Properties

Label 315.8.a.o
Level 315315
Weight 88
Character orbit 315.a
Self dual yes
Analytic conductor 98.40198.401
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,8,Mod(1,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: N N == 315=3257 315 = 3^{2} \cdot 5 \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 315.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 98.401283027598.4012830275
Analytic rank: 00
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x63x5570x4276x3+67464x2+110400x1253696 x^{6} - 3x^{5} - 570x^{4} - 276x^{3} + 67464x^{2} + 110400x - 1253696 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2634 2^{6}\cdot 3^{4}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+4)q2+(β23β1+77)q4125q5343q7+(β5+β4β3++486)q8+(125β1500)q10+(β5+18β2++689)q11++(117649β1+470596)q98+O(q100) q + ( - \beta_1 + 4) q^{2} + (\beta_{2} - 3 \beta_1 + 77) q^{4} - 125 q^{5} - 343 q^{7} + ( - \beta_{5} + \beta_{4} - \beta_{3} + \cdots + 486) q^{8} + (125 \beta_1 - 500) q^{10} + ( - \beta_{5} + 18 \beta_{2} + \cdots + 689) q^{11}+ \cdots + ( - 117649 \beta_1 + 470596) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+21q2+453q4750q52058q7+2667q82625q10+4284q11+840q137203q14+48609q1616188q1717892q1956625q2035808q229072q23++2470629q98+O(q100) 6 q + 21 q^{2} + 453 q^{4} - 750 q^{5} - 2058 q^{7} + 2667 q^{8} - 2625 q^{10} + 4284 q^{11} + 840 q^{13} - 7203 q^{14} + 48609 q^{16} - 16188 q^{17} - 17892 q^{19} - 56625 q^{20} - 35808 q^{22} - 9072 q^{23}+ \cdots + 2470629 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x63x5570x4276x3+67464x2+110400x1253696 x^{6} - 3x^{5} - 570x^{4} - 276x^{3} + 67464x^{2} + 110400x - 1253696 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν25ν189 \nu^{2} - 5\nu - 189 Copy content Toggle raw display
β3\beta_{3}== (ν55ν4496ν3+524ν2+38320ν+14176)/96 ( \nu^{5} - 5\nu^{4} - 496\nu^{3} + 524\nu^{2} + 38320\nu + 14176 ) / 96 Copy content Toggle raw display
β4\beta_{4}== (ν49ν3424ν2+1668ν+22024)/12 ( \nu^{4} - 9\nu^{3} - 424\nu^{2} + 1668\nu + 22024 ) / 12 Copy content Toggle raw display
β5\beta_{5}== (ν5+13ν4+520ν34588ν255312ν+210112)/96 ( -\nu^{5} + 13\nu^{4} + 520\nu^{3} - 4588\nu^{2} - 55312\nu + 210112 ) / 96 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+5β1+189 \beta_{2} + 5\beta _1 + 189 Copy content Toggle raw display
ν3\nu^{3}== β5β4+β3+7β2+351β1+822 \beta_{5} - \beta_{4} + \beta_{3} + 7\beta_{2} + 351\beta _1 + 822 Copy content Toggle raw display
ν4\nu^{4}== 9β5+3β4+9β3+487β2+3611β1+65510 9\beta_{5} + 3\beta_{4} + 9\beta_{3} + 487\beta_{2} + 3611\beta _1 + 65510 Copy content Toggle raw display
ν5\nu^{5}== 541β5481β4+637β3+5383β2+151211β1+622050 541\beta_{5} - 481\beta_{4} + 637\beta_{3} + 5383\beta_{2} + 151211\beta _1 + 622050 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
22.6783
11.7546
3.78638
