Properties

Label 315.4.g.a.314.28
Level $315$
Weight $4$
Character 315.314
Analytic conductor $18.586$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(314,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.314");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 314.28
Character \(\chi\) \(=\) 315.314
Dual form 315.4.g.a.314.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.826832 q^{2} -7.31635 q^{4} +(10.4220 + 4.04737i) q^{5} +(17.7925 - 5.14054i) q^{7} -12.6640 q^{8} +(8.61727 + 3.34649i) q^{10} +28.3906i q^{11} -29.3975 q^{13} +(14.7114 - 4.25037i) q^{14} +48.0598 q^{16} +45.3024i q^{17} -49.0172i q^{19} +(-76.2513 - 29.6119i) q^{20} +23.4742i q^{22} +136.385 q^{23} +(92.2377 + 84.3636i) q^{25} -24.3068 q^{26} +(-130.177 + 37.6100i) q^{28} -132.662i q^{29} +237.775i q^{31} +141.050 q^{32} +37.4575i q^{34} +(206.240 + 18.4380i) q^{35} +431.261i q^{37} -40.5290i q^{38} +(-131.985 - 51.2560i) q^{40} +219.448 q^{41} +426.407i q^{43} -207.715i q^{44} +112.768 q^{46} +446.515i q^{47} +(290.150 - 182.927i) q^{49} +(76.2650 + 69.7545i) q^{50} +215.082 q^{52} +330.253 q^{53} +(-114.907 + 295.887i) q^{55} +(-225.326 + 65.1001i) q^{56} -109.689i q^{58} +236.477 q^{59} -574.170i q^{61} +196.600i q^{62} -267.854 q^{64} +(-306.382 - 118.982i) q^{65} +104.847i q^{67} -331.448i q^{68} +(170.526 + 15.2451i) q^{70} -814.084i q^{71} -292.012 q^{73} +356.580i q^{74} +358.627i q^{76} +(145.943 + 505.140i) q^{77} +37.4033 q^{79} +(500.881 + 194.515i) q^{80} +181.446 q^{82} -1252.61i q^{83} +(-183.355 + 472.143i) q^{85} +352.567i q^{86} -359.539i q^{88} -1408.41 q^{89} +(-523.056 + 151.119i) q^{91} -997.844 q^{92} +369.193i q^{94} +(198.391 - 510.859i) q^{95} +107.815 q^{97} +(239.905 - 151.250i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 192 q^{4} + 768 q^{16} - 432 q^{25} + 816 q^{46} + 456 q^{49} + 7968 q^{64} + 1464 q^{70} + 4368 q^{79} - 1440 q^{85} - 4392 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.826832 0.292329 0.146165 0.989260i \(-0.453307\pi\)
0.146165 + 0.989260i \(0.453307\pi\)
\(3\) 0 0
\(4\) −7.31635 −0.914544
\(5\) 10.4220 + 4.04737i 0.932175 + 0.362007i
\(6\) 0 0
\(7\) 17.7925 5.14054i 0.960707 0.277563i
\(8\) −12.6640 −0.559677
\(9\) 0 0
\(10\) 8.61727 + 3.34649i 0.272502 + 0.105825i
\(11\) 28.3906i 0.778188i 0.921198 + 0.389094i \(0.127212\pi\)
−0.921198 + 0.389094i \(0.872788\pi\)
\(12\) 0 0
\(13\) −29.3975 −0.627184 −0.313592 0.949558i \(-0.601532\pi\)
−0.313592 + 0.949558i \(0.601532\pi\)
\(14\) 14.7114 4.25037i 0.280843 0.0811399i
\(15\) 0 0
\(16\) 48.0598 0.750934
\(17\) 45.3024i 0.646320i 0.946344 + 0.323160i \(0.104745\pi\)
−0.946344 + 0.323160i \(0.895255\pi\)
\(18\) 0 0
\(19\) 49.0172i 0.591859i −0.955210 0.295929i \(-0.904371\pi\)
0.955210 0.295929i \(-0.0956293\pi\)
\(20\) −76.2513 29.6119i −0.852515 0.331072i
\(21\) 0 0
\(22\) 23.4742i 0.227487i
\(23\) 136.385 1.23645 0.618225 0.786001i \(-0.287852\pi\)
0.618225 + 0.786001i \(0.287852\pi\)
\(24\) 0 0
\(25\) 92.2377 + 84.3636i 0.737901 + 0.674909i
\(26\) −24.3068 −0.183344
\(27\) 0 0
\(28\) −130.177 + 37.6100i −0.878609 + 0.253844i
\(29\) 132.662i 0.849472i −0.905317 0.424736i \(-0.860367\pi\)
0.905317 0.424736i \(-0.139633\pi\)
\(30\) 0 0
\(31\) 237.775i 1.37760i 0.724951 + 0.688801i \(0.241862\pi\)
−0.724951 + 0.688801i \(0.758138\pi\)
\(32\) 141.050 0.779197
\(33\) 0 0
\(34\) 37.4575i 0.188938i
\(35\) 206.240 + 18.4380i 0.996028 + 0.0890455i
\(36\) 0 0
\(37\) 431.261i 1.91618i 0.286459 + 0.958092i \(0.407522\pi\)
−0.286459 + 0.958092i \(0.592478\pi\)
\(38\) 40.5290i 0.173018i
\(39\) 0 0
\(40\) −131.985 51.2560i −0.521717 0.202607i
\(41\) 219.448 0.835901 0.417951 0.908470i \(-0.362748\pi\)
0.417951 + 0.908470i \(0.362748\pi\)
\(42\) 0 0
\(43\) 426.407i 1.51224i 0.654432 + 0.756121i \(0.272908\pi\)
−0.654432 + 0.756121i \(0.727092\pi\)
\(44\) 207.715i 0.711687i
\(45\) 0 0
\(46\) 112.768 0.361450
\(47\) 446.515i 1.38576i 0.721052 + 0.692881i \(0.243659\pi\)
−0.721052 + 0.692881i \(0.756341\pi\)
\(48\) 0 0
\(49\) 290.150 182.927i 0.845917 0.533314i
\(50\) 76.2650 + 69.7545i 0.215710 + 0.197295i
\(51\) 0 0
\(52\) 215.082 0.573587
\(53\) 330.253 0.855920 0.427960 0.903798i \(-0.359232\pi\)
0.427960 + 0.903798i \(0.359232\pi\)
\(54\) 0 0
\(55\) −114.907 + 295.887i −0.281710 + 0.725408i
\(56\) −225.326 + 65.1001i −0.537686 + 0.155346i
\(57\) 0 0
\(58\) 109.689i 0.248326i
\(59\) 236.477 0.521807 0.260904 0.965365i \(-0.415980\pi\)
0.260904 + 0.965365i \(0.415980\pi\)
\(60\) 0 0
\(61\) 574.170i 1.20516i −0.798057 0.602581i \(-0.794139\pi\)
0.798057 0.602581i \(-0.205861\pi\)
\(62\) 196.600i 0.402713i
\(63\) 0 0
\(64\) −267.854 −0.523152
\(65\) −306.382 118.982i −0.584646 0.227045i
\(66\) 0 0
\(67\) 104.847i 0.191181i 0.995421 + 0.0955905i \(0.0304739\pi\)
−0.995421 + 0.0955905i \(0.969526\pi\)
\(68\) 331.448i 0.591088i
\(69\) 0 0
\(70\) 170.526 + 15.2451i 0.291168 + 0.0260306i
\(71\) 814.084i 1.36076i −0.732859 0.680380i \(-0.761815\pi\)
0.732859 0.680380i \(-0.238185\pi\)
\(72\) 0 0
\(73\) −292.012 −0.468184 −0.234092 0.972214i \(-0.575212\pi\)
−0.234092 + 0.972214i \(0.575212\pi\)
\(74\) 356.580i 0.560157i
