Newspace parameters
Level: | |||
Weight: | |||
Character orbit: | 315.j (of order , degree , minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
46.1 |
|
−2.79598 | − | 4.84278i | 0 | −11.6350 | + | 20.1524i | 2.50000 | + | 4.33013i | 0 | 8.61636 | + | 16.3939i | 85.3894 | 0 | 13.9799 | − | 24.2139i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.2 | −2.21036 | − | 3.82846i | 0 | −5.77139 | + | 9.99634i | 2.50000 | + | 4.33013i | 0 | 0.502371 | − | 18.5134i | 15.6616 | 0 | 11.0518 | − | 19.1423i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.3 | −1.51204 | − | 2.61893i | 0 | −0.572522 | + | 0.991637i | 2.50000 | + | 4.33013i | 0 | −16.1159 | + | 9.12560i | −20.7299 | 0 | 7.56019 | − | 13.0946i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.4 | −0.975331 | − | 1.68932i | 0 | 2.09746 | − | 3.63290i | 2.50000 | + | 4.33013i | 0 | 18.2579 | + | 3.10650i | −23.7882 | 0 | 4.87666 | − | 8.44662i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.5 | 0.406849 | + | 0.704684i | 0 | 3.66895 | − | 6.35480i | 2.50000 | + | 4.33013i | 0 | 0.736536 | + | 18.5056i | 12.4804 | 0 | −2.03425 | + | 3.52342i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.6 | 0.651312 | + | 1.12811i | 0 | 3.15158 | − | 5.45870i | 2.50000 | + | 4.33013i | 0 | −14.0975 | − | 12.0108i | 18.6317 | 0 | −3.25656 | + | 5.64053i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.7 | 1.96040 | + | 3.39551i | 0 | −3.68632 | + | 6.38489i | 2.50000 | + | 4.33013i | 0 | 17.2936 | + | 6.62818i | 2.45977 | 0 | −9.80199 | + | 16.9775i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
46.8 | 2.47515 | + | 4.28709i | 0 | −8.25275 | + | 14.2942i | 2.50000 | + | 4.33013i | 0 | −4.19324 | − | 18.0393i | −42.1048 | 0 | −12.3758 | + | 21.4354i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.1 | −2.79598 | + | 4.84278i | 0 | −11.6350 | − | 20.1524i | 2.50000 | − | 4.33013i | 0 | 8.61636 | − | 16.3939i | 85.3894 | 0 | 13.9799 | + | 24.2139i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.2 | −2.21036 | + | 3.82846i | 0 | −5.77139 | − | 9.99634i | 2.50000 | − | 4.33013i | 0 | 0.502371 | + | 18.5134i | 15.6616 | 0 | 11.0518 | + | 19.1423i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.3 | −1.51204 | + | 2.61893i | 0 | −0.572522 | − | 0.991637i | 2.50000 | − | 4.33013i | 0 | −16.1159 | − | 9.12560i | −20.7299 | 0 | 7.56019 | + | 13.0946i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.4 | −0.975331 | + | 1.68932i | 0 | 2.09746 | + | 3.63290i | 2.50000 | − | 4.33013i | 0 | 18.2579 | − | 3.10650i | −23.7882 | 0 | 4.87666 | + | 8.44662i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.5 | 0.406849 | − | 0.704684i | 0 | 3.66895 | + | 6.35480i | 2.50000 | − | 4.33013i | 0 | 0.736536 | − | 18.5056i | 12.4804 | 0 | −2.03425 | − | 3.52342i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.6 | 0.651312 | − | 1.12811i | 0 | 3.15158 | + | 5.45870i | 2.50000 | − | 4.33013i | 0 | −14.0975 | + | 12.0108i | 18.6317 | 0 | −3.25656 | − | 5.64053i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.7 | 1.96040 | − | 3.39551i | 0 | −3.68632 | − | 6.38489i | 2.50000 | − | 4.33013i | 0 | 17.2936 | − | 6.62818i | 2.45977 | 0 | −9.80199 | − | 16.9775i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.8 | 2.47515 | − | 4.28709i | 0 | −8.25275 | − | 14.2942i | 2.50000 | − | 4.33013i | 0 | −4.19324 | + | 18.0393i | −42.1048 | 0 | −12.3758 | − | 21.4354i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 315.4.j.i | ✓ | 16 |
3.b | odd | 2 | 1 | 315.4.j.j | yes | 16 | |
7.c | even | 3 | 1 | inner | 315.4.j.i | ✓ | 16 |
7.c | even | 3 | 1 | 2205.4.a.cf | 8 | ||
7.d | odd | 6 | 1 | 2205.4.a.cg | 8 | ||
21.g | even | 6 | 1 | 2205.4.a.cb | 8 | ||
21.h | odd | 6 | 1 | 315.4.j.j | yes | 16 | |
21.h | odd | 6 | 1 | 2205.4.a.cc | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
315.4.j.i | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
315.4.j.i | ✓ | 16 | 7.c | even | 3 | 1 | inner |
315.4.j.j | yes | 16 | 3.b | odd | 2 | 1 | |
315.4.j.j | yes | 16 | 21.h | odd | 6 | 1 | |
2205.4.a.cb | 8 | 21.g | even | 6 | 1 | ||
2205.4.a.cc | 8 | 21.h | odd | 6 | 1 | ||
2205.4.a.cf | 8 | 7.c | even | 3 | 1 | ||
2205.4.a.cg | 8 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|