−6.32873
−10.9234
−17.9671
−18.6783 0 220.878 −125.000 0 −343.000 −1734.80 0 2334.78
1.2 −7.75456 0 −67.8668 −125.000 0 −343.000 1518.86 0 969.320
1.3 0.213623 0 −127.954 −125.000 0 −343.000 −54.6777 0 −26.7029
1.4 10.3287 0 −21.3173 −125.000 0 −343.000 −1542.26 0 −1291.09
1.5 14.9234 0 94.7076 −125.000 0 −343.000 −496.836 0 −1865.42
1.6 21.9671 0 354.553 −125.000 0 −343.000 4976.71 0 −2745.89
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.8.a.o yes 6
3.b odd 2 1 315.8.a.n 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.8.a.n 6 3.b odd 2 1
315.8.a.o yes 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2621T25390T24+8596T23+11352T22493248T2+104768 T_{2}^{6} - 21T_{2}^{5} - 390T_{2}^{4} + 8596T_{2}^{3} + 11352T_{2}^{2} - 493248T_{2} + 104768 acting on S8new(Γ0(315))S_{8}^{\mathrm{new}}(\Gamma_0(315)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T621T5++104768 T^{6} - 21 T^{5} + \cdots + 104768 Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 (T+125)6 (T + 125)^{6} Copy content Toggle raw display
77 (T+343)6 (T + 343)^{6} Copy content Toggle raw display
1111 T6++18 ⁣ ⁣00 T^{6} + \cdots + 18\!\cdots\!00 Copy content Toggle raw display
1313 T6++19 ⁣ ⁣96 T^{6} + \cdots + 19\!\cdots\!96 Copy content Toggle raw display
1717 T6+36 ⁣ ⁣16 T^{6} + \cdots - 36\!\cdots\!16 Copy content Toggle raw display
1919 T6+12 ⁣ ⁣00 T^{6} + \cdots - 12\!\cdots\!00 Copy content Toggle raw display
2323 T6++11 ⁣ ⁣00 T^{6} + \cdots + 11\!\cdots\!00 Copy content Toggle raw display
2929 T6+10 ⁣ ⁣00 T^{6} + \cdots - 10\!\cdots\!00 Copy content Toggle raw display
3131 T6++94 ⁣ ⁣68 T^{6} + \cdots + 94\!\cdots\!68 Copy content Toggle raw display
3737 T6++11 ⁣ ⁣24 T^{6} + \cdots + 11\!\cdots\!24 Copy content Toggle raw display
4141 T6++38 ⁣ ⁣96 T^{6} + \cdots + 38\!\cdots\!96 Copy content Toggle raw display
4343 T6++20 ⁣ ⁣44 T^{6} + \cdots + 20\!\cdots\!44 Copy content Toggle raw display
4747 T6+16 ⁣ ⁣72 T^{6} + \cdots - 16\!\cdots\!72 Copy content Toggle raw display
5353 T6++24 ⁣ ⁣92 T^{6} + \cdots + 24\!\cdots\!92 Copy content Toggle raw display
5959 T6+27 ⁣ ⁣68 T^{6} + \cdots - 27\!\cdots\!68 Copy content Toggle raw display
6161 T6++23 ⁣ ⁣00 T^{6} + \cdots + 23\!\cdots\!00 Copy content Toggle raw display
6767 T6+37 ⁣ ⁣52 T^{6} + \cdots - 37\!\cdots\!52 Copy content Toggle raw display
7171 T6+53 ⁣ ⁣04 T^{6} + \cdots - 53\!\cdots\!04 Copy content Toggle raw display
7373 T6+83 ⁣ ⁣96 T^{6} + \cdots - 83\!\cdots\!96 Copy content Toggle raw display
7979 T6++15 ⁣ ⁣08 T^{6} + \cdots + 15\!\cdots\!08 Copy content Toggle raw display
8383 T6+12 ⁣ ⁣00 T^{6} + \cdots - 12\!\cdots\!00 Copy content Toggle raw display
8989 T6+13 ⁣ ⁣96 T^{6} + \cdots - 13\!\cdots\!96 Copy content Toggle raw display
9797 T6++17 ⁣ ⁣32 T^{6} + \cdots + 17\!\cdots\!32 Copy content Toggle raw display
show more
show less