\(75\) 0 0
\(76\) 358.627i 0.541281i
\(77\) 145.943 + 505.140i 0.215997 + 0.747611i
\(78\) 0 0
\(79\) 37.4033 0.0532683 0.0266342 0.999645i \(-0.491521\pi\)
0.0266342 + 0.999645i \(0.491521\pi\)
\(80\) 500.881 + 194.515i 0.700002 + 0.271844i
\(81\) 0 0
\(82\) 181.446 0.244358
\(83\) 1252.61i 1.65653i −0.560337 0.828265i \(-0.689328\pi\)
0.560337 0.828265i \(-0.310672\pi\)
\(84\) 0 0
\(85\) −183.355 + 472.143i −0.233973 + 0.602484i
\(86\) 352.567i 0.442072i
\(87\) 0 0
\(88\) 359.539i 0.435534i
\(89\) −1408.41 −1.67743 −0.838713 0.544573i \(-0.816692\pi\)
−0.838713 + 0.544573i \(0.816692\pi\)
\(90\) 0 0
\(91\) −523.056 + 151.119i −0.602540 + 0.174083i
\(92\) −997.844 −1.13079
\(93\) 0 0
\(94\) 369.193i 0.405099i
\(95\) 198.391 510.859i 0.214257 0.551716i
\(96\) 0 0
\(97\) 107.815 0.112856 0.0564278 0.998407i \(-0.482029\pi\)
0.0564278 + 0.998407i \(0.482029\pi\)
\(98\) 239.905 151.250i 0.247286 0.155903i
\(99\) 0 0
\(100\) −674.843 617.233i −0.674843 0.617233i
\(101\) 539.488 0.531496 0.265748 0.964043i \(-0.414381\pi\)
0.265748 + 0.964043i \(0.414381\pi\)
\(102\) 0 0
\(103\) −1514.36 −1.44868 −0.724341 0.689442i \(-0.757856\pi\)
−0.724341 + 0.689442i \(0.757856\pi\)
\(104\) 372.291 0.351021
\(105\) 0 0
\(106\) 273.064 0.250210
\(107\) 744.581 0.672723 0.336361 0.941733i \(-0.390804\pi\)
0.336361 + 0.941733i \(0.390804\pi\)
\(108\) 0 0
\(109\) 732.203 0.643416 0.321708 0.946839i \(-0.395743\pi\)
0.321708 + 0.946839i \(0.395743\pi\)
\(110\) −95.0087 + 244.649i −0.0823520 + 0.212058i
\(111\) 0 0
\(112\) 855.106 247.053i 0.721428 0.208432i
\(113\) 389.394 0.324169 0.162085 0.986777i \(-0.448178\pi\)
0.162085 + 0.986777i \(0.448178\pi\)
\(114\) 0 0
\(115\) 1421.41 + 552.002i 1.15259 + 0.447604i
\(116\) 970.601i 0.776880i
\(117\) 0 0
\(118\) 195.526 0.152540
\(119\) 232.879 + 806.045i 0.179395 + 0.620924i
\(120\) 0 0
\(121\) 524.977 0.394423
\(122\) 474.742i 0.352304i
\(123\) 0 0
\(124\) 1739.64i 1.25988i
\(125\) 619.854 + 1252.56i 0.443531 + 0.896259i
\(126\) 0 0
\(127\) 577.565i 0.403548i −0.979432 0.201774i \(-0.935329\pi\)
0.979432 0.201774i \(-0.0646706\pi\)
\(128\) −1349.87 −0.932129
\(129\) 0 0
\(130\) −253.326 98.3784i −0.170909 0.0663720i
\(131\) −1292.47 −0.862013 −0.431006 0.902349i \(-0.641841\pi\)
−0.431006 + 0.902349i \(0.641841\pi\)
\(132\) 0 0
\(133\) −251.975 872.141i −0.164278 0.568603i
\(134\) 86.6910i 0.0558878i
\(135\) 0 0
\(136\) 573.711i 0.361730i
\(137\) −1930.34 −1.20379 −0.601897 0.798574i \(-0.705588\pi\)
−0.601897 + 0.798574i \(0.705588\pi\)
\(138\) 0 0
\(139\) 553.182i 0.337556i 0.985654 + 0.168778i \(0.0539821\pi\)
−0.985654 + 0.168778i \(0.946018\pi\)
\(140\) −1508.93 134.899i −0.910911 0.0814360i
\(141\) 0 0
\(142\) 673.110i 0.397790i
\(143\) 834.611i 0.488067i
\(144\) 0 0
\(145\) 536.931 1382.61i 0.307515 0.791857i
\(146\) −241.445 −0.136864
\(147\) 0 0
\(148\) 3155.25i 1.75243i
\(149\) 152.312i 0.0837443i 0.999123 + 0.0418722i \(0.0133322\pi\)
−0.999123 + 0.0418722i \(0.986668\pi\)
\(150\) 0 0
\(151\) −2044.30 −1.10174 −0.550871 0.834590i \(-0.685704\pi\)
−0.550871 + 0.834590i \(0.685704\pi\)
\(152\) 620.756i 0.331250i
\(153\) 0 0
\(154\) 120.670 + 417.666i 0.0631421 + 0.218549i
\(155\) −962.362 + 2478.10i −0.498702 + 1.28417i
\(156\) 0 0
\(157\) −197.116 −0.100201 −0.0501005 0.998744i \(-0.515954\pi\)
−0.0501005 + 0.998744i \(0.515954\pi\)
\(158\) 30.9262 0.0155719
\(159\) 0 0
\(160\) 1470.02 + 570.880i 0.726348 + 0.282075i
\(161\) 2426.64 701.095i 1.18787 0.343193i
\(162\) 0 0
\(163\) 517.479i 0.248663i −0.992241 0.124332i \(-0.960321\pi\)
0.992241 0.124332i \(-0.0396786\pi\)
\(164\) −1605.56 −0.764468
\(165\) 0 0
\(166\) 1035.70i 0.484252i
\(167\) 1875.67i 0.869126i −0.900641 0.434563i \(-0.856903\pi\)
0.900641 0.434563i \(-0.143097\pi\)
\(168\) 0 0
\(169\) −1332.79 −0.606640
\(170\) −151.604 + 390.383i −0.0683970 + 0.176124i
\(171\) 0 0
\(172\) 3119.74i 1.38301i
\(173\) 2958.61i 1.30022i −0.759839 0.650112i \(-0.774722\pi\)
0.759839 0.650112i \(-0.225278\pi\)
\(174\) 0 0
\(175\) 2074.82 + 1026.89i 0.896237 + 0.443575i
\(176\) 1364.44i 0.584368i
\(177\) 0 0
\(178\) −1164.52 −0.490361
\(179\) 1260.22i 0.526221i −0.964766 0.263110i \(-0.915252\pi\)
0.964766 0.263110i \(-0.0847483\pi\)
\(180\) 0 0
\(181\) 3345.13i 1.37371i 0.726795 + 0.686855i \(0.241009\pi\)
−0.726795 + 0.686855i \(0.758991\pi\)
\(182\) −432.479 + 124.950i −0.176140 + 0.0508896i
\(183\) 0 0
\(184\) −1727.19 −0.692012
\(185\) −1745.47 + 4494.62i −0.693673 + 1.78622i
\(186\) 0 0
\(187\) −1286.16 −0.502959
\(188\) 3266.86i 1.26734i
\(189\) 0 0
\(190\) 164.036 422.395i 0.0626337 0.161283i
\(191\) 131.631i 0.0498665i 0.999689 + 0.0249333i \(0.00793733\pi\)
−0.999689 + 0.0249333i \(0.992063\pi\)
\(192\) 0 0
\(193\) 1592.33i 0.593877i 0.954897 + 0.296938i \(0.0959656\pi\)
−0.954897 + 0.296938i \(0.904034\pi\)
\(194\) 89.1452 0.0329910
\(195\) 0 0
\(196\) −2122.84 + 1338.36i −0.773628 + 0.487739i
\(197\) 3202.73 1.15830 0.579150 0.815221i \(-0.303385\pi\)
0.579150 + 0.815221i \(0.303385\pi\)
\(198\) 0 0
\(199\) 3334.37i 1.18777i −0.804549 0.593887i \(-0.797593\pi\)
0.804549 0.593887i \(-0.202407\pi\)
