Properties

Label 315.5.e.a
Level 315315
Weight 55
Character orbit 315.e
Self dual yes
Analytic conductor 32.56232.562
Analytic rank 00
Dimension 11
CM discriminant -35
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,5,Mod(244,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.244");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 315=3257 315 = 3^{2} \cdot 5 \cdot 7
Weight: k k == 5 5
Character orbit: [χ][\chi] == 315.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 32.561538371432.5615383714
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+16q425q5+49q7+73q11+23q13+256q16263q17400q20+625q25+784q28+1153q291225q35+1168q44+3457q47+2401q49+368q52++3383q97+O(q100) q + 16 q^{4} - 25 q^{5} + 49 q^{7} + 73 q^{11} + 23 q^{13} + 256 q^{16} - 263 q^{17} - 400 q^{20} + 625 q^{25} + 784 q^{28} + 1153 q^{29} - 1225 q^{35} + 1168 q^{44} + 3457 q^{47} + 2401 q^{49} + 368 q^{52}+ \cdots + 3383 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/315Z)×\left(\mathbb{Z}/315\mathbb{Z}\right)^\times.

nn 127127 136136 281281
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
244.1
0
0 0 16.0000 −25.0000 0 49.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.c odd 2 1 CM by Q(35)\Q(\sqrt{-35})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.5.e.a 1
3.b odd 2 1 35.5.c.a 1
5.b even 2 1 315.5.e.b 1
7.b odd 2 1 315.5.e.b 1
12.b even 2 1 560.5.p.b 1
15.d odd 2 1 35.5.c.b yes 1
15.e even 4 2 175.5.d.c 2
21.c even 2 1 35.5.c.b yes 1
35.c odd 2 1 CM 315.5.e.a 1
60.h even 2 1 560.5.p.a 1
84.h odd 2 1 560.5.p.a 1
105.g even 2 1 35.5.c.a 1
105.k odd 4 2 175.5.d.c 2
420.o odd 2 1 560.5.p.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.5.c.a 1 3.b odd 2 1
35.5.c.a 1 105.g even 2 1
35.5.c.b yes 1 15.d odd 2 1
35.5.c.b yes 1 21.c even 2 1
175.5.d.c 2 15.e even 4 2
175.5.d.c 2 105.k odd 4 2
315.5.e.a 1 1.a even 1 1 trivial
315.5.e.a 1 35.c odd 2 1 CM
315.5.e.b 1 5.b even 2 1
315.5.e.b 1 7.b odd 2 1
560.5.p.a 1 60.h even 2 1
560.5.p.a 1 84.h odd 2 1
560.5.p.b 1 12.b even 2 1
560.5.p.b 1 420.o odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S5new(315,[χ])S_{5}^{\mathrm{new}}(315, [\chi]):

T2 T_{2} Copy content Toggle raw display
T1323 T_{13} - 23 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+25 T + 25 Copy content Toggle raw display
77 T49 T - 49 Copy content Toggle raw display
1111 T73 T - 73 Copy content Toggle raw display
1313 T23 T - 23 Copy content Toggle raw display
1717 T+263 T + 263 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T1153 T - 1153 Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T3457 T - 3457 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T10078 T - 10078 Copy content Toggle raw display
7373 T+9502 T + 9502 Copy content Toggle raw display
7979 T12167 T - 12167 Copy content Toggle raw display
8383 T6382 T - 6382 Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T3383 T - 3383 Copy content Toggle raw display
show more
show less