\)
\(912\) 0 0
\(913\) 10261.1 0.371953
\(914\) 8140.90i 0.294614i
\(915\) 0 0
\(916\) 37341.5i 1.34694i
\(917\) −2668.24 8262.13i −0.0960884 0.297535i
\(918\) 0 0
\(919\) 42060.9 1.50975 0.754876 0.655867i \(-0.227697\pi\)
0.754876 + 0.655867i \(0.227697\pi\)
\(920\) −2561.66 + 11218.5i −0.0917995 + 0.402024i
\(921\) 0 0
\(922\) 20217.1 0.722142
\(923\) 10233.3i 0.364933i
\(924\) 0 0
\(925\) 5693.11 11816.1i 0.202366 0.420012i
\(926\) 23039.7i 0.817636i
\(927\) 0 0
\(928\) 29911.8i 1.05808i
\(929\) −1206.74 −0.0426177 −0.0213088 0.999773i \(-0.506783\pi\)
−0.0213088 + 0.999773i \(0.506783\pi\)
\(930\) 0 0
\(931\) −17648.9 24474.8i −0.621287 0.861577i
\(932\) −24751.9 −0.869930
\(933\) 0 0
\(934\) 21407.9i 0.749985i
\(935\) 6189.57 27106.4i 0.216493 0.948101i
\(936\) 0 0
\(937\) −40024.3 −1.39545 −0.697725 0.716366i \(-0.745804\pi\)
−0.697725 + 0.716366i \(0.745804\pi\)
\(938\) −16758.8 + 5412.21i −0.583361 + 0.188395i
\(939\) 0 0
\(940\) 9196.85 + 2100.04i 0.319115 + 0.0728679i
\(941\) 7112.58 0.246401 0.123201 0.992382i \(-0.460684\pi\)
0.123201 + 0.992382i \(0.460684\pi\)
\(942\) 0 0
\(943\) 24823.3 0.857218
\(944\) 2668.51 0.0920049
\(945\) 0 0
\(946\) 11512.1 0.395657
\(947\) 52031.5 1.78543 0.892713 0.450626i \(-0.148799\pi\)
0.892713 + 0.450626i \(0.148799\pi\)
\(948\) 0 0
\(949\) −16956.0 −0.579993
\(950\) −6758.21 + 14026.7i −0.230805 + 0.479039i
\(951\) 0 0
\(952\) −28394.3 + 9169.90i −0.966666 + 0.312183i
\(953\) 50850.3 1.72844 0.864220 0.503114i \(-0.167812\pi\)
0.864220 + 0.503114i \(0.167812\pi\)
\(954\) 0 0
\(955\) 14147.2 + 3230.42i 0.479363 + 0.109459i
\(956\) 27849.3i 0.942166i
\(957\) 0 0
\(958\) 18464.3 0.622710
\(959\) −7825.89 24232.6i −0.263515 0.815967i
\(960\) 0 0
\(961\) −63913.2 −2.14539
\(962\) 2466.14i 0.0826525i
\(963\) 0 0
\(964\) 41526.0i 1.38741i
\(965\) 48743.2 + 11130.2i 1.62601 + 0.371289i
\(966\) 0 0
\(967\) 35434.8i 1.17839i −0.807990 0.589197i \(-0.799444\pi\)
0.807990 0.589197i \(-0.200556\pi\)
\(968\) 7835.74 0.260176
\(969\) 0 0
\(970\) 2721.42 11918.1i 0.0900820 0.394502i
\(971\) −46207.8 −1.52717 −0.763584 0.645709i \(-0.776562\pi\)
−0.763584 + 0.645709i \(0.776562\pi\)
\(972\) 0 0
\(973\) −30366.4 + 9806.77i −1.00052 + 0.323115i
\(974\) 18293.0i 0.601791i
\(975\) 0 0
\(976\) 6047.16i 0.198325i
\(977\) 14154.5 0.463503 0.231752 0.972775i \(-0.425554\pi\)
0.231752 + 0.972775i \(0.425554\pi\)
\(978\) 0 0
\(979\) 28487.7i 0.930002i
\(980\) 8958.48 + 21173.7i 0.292008 + 0.690173i
\(981\) 0 0
\(982\) 14700.3i 0.477705i
\(983\) 12680.8i 0.411451i 0.978610 + 0.205725i \(0.0659554\pi\)
−0.978610 + 0.205725i \(0.934045\pi\)
\(984\) 0 0
\(985\) −53.9689 + 236.350i −0.00174578 + 0.00764541i
\(986\) −18442.6 −0.595672
\(987\) 0 0
\(988\) 8754.75i 0.281908i
\(989\) 13806.7i 0.443909i
\(990\) 0 0
\(991\) 36020.9 1.15463 0.577317 0.816520i \(-0.304100\pi\)
0.577317 + 0.816520i \(0.304100\pi\)
\(992\) 57153.9i 1.82927i
\(993\) 0 0
\(994\) −15383.7 + 4968.12i −0.490885 + 0.158531i
\(995\) −18521.7 4229.30i −0.590127 0.134752i
\(996\) 0 0
\(997\) 61180.4 1.94343 0.971716 0.236152i \(-0.0758862\pi\)
0.971716 + 0.236152i \(0.0758862\pi\)
\(998\) −18567.3 −0.588917
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.4.g.a.314.18 yes 48
3.2 odd 2 inner 315.4.g.a.314.32 yes 48
5.4 even 2 inner 315.4.g.a.314.30 yes 48
7.6 odd 2 inner 315.4.g.a.314.17 48
15.14 odd 2 inner 315.4.g.a.314.20 yes 48
21.20 even 2 inner 315.4.g.a.314.31 yes 48
35.34 odd 2 inner 315.4.g.a.314.29 yes 48
105.104 even 2 inner 315.4.g.a.314.19 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.4.g.a.314.17 48 7.6 odd 2 inner
315.4.g.a.314.18 yes 48 1.1 even 1 trivial
315.4.g.a.314.19 yes 48 105.104 even 2 inner
315.4.g.a.314.20 yes 48 15.14 odd 2 inner
315.4.g.a.314.29 yes 48 35.34 odd 2 inner
315.4.g.a.314.30 yes 48 5.4 even 2 inner
315.4.g.a.314.31 yes 48 21.20 even 2 inner
315.4.g.a.314.32 yes 48 3.2 odd 2 inner