\(200\) −1168.10 1068.38i −0.412986 0.377731i
\(201\) 0 0
\(202\) 446.066 0.155372
\(203\) −681.954 2360.39i −0.235782 0.816094i
\(204\) 0 0
\(205\) 2287.09 + 888.185i 0.779207 + 0.302602i
\(206\) −1252.12 −0.423492
\(207\) 0 0
\(208\) −1412.84 −0.470974
\(209\) 1391.63 0.460578
\(210\) 0 0
\(211\) 4252.21 1.38737 0.693684 0.720280i \(-0.255987\pi\)
0.693684 + 0.720280i \(0.255987\pi\)
\(212\) −2416.25 −0.782776
\(213\) 0 0
\(214\) 615.643 0.196656
\(215\) −1725.82 + 4444.03i −0.547443 + 1.40967i
\(216\) 0 0
\(217\) 1222.29 + 4230.62i 0.382372 + 1.32347i
\(218\) 605.409 0.188089
\(219\) 0 0
\(220\) 840.699 2164.82i 0.257636 0.663417i
\(221\) 1331.78i 0.405362i
\(222\) 0 0
\(223\) −4306.52 −1.29321 −0.646605 0.762825i \(-0.723812\pi\)
−0.646605 + 0.762825i \(0.723812\pi\)
\(224\) 2509.63 725.072i 0.748580 0.216276i
\(225\) 0 0
\(226\) 321.964 0.0947642
\(227\) 2383.72i 0.696973i 0.937314 + 0.348486i \(0.113304\pi\)
−0.937314 + 0.348486i \(0.886696\pi\)
\(228\) 0 0
\(229\) 3858.50i 1.11344i −0.830701 0.556718i \(-0.812060\pi\)
0.830701 0.556718i \(-0.187940\pi\)
\(230\) 1175.27 + 456.413i 0.336935 + 0.130848i
\(231\) 0 0
\(232\) 1680.04i 0.475430i
\(233\) 7086.74 1.99257 0.996283 0.0861410i \(-0.0274536\pi\)
0.996283 + 0.0861410i \(0.0274536\pi\)
\(234\) 0 0
\(235\) −1807.21 + 4653.59i −0.501656 + 1.29177i
\(236\) −1730.15 −0.477216
\(237\) 0 0
\(238\) 192.552 + 666.464i 0.0524423 + 0.181514i
\(239\) 4485.49i 1.21398i −0.794708 0.606992i \(-0.792376\pi\)
0.794708 0.606992i \(-0.207624\pi\)
\(240\) 0 0
\(241\) 2843.89i 0.760130i −0.924960 0.380065i \(-0.875902\pi\)
0.924960 0.380065i \(-0.124098\pi\)
\(242\) 434.067 0.115301
\(243\) 0 0
\(244\) 4200.83i 1.10217i
\(245\) 3764.32 732.128i 0.981607 0.190914i
\(246\) 0 0
\(247\) 1440.98i 0.371205i
\(248\) 3011.19i 0.771012i
\(249\) 0 0
\(250\) 512.515 + 1035.66i 0.129657 + 0.262003i
\(251\) 2437.40 0.612937 0.306469 0.951881i \(-0.400853\pi\)
0.306469 + 0.951881i \(0.400853\pi\)
\(252\) 0 0
\(253\) 3872.06i 0.962191i
\(254\) 477.549i 0.117969i
\(255\) 0 0
\(256\) 1026.72 0.250663
\(257\) 3443.72i 0.835849i 0.908482 + 0.417925i \(0.137242\pi\)
−0.908482 + 0.417925i \(0.862758\pi\)
\(258\) 0 0
\(259\) 2216.92 + 7673.23i 0.531863 + 1.84089i
\(260\) 2241.59 + 870.516i 0.534684 + 0.207643i
\(261\) 0 0
\(262\) −1068.66 −0.251991
\(263\) 1705.38 0.399841 0.199920 0.979812i \(-0.435932\pi\)
0.199920 + 0.979812i \(0.435932\pi\)
\(264\) 0 0
\(265\) 3441.91 + 1336.66i 0.797868 + 0.309849i
\(266\) −208.341 721.114i −0.0480233 0.166219i
\(267\) 0 0
\(268\) 767.099i 0.174843i
\(269\) 506.954 0.114905 0.0574527 0.998348i \(-0.481702\pi\)
0.0574527 + 0.998348i \(0.481702\pi\)
\(270\) 0 0
\(271\) 5993.32i 1.34343i −0.740812 0.671713i \(-0.765559\pi\)
0.740812 0.671713i \(-0.234441\pi\)
\(272\) 2177.22i 0.485344i
\(273\) 0 0
\(274\) −1596.06 −0.351904
\(275\) −2395.13 + 2618.68i −0.525206 + 0.574226i
\(276\) 0 0
\(277\) 3208.46i 0.695948i 0.937504 + 0.347974i \(0.113130\pi\)
−0.937504 + 0.347974i \(0.886870\pi\)
\(278\) 457.389i 0.0986775i
\(279\) 0 0
\(280\) −2611.84 233.500i −0.557454 0.0498367i
\(281\) 3342.44i 0.709585i 0.934945 + 0.354793i \(0.115449\pi\)
−0.934945 + 0.354793i \(0.884551\pi\)
\(282\) 0 0
\(283\) −5164.91 −1.08488 −0.542442 0.840093i \(-0.682500\pi\)
−0.542442 + 0.840093i \(0.682500\pi\)
\(284\) 5956.12i 1.24447i
\(285\) 0 0
\(286\) 690.083i 0.142676i
\(287\) 3904.53 1128.08i 0.803057 0.232016i
\(288\) 0 0
\(289\) 2860.69 0.582270
\(290\) 443.952 1143.18i 0.0898957 0.231483i
\(291\) 0 0
\(292\) 2136.46 0.428175
\(293\) 4460.79i 0.889427i −0.895673 0.444714i \(-0.853305\pi\)
0.895673 0.444714i \(-0.146695\pi\)
\(294\) 0 0
\(295\) 2464.57 + 957.107i 0.486416 + 0.188898i
\(296\) 5461.51i 1.07244i
\(297\) 0 0
\(298\) 125.937i 0.0244809i
\(299\) −4009.39 −0.775481
\(300\) 0 0
\(301\) 2191.96 + 7586.86i 0.419743 + 1.45282i
\(302\) −1690.30 −0.322071
\(303\) 0 0
\(304\) 2355.76i 0.444447i
\(305\) 2323.88 5984.02i 0.436278 1.12342i
\(306\) 0 0
\(307\) 3908.97 0.726699 0.363349 0.931653i \(-0.381633\pi\)
0.363349 + 0.931653i \(0.381633\pi\)
\(308\) −1067.77 3695.78i −0.197538 0.683723i
\(309\) 0 0
\(310\) −795.712 + 2048.97i −0.145785 + 0.375399i
\(311\) −3769.10 −0.687221 −0.343611 0.939112i \(-0.611650\pi\)
−0.343611 + 0.939112i \(0.611650\pi\)
\(312\) 0 0
\(313\) −10274.7 −1.85546 −0.927732 0.373248i \(-0.878244\pi\)
−0.927732 + 0.373248i \(0.878244\pi\)
\(314\) −162.982 −0.0292917
\(315\) 0 0
\(316\) −273.656 −0.0487162
\(317\) 2065.38 0.365941 0.182970 0.983118i \(-0.441429\pi\)
0.182970 + 0.983118i \(0.441429\pi\)
\(318\) 0 0
\(319\) 3766.34 0.661050
\(320\) −2791.58 1084.10i −0.487669 0.189385i
\(321\) 0 0
\(322\) 2006.43 579.688i 0.347248 0.100325i
\(323\) 2220.60 0.382530
\(324\) 0 0
\(325\) −2711.55 2480.08i −0.462800 0.423292i
\(326\) 427.868i 0.0726915i
\(327\) 0 0
\(328\) −2779.09 −0.467835
\(329\) 2295.33 + 7944.63i 0.384637 + 1.33131i
\(330\) 0 0
\(331\) −4704.88 −0.781280 −0.390640 0.920544i \(-0.627746\pi\)
−0.390640 + 0.920544i \(0.627746\pi\)
\(332\) 9164.54i 1.51497i
\(333\) 0 0
\(334\) 1550.87i 0.254071i
\(335\) −424.355 + 1092.72i −0.0692089 + 0.178214i
