Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [315,5,Mod(244,315)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(315, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("315.244");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 315.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 35) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
35.c | odd | 2 | 1 | CM by |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 315.5.e.a | 1 | |
3.b | odd | 2 | 1 | 35.5.c.a | ✓ | 1 | |
5.b | even | 2 | 1 | 315.5.e.b | 1 | ||
7.b | odd | 2 | 1 | 315.5.e.b | 1 | ||
12.b | even | 2 | 1 | 560.5.p.b | 1 | ||
15.d | odd | 2 | 1 | 35.5.c.b | yes | 1 | |
15.e | even | 4 | 2 | 175.5.d.c | 2 | ||
21.c | even | 2 | 1 | 35.5.c.b | yes | 1 | |
35.c | odd | 2 | 1 | CM | 315.5.e.a | 1 | |
60.h | even | 2 | 1 | 560.5.p.a | 1 | ||
84.h | odd | 2 | 1 | 560.5.p.a | 1 | ||
105.g | even | 2 | 1 | 35.5.c.a | ✓ | 1 | |
105.k | odd | 4 | 2 | 175.5.d.c | 2 | ||
420.o | odd | 2 | 1 | 560.5.p.b | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.5.c.a | ✓ | 1 | 3.b | odd | 2 | 1 | |
35.5.c.a | ✓ | 1 | 105.g | even | 2 | 1 | |
35.5.c.b | yes | 1 | 15.d | odd | 2 | 1 | |
35.5.c.b | yes | 1 | 21.c | even | 2 | 1 | |
175.5.d.c | 2 | 15.e | even | 4 | 2 | ||
175.5.d.c | 2 | 105.k | odd | 4 | 2 | ||
315.5.e.a | 1 | 1.a | even | 1 | 1 | trivial | |
315.5.e.a | 1 | 35.c | odd | 2 | 1 | CM | |
315.5.e.b | 1 | 5.b | even | 2 | 1 | ||
315.5.e.b | 1 | 7.b | odd | 2 | 1 | ||
560.5.p.a | 1 | 60.h | even | 2 | 1 | ||
560.5.p.a | 1 | 84.h | odd | 2 | 1 | ||
560.5.p.b | 1 | 12.b | even | 2 | 1 | ||
560.5.p.b | 1 | 420.o | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|