\(336\) 0 0
\(337\) 192.322i 0.0310874i 0.999879 + 0.0155437i \(0.00494792\pi\)
−0.999879 + 0.0155437i \(0.995052\pi\)
\(338\) −1101.99 −0.177339
\(339\) 0 0
\(340\) 1341.49 3454.36i 0.213978 0.550998i
\(341\) −6750.56 −1.07203
\(342\) 0 0
\(343\) 4222.16 4746.26i 0.664650 0.747154i
\(344\) 5400.03i 0.846367i
\(345\) 0 0
\(346\) 2446.27i 0.380093i
\(347\) −1373.84 −0.212541 −0.106270 0.994337i \(-0.533891\pi\)
−0.106270 + 0.994337i \(0.533891\pi\)
\(348\) 0 0
\(349\) 7854.76i 1.20474i 0.798216 + 0.602372i \(0.205778\pi\)
−0.798216 + 0.602372i \(0.794222\pi\)
\(350\) 1715.53 + 849.066i 0.261996 + 0.129670i
\(351\) 0 0
\(352\) 4004.48i 0.606362i
\(353\) 5594.76i 0.843567i −0.906697 0.421784i \(-0.861404\pi\)
0.906697 0.421784i \(-0.138596\pi\)
\(354\) 0 0
\(355\) 3294.90 8484.41i 0.492605 1.26847i
\(356\) 10304.4 1.53408
\(357\) 0 0
\(358\) 1041.99i 0.153830i
\(359\) 309.402i 0.0454864i 0.999741 + 0.0227432i \(0.00724001\pi\)
−0.999741 + 0.0227432i \(0.992760\pi\)
\(360\) 0 0
\(361\) 4456.31 0.649703
\(362\) 2765.86i 0.401575i
\(363\) 0 0
\(364\) 3826.86 1105.64i 0.551050 0.159207i
\(365\) −3043.36 1181.88i −0.436430 0.169486i
\(366\) 0 0
\(367\) 6696.16 0.952417 0.476208 0.879332i \(-0.342011\pi\)
0.476208 + 0.879332i \(0.342011\pi\)
\(368\) 6554.65 0.928491
\(369\) 0 0
\(370\) −1443.21 + 3716.29i −0.202781 + 0.522164i
\(371\) 5876.05 1697.68i 0.822289 0.237572i
\(372\) 0 0
\(373\) 5431.49i 0.753973i 0.926219 + 0.376986i \(0.123040\pi\)
−0.926219 + 0.376986i \(0.876960\pi\)
\(374\) −1063.44 −0.147030
\(375\) 0 0
\(376\) 5654.68i 0.775580i
\(377\) 3899.93i 0.532776i
\(378\) 0 0
\(379\) −11019.2 −1.49345 −0.746726 0.665132i \(-0.768375\pi\)
−0.746726 + 0.665132i \(0.768375\pi\)
\(380\) −1451.49 + 3737.62i −0.195948 + 0.504569i
\(381\) 0 0
\(382\) 108.837i 0.0145774i
\(383\) 2258.58i 0.301327i −0.988585 0.150663i \(-0.951859\pi\)
0.988585 0.150663i \(-0.0481409\pi\)
\(384\) 0 0
\(385\) −523.465 + 5855.27i −0.0692942 + 0.775097i
\(386\) 1316.59i 0.173607i
\(387\) 0 0
\(388\) −788.815 −0.103211
\(389\) 6828.55i 0.890029i 0.895523 + 0.445014i \(0.146801\pi\)
−0.895523 + 0.445014i \(0.853199\pi\)
\(390\) 0 0
\(391\) 6178.59i 0.799142i
\(392\) −3674.47 + 2316.59i −0.473440 + 0.298484i
\(393\) 0 0
\(394\) 2648.12 0.338605
\(395\) 389.818 + 151.385i 0.0496554 + 0.0192835i
\(396\) 0 0
\(397\) −9018.17 −1.14007 −0.570037 0.821619i \(-0.693071\pi\)
−0.570037 + 0.821619i \(0.693071\pi\)
\(398\) 2756.96i 0.347221i
\(399\) 0 0
\(400\) 4432.92 + 4054.49i 0.554115 + 0.506812i
\(401\) 36.8320i 0.00458679i 0.999997 + 0.00229339i \(0.000730010\pi\)
−0.999997 + 0.00229339i \(0.999270\pi\)
\(402\) 0 0
\(403\) 6989.98i 0.864010i
\(404\) −3947.09 −0.486076
\(405\) 0 0
\(406\) −563.862 1951.65i −0.0689261 0.238568i
\(407\) −12243.7 −1.49115
\(408\) 0 0
\(409\) 6187.75i 0.748079i 0.927413 + 0.374040i \(0.122028\pi\)
−0.927413 + 0.374040i \(0.877972\pi\)
\(410\) 1891.04 + 734.379i 0.227785 + 0.0884595i
\(411\) 0 0
\(412\) 11079.6 1.32488
\(413\) 4207.52 1215.62i 0.501304 0.144835i
\(414\) 0 0
\(415\) 5069.78 13054.8i 0.599676 1.54418i
\(416\) −4146.51 −0.488700
\(417\) 0 0
\(418\) 1150.64 0.134640
\(419\) 10841.5 1.26406 0.632030 0.774944i \(-0.282222\pi\)
0.632030 + 0.774944i \(0.282222\pi\)
\(420\) 0 0
\(421\) −5747.40 −0.665347 −0.332673 0.943042i \(-0.607951\pi\)
−0.332673 + 0.943042i \(0.607951\pi\)
\(422\) 3515.87 0.405568
\(423\) 0 0
\(424\) −4182.34 −0.479039
\(425\) −3821.87 + 4178.59i −0.436207 + 0.476920i
\(426\) 0 0
\(427\) −2951.55 10215.9i −0.334509 1.15781i
\(428\) −5447.61 −0.615234
\(429\) 0 0
\(430\) −1426.97 + 3674.46i −0.160033 + 0.412089i
\(431\) 6064.98i 0.677819i 0.940819 + 0.338909i \(0.110058\pi\)
−0.940819 + 0.338909i \(0.889942\pi\)
\(432\) 0 0
\(433\) 12816.5 1.42245 0.711224 0.702966i \(-0.248141\pi\)
0.711224 + 0.702966i \(0.248141\pi\)
\(434\) 1010.63 + 3498.01i 0.111778 + 0.386889i
\(435\) 0 0
\(436\) −5357.06 −0.588432
\(437\) 6685.23i 0.731803i
\(438\) 0 0
\(439\) 17636.4i 1.91740i −0.284412 0.958702i \(-0.591798\pi\)
0.284412 0.958702i \(-0.408202\pi\)
\(440\) 1455.19 3747.13i 0.157667 0.405994i
\(441\) 0 0
\(442\) 1101.15i 0.118499i
\(443\) −13711.7 −1.47057 −0.735285 0.677758i \(-0.762952\pi\)
−0.735285 + 0.677758i \(0.762952\pi\)
\(444\) 0 0
\(445\) −14678.5 5700.34i −1.56366 0.607241i
\(446\) −3560.77 −0.378043
\(447\) 0 0
\(448\) −4765.80 + 1376.91i −0.502596 + 0.145208i
\(449\) 18974.4i 1.99434i −0.0752125 0.997168i \(-0.523963\pi\)
0.0752125 0.997168i \(-0.476037\pi\)
\(450\) 0 0
\(451\) 6230.24i 0.650489i
\(452\) −2848.95 −0.296467
\(453\) 0 0
\(454\) 1970.93i 0.203745i
\(455\) −6062.94 542.031i −0.624693 0.0558479i
\(456\) 0 0
\(457\) 9232.85i 0.945064i −0.881313 0.472532i \(-0.843340\pi\)
0.881313 0.472532i \(-0.156660\pi\)
\(458\) 3190.33i 0.325490i
\(459\) 0 0
\(460\) −10399.6 4038.64i −1.05409 0.409353i
\(461\) −7896.43 −0.797773 −0.398887 0.917000i \(-0.630603\pi\)
−0.398887 + 0.917000i \(0.630603\pi\)
\(462\) 0 0
\(463\) 14282.0i 1.43356i −0.697298 0.716781i \(-0.745615\pi\)
0.697298 0.716781i \(-0.254385\pi\)
\(464\) 6375.70i 0.637897i
\(465\) 0 0
\(466\) 5859.54 0.582485
\(467\) 6302.33i 0.624490i −0.950002 0.312245i \(-0.898919\pi\)
0.950002 0.312245i \(-0.101081\pi\)
\(468\) 0 0
\(469\) 538.972 + 1865.50i 0.0530648 + 0.183669i
\(470\) −1494.26 + 3847.74i −0.146649 + 0.377623i
\(471\) 0 0
\(472\) −2994.75 −0.292044
\(473\) −12105.9 −1.17681
\(474\) 0 0
\(475\) 4135.27 4521.23i 0.399451 0.436733i
\(476\) −1703.82 5897.31i −0.164064 0.567863i
\(477\) 0 0
\(478\) 3708.75i 0.354883i
\(479\) −285.694 −0.0272520 −0.0136260 0.999907i \(-0.504337\pi\)
−0.0136260 + 0.999907i \(0.504337\pi\)
\(480\) 0 0
\(481\) 12678.0i 1.20180i
\(482\) 2351.42i 0.222208i
\(483\) 0 0
\(484\) −3840.91 −0.360717
\(485\) 1123.66 + 436.369i 0.105201 + 0.0408546i
\(486\) 0 0
\(487\) 10713.2i 0.996837i −0.866937 0.498418i \(-0.833914\pi\)
0.866937 0.498418i \(-0.166086\pi\)
\(488\) 7271.31i 0.674502i
\(489\) 0 0
\(490\) 3112.46 605.347i 0.286952 0.0558097i
\(491\) 15460.4i 1.42102i 0.703688 + 0.710509i \(0.251535\pi\)
−0.703688 + 0.710509i \(0.748465\pi\)
\(492\) 0 0
\(493\) 6009.90 0.549031
\(494\) 1191.45i 0.108514i
\(495\) 0 0
\(496\) 11427.4i 1.03449i
\(497\) −4184.83 14484.6i −0.377697 1.30729i
\(498\) 0 0
\(499\) −17987.7 −1.61371 −0.806853 0.590752i \(-0.798831\pi\)
−0.806853 + 0.590752i \(0.798831\pi\)
\(500\) −4535.07 9164.16i −0.405629 0.819668i
\(501\) 0 0
\(502\) 2015.32 0.179179
\(503\) 15205.5i 1.34788i 0.738788 + 0.673938i \(0.235398\pi\)
−0.738788 + 0.673938i \(0.764602\pi\)
\(504\) 0 0
\(505\) 5622.57 + 2183.51i 0.495447 + 0.192405i
\(506\) 3201.54i 0.281276i
\(507\) 0 0
\(508\) 4225.66i 0.369062i
\(509\) −11925.6 −1.03849 −0.519245 0.854625i \(-0.673787\pi\)
−0.519245 + 0.854625i \(0.673787\pi\)
\(510\) 0 0
\(511\) −5195.64 + 1501.10i −0.449788 + 0.129951i
\(512\) 11647.9 1.00541
\(513\) 0 0
\(514\) 2847.38i 0.244343i
\(515\) −15782.7 6129.16i −1.35043 0.524434i
\(516\) 0 0
\(517\) −12676.8 −1.07838
\(518\) 1833.02 + 6344.47i 0.155479 + 0.538147i
\(519\) 0 0
\(520\) 3880.03 + 1506.80i 0.327213 + 0.127072i
\(521\) 20909.0 1.75823 0.879116 0.476608i \(-0.158134\pi\)
0.879116 + 0.476608i \(0.158134\pi\)
\(522\) 0 0
\(523\) 12045.2 1.00708 0.503539 0.863973i \(-0.332031\pi\)
0.503539 + 0.863973i \(0.332031\pi\)
\(524\) 9456.16 0.788348
\(525\) 0 0
\(526\) 1410.06 0.116885
\(527\) −10771.8 −0.890371
\(528\) 0 0
\(529\) 6433.99 0.528807
\(530\) 2845.88 + 1105.19i 0.233240 + 0.0905780i
\(531\) 0 0
\(532\) 1843.54 + 6380.89i 0.150240 + 0.520012i
\(533\) −6451.21 −0.524264
\(534\) 0 0
\(535\) 7760.05 + 3013.59i 0.627095 + 0.243531i
\(536\) 1327.79i 0.107000i
\(537\) 0 0
\(538\) 419.166 0.0335902
\(539\) 5193.39 + 8237.51i 0.415019 + 0.658283i
\(540\) 0 0
\(541\) 5762.89 0.457978 0.228989 0.973429i \(-0.426458\pi\)
0.228989 + 0.973429i \(0.426458\pi\)
\(542\) 4955.47i 0.392723i
\(543\) 0 0
\(544\) 6389.89i 0.503611i
\(545\) 7631.05 + 2963.49i 0.599777 + 0.232921i
\(546\) 0 0
\(547\) 1926.27i 0.150569i −0.997162 0.0752847i \(-0.976013\pi\)
0.997162 0.0752847i \(-0.0239866\pi\)
\(548\) 14123.0 1.10092
\(549\) 0 0
\(550\) −1980.37 + 2165.21i −0.153533 + 0.167863i
\(551\) −6502.72 −0.502768
\(552\) 0 0
\(553\) 665.500 192.273i 0.0511753 0.0147853i
\(554\) 2652.86i 0.203446i
\(555\) 0 0
\(556\) 4047.28i 0.308710i
\(557\) 17984.6 1.36810 0.684050 0.729435i \(-0.260217\pi\)
0.684050 + 0.729435i \(0.260217\pi\)
\(558\) 0 0
\(559\) 12535.3i 0.948454i
\(560\) 9911.86 + 886.126i 0.747951 + 0.0668673i
\(561\) 0 0
\(562\) 2763.64i 0.207433i
\(563\) 20203.7i 1.51240i 0.654339 + 0.756201i \(0.272947\pi\)
−0.654339 + 0.756201i \(0.727053\pi\)
\(564\) 0 0
\(565\) 4058.28 + 1576.02i 0.302183 + 0.117352i
\(566\) −4270.51 −0.317143
\(567\) 0 0
\(568\) 10309.6i 0.761586i
\(569\) 10780.5i 0.794271i 0.917760 + 0.397135i \(0.129996\pi\)
−0.917760 + 0.397135i \(0.870004\pi\)
\(570\) 0 0
\(571\) 1504.63 0.110275 0.0551374 0.998479i \(-0.482440\pi\)
0.0551374 + 0.998479i \(0.482440\pi\)
\(572\) 6106.30i 0.446359i
\(573\) 0 0
\(574\) 3228.39 932.732i 0.234757 0.0678249i
\(575\) 12579.9 + 11506.0i 0.912377 + 0.834490i
\(576\) 0 0
\(577\) −6884.35 −0.496706 −0.248353 0.968670i \(-0.579889\pi\)
−0.248353 + 0.968670i \(0.579889\pi\)
\(578\) 2365.31 0.170215
\(579\) 0 0
\(580\) −3928.38 + 10115.6i −0.281236 + 0.724188i
\(581\) −6439.10 22287.1i −0.459792 1.59144i
\(582\) 0 0
\(583\) 9376.07i 0.666067i
\(584\) 3698.05 0.262032
\(585\) 0 0
\(586\) 3688.32i 0.260005i
\(587\) 17688.1i 1.24373i −0.783126 0.621863i \(-0.786376\pi\)
0.783126 0.621863i \(-0.213624\pi\)
\(588\) 0 0
\(589\) 11655.1 0.815346
\(590\) 2037.78 + 791.367i 0.142194 + 0.0552204i
\(591\) 0 0
\(592\) 20726.3i 1.43893i
\(593\) 19118.0i 1.32391i 0.749542 + 0.661956i \(0.230274\pi\)
−0.749542 + 0.661956i \(0.769726\pi\)
\(594\) 0 0
\(595\) −835.286 + 9343.17i −0.0575519 + 0.643753i
\(596\) 1114.37i 0.0765878i
\(597\) 0 0
\(598\) −3315.09 −0.226696
\(599\) 9875.37i 0.673617i −0.941573 0.336809i \(-0.890652\pi\)
0.941573 0.336809i \(-0.109348\pi\)
\(600\) 0 0
\(601\) 7712.80i 0.523480i −0.965138 0.261740i \(-0.915704\pi\)
0.965138 0.261740i \(-0.0842964\pi\)
\(602\) 1812.38 + 6273.06i 0.122703 + 0.424702i
\(603\) 0 0
\(604\) 14956.8 1.00759
\(605\) 5471.32 + 2124.77i 0.367671 + 0.142784i
\(606\) 0 0
\(607\) −15291.3 −1.02249 −0.511246 0.859434i \(-0.670816\pi\)
−0.511246 + 0.859434i \(0.670816\pi\)
\(608\) 6913.86i 0.461175i
\(609\) 0 0
\(610\) 1921.45 4947.78i 0.127537 0.328409i
\(611\) 13126.4i 0.869129i
\(612\) 0 0
\(613\) 11961.5i 0.788124i 0.919084 + 0.394062i \(0.128931\pi\)
−0.919084 + 0.394062i \(0.871069\pi\)
\(614\) 3232.06 0.212435
\(615\) 0 0
\(616\) −1848.23 6397.12i −0.120888 0.418421i
\(617\) 19087.8 1.24546 0.622729 0.782438i \(-0.286024\pi\)
0.622729 + 0.782438i \(0.286024\pi\)
\(618\) 0 0
\(619\) 573.960i 0.0372688i 0.999826 + 0.0186344i \(0.00593186\pi\)
−0.999826 + 0.0186344i \(0.994068\pi\)
\(620\) 7040.98 18130.6i 0.456085 1.17443i
\(621\) 0 0
\(622\) −3116.41 −0.200895
\(623\) −25059.2 + 7239.98i −1.61152 + 0.465592i
\(624\) 0 0
\(625\) 1390.57 + 15563.0i 0.0889966 + 0.996032i
\(626\) −8495.44 −0.542406
\(627\) 0 0
\(628\) 1442.17 0.0916382
\(629\) −19537.1 −1.23847
\(630\) 0 0
\(631\) 3155.96 0.199107 0.0995537 0.995032i \(-0.468258\pi\)
0.0995537 + 0.995032i \(0.468258\pi\)
\(632\) −473.677 −0.0298131
\(633\) 0 0
\(634\) 1707.72 0.106975
\(635\) 2337.61 6019.40i 0.146087 0.376177i
\(636\) 0 0
\(637\) −8529.67 + 5377.59i −0.530546 + 0.334486i
\(638\) 3114.13 0.193244
\(639\) 0 0
\(640\) −14068.4 5463.41i −0.868908 0.337438i
\(641\) 18216.0i 1.12244i 0.827665 + 0.561222i \(0.189669\pi\)
−0.827665 + 0.561222i \(0.810331\pi\)
\(642\) 0 0
\(643\) 20836.6 1.27794 0.638969 0.769233i \(-0.279361\pi\)
0.638969 + 0.769233i \(0.279361\pi\)
\(644\) −17754.2 + 5129.46i −1.08636 + 0.313865i
\(645\) 0 0
\(646\) 1836.06 0.111825
\(647\) 27732.5i 1.68513i −0.538595 0.842564i \(-0.681045\pi\)
0.538595 0.842564i \(-0.318955\pi\)
\(648\) 0 0
\(649\) 6713.70i 0.406064i
\(650\) −2242.00 2050.61i −0.135290 0.123741i
\(651\) 0 0
\(652\) 3786.06i 0.227413i
\(653\) 26601.0 1.59415 0.797074 0.603881i \(-0.206380\pi\)
0.797074 + 0.603881i \(0.206380\pi\)
\(654\) 0 0
\(655\) −13470.2 5231.10i −0.803547 0.312055i
\(656\) 10546.6 0.627707
\(657\) 0 0
\(658\) 1897.85 + 6568.88i 0.112441 + 0.389182i
\(659\) 5108.02i 0.301943i 0.988538 + 0.150971i \(0.0482401\pi\)
−0.988538 + 0.150971i \(0.951760\pi\)
\(660\) 0 0
\(661\) 6545.68i 0.385170i 0.981280 + 0.192585i \(0.0616871\pi\)
−0.981280 + 0.192585i \(0.938313\pi\)
\(662\) −3890.15 −0.228391
\(663\) 0 0
\(664\) 15863.1i 0.927121i
\(665\) 903.780 10109.3i 0.0527024 0.589508i
\(666\) 0 0
\(667\) 18093.2i 1.05033i
\(668\) 13723.1i 0.794854i
\(669\) 0 0
\(670\) −350.870 + 903.497i −0.0202318 + 0.0520972i
\(671\) 16301.0 0.937844
\(672\) 0 0
\(673\) 695.255i 0.0398219i −0.999802 0.0199109i \(-0.993662\pi\)
0.999802 0.0199109i \(-0.00633826\pi\)
\(674\) 159.018i 0.00908776i
\(675\) 0 0
\(676\) 9751.14 0.554799
\(677\) 12444.0i 0.706445i −0.935539 0.353222i \(-0.885086\pi\)
0.935539 0.353222i \(-0.114914\pi\)
\(678\) 0 0
\(679\) 1918.31 554.230i 0.108421 0.0313246i
\(680\) 2322.02 5979.24i 0.130949 0.337196i
\(681\) 0 0
\(682\) −5581.58 −0.313387
\(683\) 1997.14 0.111887 0.0559434 0.998434i \(-0.482183\pi\)
0.0559434 + 0.998434i \(0.482183\pi\)
\(684\) 0 0
\(685\) −20118.0 7812.77i −1.12215 0.435782i
\(686\) 3491.01 3924.36i 0.194297 0.218415i
\(687\) 0 0
\(688\) 20493.0i 1.13559i
\(689\) −9708.61 −0.536820
\(690\) 0 0
\(691\) 29424.1i 1.61989i 0.586506 + 0.809945i \(0.300503\pi\)
−0.586506 + 0.809945i \(0.699497\pi\)
\(692\) 21646.2i 1.18911i
\(693\) 0 0
\(694\) −1135.94 −0.0621319
\(695\) −2238.93 + 5765.29i −0.122198 + 0.314662i
\(696\) 0 0
\(697\) 9941.50i 0.540260i
\(698\) 6494.56i 0.352182i
\(699\) 0 0
\(700\) −15180.1 7513.10i −0.819648 0.405669i
\(701\) 573.289i 0.0308885i −0.999881 0.0154442i \(-0.995084\pi\)
0.999881 0.0154442i \(-0.00491625\pi\)
\(702\) 0 0
\(703\) 21139.2 1.13411
\(704\) 7604.51i 0.407111i
\(705\) 0 0
\(706\) 4625.93i 0.246599i
\(707\) 9598.87 2773.26i 0.510612 0.147524i
\(708\) 0 0
\(709\) 16111.0 0.853402 0.426701 0.904393i \(-0.359676\pi\)
0.426701 + 0.904393i \(0.359676\pi\)
\(710\) 2724.32 7015.18i 0.144003 0.370810i
\(711\) 0 0
\(712\) 17836.1 0.938817
\(713\) 32429.0i 1.70333i
\(714\) 0 0
\(715\) 3377.97 8698.34i 0.176684 0.454964i
\(716\) 9220.23i 0.481252i
\(717\) 0 0
\(718\) 255.824i 0.0132970i
\(719\) 12693.6 0.658404 0.329202 0.944259i \(-0.393220\pi\)
0.329202 + 0.944259i \(0.393220\pi\)
\(720\) 0 0
\(721\) −26944.3 + 7784.63i −1.39176 + 0.402101i
\(722\) 3684.62 0.189927
\(723\) 0 0
\(724\) 24474.1i 1.25632i
\(725\) 11191.8 12236.4i 0.573316 0.626827i
\(726\) 0 0
\(727\) −13990.8 −0.713742 −0.356871 0.934154i \(-0.616156\pi\)
−0.356871 + 0.934154i \(0.616156\pi\)
\(728\) 6624.01 1913.78i 0.337228 0.0974304i
\(729\) 0 0
\(730\) −2516.35 977.216i −0.127581 0.0495457i
\(731\) −19317.2 −0.977392
\(732\) 0 0
\(733\) 11159.4 0.562324 0.281162 0.959660i \(-0.409280\pi\)
0.281162 + 0.959660i \(0.409280\pi\)
\(734\) 5536.60 0.278419
\(735\) 0 0
\(736\) 19237.1 0.963437
\(737\) −2976.67 −0.148775
\(738\) 0 0
\(739\) −5715.80 −0.284518 −0.142259 0.989829i \(-0.545437\pi\)
−0.142259 + 0.989829i \(0.545437\pi\)
\(740\) 12770.5 32884.2i 0.634394 1.63358i
\(741\) 0 0
\(742\) 4858.50 1403.70i 0.240379 0.0694492i
\(743\) −12643.2 −0.624271 −0.312136 0.950038i \(-0.601044\pi\)
−0.312136 + 0.950038i \(0.601044\pi\)
\(744\) 0 0
\(745\) −616.463 + 1587.40i −0.0303161 + 0.0780644i
\(746\) 4490.93i 0.220408i
\(747\) 0 0
\(748\) 9409.99 0.459978
\(749\) 13248.0 3827.55i 0.646290 0.186723i
\(750\) 0 0
\(751\) −22154.8 −1.07649 −0.538243 0.842790i \(-0.680912\pi\)
−0.538243 + 0.842790i \(0.680912\pi\)
\(752\) 21459.4i 1.04062i
\(753\) 0 0
\(754\) 3224.58i 0.155746i
\(755\) −21305.8 8274.04i −1.02702 0.398839i
\(756\) 0 0
\(757\) 19624.0i 0.942203i 0.882079 + 0.471102i \(0.156144\pi\)
−0.882079 + 0.471102i \(0.843856\pi\)
\(758\) −9111.03 −0.436580
\(759\) 0 0
\(760\) −2512.43 + 6469.54i −0.119915 + 0.308783i
\(761\) 25556.5 1.21738 0.608689 0.793409i \(-0.291696\pi\)
0.608689 + 0.793409i \(0.291696\pi\)
\(762\) 0 0
\(763\) 13027.8 3763.92i 0.618135 0.178589i
\(764\) 963.061i 0.0456051i
\(765\) 0 0
\(766\) 1867.47i 0.0880865i
\(767\) −6951.82 −0.327269
\(768\) 0 0
\(769\) 28712.6i 1.34643i −0.739448 0.673214i \(-0.764913\pi\)
0.739448 0.673214i \(-0.235087\pi\)
\(770\) −432.818 + 4841.33i −0.0202567 + 0.226584i
\(771\) 0 0
\(772\) 11650.0i 0.543126i
\(773\) 20110.6i 0.935743i 0.883796 + 0.467872i \(0.154979\pi\)
−0.883796 + 0.467872i \(0.845021\pi\)
\(774\) 0 0
\(775\) −20059.5 + 21931.8i −0.929755 + 1.01653i
\(776\) −1365.38 −0.0631627
\(777\) 0 0
\(778\) 5646.06i 0.260181i
\(779\) 10756.7i 0.494736i
\(780\) 0 0
\(781\) 23112.3 1.05893
\(782\) 5108.65i 0.233613i
\(783\) 0 0
\(784\) 13944.5 8791.42i 0.635228 0.400484i
\(785\) −2054.35 797.800i −0.0934049 0.0362735i
\(786\) 0 0
\(787\) −20449.5 −0.926233 −0.463117 0.886297i \(-0.653269\pi\)
−0.463117 + 0.886297i \(0.653269\pi\)
\(788\) −23432.3 −1.05932
\(789\) 0 0
\(790\) 322.314 + 125.170i 0.0145157 + 0.00563714i
\(791\) 6928.32 2001.70i 0.311432 0.0899776i
\(792\) 0 0
\(793\) 16879.2i 0.755859i
\(794\) −7456.51 −0.333277
\(795\) 0 0
\(796\) 24395.4i 1.08627i
\(797\) 16119.3i 0.716405i −0.933644 0.358202i \(-0.883390\pi\)
0.933644 0.358202i \(-0.116610\pi\)
\(798\) 0 0
\(799\) −20228.2 −0.895646
\(800\) 13010.1 + 11899.5i 0.574970 + 0.525887i
\(801\) 0 0
\(802\) 30.4538i 0.00134085i
\(803\) 8290.38i 0.364335i
\(804\) 0 0
\(805\) 28128.2 + 2514.68i 1.23154 + 0.110100i
\(806\) 5779.54i 0.252575i
\(807\) 0 0
\(808\) −6832.10 −0.297466
\(809\) 3994.80i 0.173609i −0.996225 0.0868045i \(-0.972334\pi\)
0.996225 0.0868045i \(-0.0276655\pi\)
\(810\) 0 0
\(811\) 44132.3i 1.91084i −0.295244 0.955422i \(-0.595401\pi\)
0.295244 0.955422i \(-0.404599\pi\)
\(812\) 4989.42 + 17269.5i 0.215633 + 0.746354i
\(813\) 0 0
\(814\) −10123.5 −0.435908
\(815\) 2094.43 5393.19i 0.0900179 0.231798i
\(816\) 0 0
\(817\) 20901.3 0.895034
\(818\) 5116.23i 0.218685i
\(819\) 0 0
\(820\) −16733.2 6498.27i −0.712618 0.276743i
\(821\) 44691.2i 1.89980i −0.312558 0.949899i \(-0.601186\pi\)
0.312558 0.949899i \(-0.398814\pi\)
\(822\) 0 0
\(823\) 2206.71i 0.0934641i −0.998907 0.0467321i \(-0.985119\pi\)
0.998907 0.0467321i \(-0.0148807\pi\)
\(824\) 19177.9 0.810794
\(825\) 0 0
\(826\) 3478.91 1005.11i 0.146546 0.0423394i
\(827\) −3960.83 −0.166544 −0.0832718 0.996527i \(-0.526537\pi\)
−0.0832718 + 0.996527i \(0.526537\pi\)
\(828\) 0 0
\(829\) 10967.1i 0.459473i 0.973253 + 0.229737i \(0.0737865\pi\)
−0.973253 + 0.229737i \(0.926214\pi\)
\(830\) 4191.85 10794.1i 0.175303 0.451408i
\(831\) 0 0
\(832\) 7874.22 0.328113
\(833\) 8287.02 + 13144.5i 0.344692 + 0.546733i
\(834\) 0 0
\(835\) 7591.54 19548.3i 0.314630 0.810178i
\(836\) −10181.6 −0.421218
\(837\) 0 0
\(838\) 8964.09 0.369522
\(839\) −45551.1 −1.87437 −0.937186 0.348829i \(-0.886579\pi\)
−0.937186 + 0.348829i \(0.886579\pi\)
\(840\) 0 0
\(841\) 6789.82 0.278397
\(842\) −4752.13 −0.194500
\(843\) 0 0
\(844\) −31110.7 −1.26881
\(845\) −13890.4 5394.28i −0.565495 0.219608i
\(846\) 0 0
\(847\) 9340.67 2698.67i 0.378925 0.109477i
\(848\) 15871.9 0.642739
\(849\) 0 0
\(850\) −3160.04 + 3454.99i −0.127516 + 0.139418i
\(851\) 58817.7i 2.36927i
\(852\) 0 0
\(853\) −40724.0 −1.63466 −0.817330 0.576170i \(-0.804547\pi\)
−0.817330 + 0.576170i \(0.804547\pi\)
\(854\) −2440.43 8446.87i −0.0977867 0.338461i
\(855\) 0 0
\(856\) −9429.40 −0.376507
\(857\) 440.205i 0.0175462i −0.999962 0.00877312i \(-0.997207\pi\)
0.999962 0.00877312i \(-0.00279261\pi\)
\(858\) 0 0
\(859\) 32558.4i 1.29322i 0.762820 + 0.646610i \(0.223814\pi\)
−0.762820 + 0.646610i \(0.776186\pi\)
\(860\) 12626.7 32514.0i 0.500660 1.28921i
\(861\) 0 0
\(862\) 5014.72i 0.198146i
\(863\) −36423.2 −1.43669 −0.718343 0.695689i \(-0.755099\pi\)
−0.718343 + 0.695689i \(0.755099\pi\)
\(864\) 0 0
\(865\) 11974.6 30834.7i 0.470690 1.21204i
\(866\) 10597.1 0.415823
\(867\) 0 0
\(868\) −8942.72 30952.7i −0.349696 1.21037i
\(869\) 1061.90i 0.0414528i
\(870\) 0 0
\(871\) 3082.24i 0.119906i
\(872\) −9272.66 −0.360105
\(873\) 0 0
\(874\) 5527.56i 0.213928i
\(875\) 17467.6 + 19099.8i 0.674872 + 0.737934i
\(876\) 0 0
\(877\) 1594.15i 0.0613805i −0.999529 0.0306902i \(-0.990229\pi\)
0.999529 0.0306902i \(-0.00977054\pi\)
\(878\) 14582.4i 0.560513i
\(879\) 0 0
\(880\) −5522.40 + 14220.3i −0.211546 + 0.544733i
\(881\) −39169.0 −1.49788 −0.748942 0.662636i \(-0.769438\pi\)
−0.748942 + 0.662636i \(0.769438\pi\)
\(882\) 0 0
\(883\) 31712.0i 1.20860i −0.796757 0.604300i \(-0.793453\pi\)
0.796757 0.604300i \(-0.206547\pi\)
\(884\) 9743.74i 0.370721i
\(885\) 0 0
\(886\) −11337.3 −0.429891
\(887\) 26948.5i 1.02012i −0.860140 0.510058i \(-0.829624\pi\)
0.860140 0.510058i \(-0.170376\pi\)
\(888\) 0 0
\(889\) −2969.00 10276.3i −0.112010 0.387691i
\(890\) −12136.6 4713.22i −0.457102 0.177514i
\(891\) 0 0
\(892\) 31508.0 1.18270
\(893\) 21886.9 0.820176
\(894\) 0 0
\(895\) 5100.58 13134.1i 0.190496 0.490530i
\(896\) −24017.6 + 6939.05i −0.895504 + 0.258725i
\(897\) 0 0
\(898\) 15688.6i 0.583002i
\(899\) 31543.7 1.17023
\(900\) 0 0
\(901\) 14961.3i 0.553198i
\(902\) 5151.36i 0.190157i
\(903\) 0 0
\(904\) −4931.31 −0.181430
\(905\) −13539.0 + 34863.1i −0.497293 + 1.28054i
\(906\) 0 0
\(907\) 37901.0i 1.38752i −0.720205 0.693762i \(-0.755952\pi\)
0.720205 0.693762i \(-0.244048\pi\)
\(908\) 17440.1i 0.637412i
\(909\) 0 0
\(910\) −5013.03 448.169i −0.182616 0.0163260i
\(911\) 911.051i 0.0331333i −0.999863 0.0165667i \(-0.994726\pi\)
0.999863 0.0165667i \(-0.00527357\pi\)
\(912\) 0 0
\(913\) 35562.3 1.28909
\(914\) 7634.01i 0.276270i
\(915\) 0 0
\(916\) 28230.1i 1.01829i
\(917\) −22996.3 + 6644.00i −0.828142 + 0.239263i
\(918\) 0 0
\(919\) 5135.53 0.184337 0.0921684 0.995743i \(-0.470620\pi\)
0.0921684 + 0.995743i \(0.470620\pi\)
\(920\) −18000.9 6990.58i −0.645077 0.250514i
\(921\) 0 0
\(922\) −6529.02 −0.233212
\(923\) 23932.0i 0.853447i
\(924\) 0 0
\(925\) −36382.7 + 39778.5i −1.29325 + 1.41396i
\(926\) 11808.8i 0.419072i
\(927\) 0 0
\(928\) 18711.9i 0.661906i
\(929\) 40564.4 1.43259 0.716295 0.697798i \(-0.245837\pi\)
0.716295 + 0.697798i \(0.245837\pi\)
\(930\) 0 0
\(931\) −8966.56 14222.3i −0.315647 0.500664i
\(932\) −51849.1 −1.82229
\(933\) 0 0
\(934\) 5210.96i 0.182557i
\(935\) −13404.4 5205.56i −0.468846 0.182075i
\(936\) 0 0
\(937\) −6899.40 −0.240548 −0.120274 0.992741i \(-0.538377\pi\)
−0.120274 + 0.992741i \(0.538377\pi\)
\(938\) 445.639 + 1542.45i 0.0155124 + 0.0536918i
\(939\) 0 0
\(940\) 13222.2 34047.3i 0.458787 1.18138i
\(941\) 38885.2 1.34710 0.673550 0.739142i \(-0.264769\pi\)
0.673550 + 0.739142i \(0.264769\pi\)
\(942\) 0 0
\(943\) 29929.5 1.03355
\(944\) 11365.0 0.391843
\(945\) 0 0
\(946\) −10009.6 −0.344016
\(947\) 8149.29 0.279637 0.139818 0.990177i \(-0.455348\pi\)
0.139818 + 0.990177i \(0.455348\pi\)
\(948\) 0 0
\(949\) 8584.42 0.293638
\(950\) 3419.17 3738.30i 0.116771 0.127670i
\(951\) 0 0
\(952\) −2949.19 10207.8i −0.100403 0.347517i
\(953\) −51647.7 −1.75554 −0.877772 0.479078i \(-0.840971\pi\)
−0.877772 + 0.479078i \(0.840971\pi\)
\(954\) 0 0
\(955\) −532.760 + 1371.87i −0.0180521 + 0.0464844i
\(956\) 32817.4i 1.11024i
\(957\) 0 0
\(958\) −236.221 −0.00796654
\(959\) −34345.6 + 9922.98i −1.15649 + 0.334129i
\(960\) 0 0
\(961\) −26745.9 −0.897785
\(962\) 10482.6i 0.351321i
\(963\) 0 0
\(964\) 20806.9i 0.695172i
\(965\) −6444.73 + 16595.3i −0.214988 + 0.553597i
\(966\) 0 0
\(967\) 45387.6i 1.50937i −0.656085 0.754687i \(-0.727789\pi\)
0.656085 0.754687i \(-0.272211\pi\)
\(968\) −6648.33 −0.220749
\(969\) 0 0
\(970\) 929.075 + 360.803i 0.0307534 + 0.0119430i
\(971\) −4741.74 −0.156714 −0.0783572 0.996925i \(-0.524967\pi\)
−0.0783572 + 0.996925i \(0.524967\pi\)
\(972\) 0 0
\(973\) 2843.66 + 9842.53i 0.0936932 + 0.324293i
\(974\) 8857.98i 0.291405i
\(975\) 0 0
\(976\) 27594.5i 0.904997i
\(977\) 34962.8 1.14489 0.572447 0.819942i \(-0.305994\pi\)
0.572447 + 0.819942i \(0.305994\pi\)
\(978\) 0 0
\(979\) 39985.5i 1.30535i
\(980\) −27541.1 + 5356.50i −0.897722 + 0.174599i
\(981\) 0 0
\(982\) 12783.2i 0.415405i
\(983\) 6636.49i 0.215332i 0.994187 + 0.107666i \(0.0343377\pi\)
−0.994187 + 0.107666i \(0.965662\pi\)
\(984\) 0 0
\(985\) 33379.0 + 12962.6i 1.07974 + 0.419313i
\(986\) 4969.18 0.160498
\(987\) 0 0
\(988\) 10542.7i 0.339483i
\(989\) 58155.7i 1.86981i
\(990\) 0 0
\(991\) 37122.5 1.18994 0.594972 0.803747i \(-0.297163\pi\)
0.594972 + 0.803747i \(0.297163\pi\)
\(992\) 33538.1i 1.07342i
\(993\) 0 0
\(994\) −3460.15 11976.3i −0.110412 0.382160i
\(995\) 13495.4 34750.9i 0.429983 1.10721i
\(996\) 0 0
\(997\) −3367.88 −0.106983 −0.0534913 0.998568i \(-0.517035\pi\)
−0.0534913 + 0.998568i \(0.517035\pi\)
\(998\) −14872.8 −0.471733
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.4.g.a.314.28 yes 48
3.2 odd 2 inner 315.4.g.a.314.23 yes 48
5.4 even 2 inner 315.4.g.a.314.24 yes 48
7.6 odd 2 inner 315.4.g.a.314.26 yes 48
15.14 odd 2 inner 315.4.g.a.314.27 yes 48
21.20 even 2 inner 315.4.g.a.314.21 48
35.34 odd 2 inner 315.4.g.a.314.22 yes 48
105.104 even 2 inner 315.4.g.a.314.25 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.4.g.a.314.21 48 21.20 even 2 inner
315.4.g.a.314.22 yes 48 35.34 odd 2 inner
315.4.g.a.314.23 yes 48 3.2 odd 2 inner
315.4.g.a.314.24 yes 48 5.4 even 2 inner
315.4.g.a.314.25 yes 48 105.104 even 2 inner
315.4.g.a.314.26 yes 48 7.6 odd 2 inner
315.4.g.a.314.27 yes 48 15.14 odd 2 inner
315.4.g.a.314.28 yes 48 1.1 even 1 trivial