gp: [N,k,chi] = [315,8,Mod(1,315)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(315, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("315.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [6,21]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 − 3 x 5 − 570 x 4 − 276 x 3 + 67464 x 2 + 110400 x − 1253696 x^{6} - 3x^{5} - 570x^{4} - 276x^{3} + 67464x^{2} + 110400x - 1253696 x 6 − 3 x 5 − 5 7 0 x 4 − 2 7 6 x 3 + 6 7 4 6 4 x 2 + 1 1 0 4 0 0 x − 1 2 5 3 6 9 6
x^6 - 3*x^5 - 570*x^4 - 276*x^3 + 67464*x^2 + 110400*x - 1253696
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − 5 ν − 189 \nu^{2} - 5\nu - 189 ν 2 − 5 ν − 1 8 9
v^2 - 5*v - 189
β 3 \beta_{3} β 3 = = =
( ν 5 − 5 ν 4 − 496 ν 3 + 524 ν 2 + 38320 ν + 14176 ) / 96 ( \nu^{5} - 5\nu^{4} - 496\nu^{3} + 524\nu^{2} + 38320\nu + 14176 ) / 96 ( ν 5 − 5 ν 4 − 4 9 6 ν 3 + 5 2 4 ν 2 + 3 8 3 2 0 ν + 1 4 1 7 6 ) / 9 6
(v^5 - 5*v^4 - 496*v^3 + 524*v^2 + 38320*v + 14176) / 96
β 4 \beta_{4} β 4 = = =
( ν 4 − 9 ν 3 − 424 ν 2 + 1668 ν + 22024 ) / 12 ( \nu^{4} - 9\nu^{3} - 424\nu^{2} + 1668\nu + 22024 ) / 12 ( ν 4 − 9 ν 3 − 4 2 4 ν 2 + 1 6 6 8 ν + 2 2 0 2 4 ) / 1 2
(v^4 - 9*v^3 - 424*v^2 + 1668*v + 22024) / 12
β 5 \beta_{5} β 5 = = =
( − ν 5 + 13 ν 4 + 520 ν 3 − 4588 ν 2 − 55312 ν + 210112 ) / 96 ( -\nu^{5} + 13\nu^{4} + 520\nu^{3} - 4588\nu^{2} - 55312\nu + 210112 ) / 96 ( − ν 5 + 1 3 ν 4 + 5 2 0 ν 3 − 4 5 8 8 ν 2 − 5 5 3 1 2 ν + 2 1 0 1 1 2 ) / 9 6
(-v^5 + 13*v^4 + 520*v^3 - 4588*v^2 - 55312*v + 210112) / 96
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + 5 β 1 + 189 \beta_{2} + 5\beta _1 + 189 β 2 + 5 β 1 + 1 8 9
b2 + 5*b1 + 189
ν 3 \nu^{3} ν 3 = = =
β 5 − β 4 + β 3 + 7 β 2 + 351 β 1 + 822 \beta_{5} - \beta_{4} + \beta_{3} + 7\beta_{2} + 351\beta _1 + 822 β 5 − β 4 + β 3 + 7 β 2 + 3 5 1 β 1 + 8 2 2
b5 - b4 + b3 + 7*b2 + 351*b1 + 822
ν 4 \nu^{4} ν 4 = = =
9 β 5 + 3 β 4 + 9 β 3 + 487 β 2 + 3611 β 1 + 65510 9\beta_{5} + 3\beta_{4} + 9\beta_{3} + 487\beta_{2} + 3611\beta _1 + 65510 9 β 5 + 3 β 4 + 9 β 3 + 4 8 7 β 2 + 3 6 1 1 β 1 + 6 5 5 1 0
9*b5 + 3*b4 + 9*b3 + 487*b2 + 3611*b1 + 65510
ν 5 \nu^{5} ν 5 = = =
541 β 5 − 481 β 4 + 637 β 3 + 5383 β 2 + 151211 β 1 + 622050 541\beta_{5} - 481\beta_{4} + 637\beta_{3} + 5383\beta_{2} + 151211\beta _1 + 622050 5 4 1 β 5 − 4 8 1 β 4 + 6 3 7 β 3 + 5 3 8 3 β 2 + 1 5 1 2 1 1 β 1 + 6 2 2 0 5 0
541*b5 - 481*b4 + 637*b3 + 5383*b2 + 151211*b1 + 622050
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
7 7 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 6 − 21 T 2 5 − 390 T 2 4 + 8596 T 2 3 + 11352 T 2 2 − 493248 T 2 + 104768 T_{2}^{6} - 21T_{2}^{5} - 390T_{2}^{4} + 8596T_{2}^{3} + 11352T_{2}^{2} - 493248T_{2} + 104768 T 2 6 − 2 1 T 2 5 − 3 9 0 T 2 4 + 8 5 9 6 T 2 3 + 1 1 3 5 2 T 2 2 − 4 9 3 2 4 8 T 2 + 1 0 4 7 6 8
T2^6 - 21*T2^5 - 390*T2^4 + 8596*T2^3 + 11352*T2^2 - 493248*T2 + 104768
acting on S 8 n e w ( Γ 0 ( 315 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(315)) S 8 n e w ( Γ 0 ( 3 1 5 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 − 21 T 5 + ⋯ + 104768 T^{6} - 21 T^{5} + \cdots + 104768 T 6 − 2 1 T 5 + ⋯ + 1 0 4 7 6 8
T^6 - 21*T^5 - 390*T^4 + 8596*T^3 + 11352*T^2 - 493248*T + 104768
3 3 3
T 6 T^{6} T 6
T^6
5 5 5
( T + 125 ) 6 (T + 125)^{6} ( T + 1 2 5 ) 6
(T + 125)^6
7 7 7
( T + 343 ) 6 (T + 343)^{6} ( T + 3 4 3 ) 6
(T + 343)^6
11 11 1 1
T 6 + ⋯ + 18 ⋯ 00 T^{6} + \cdots + 18\!\cdots\!00 T 6 + ⋯ + 1 8 ⋯ 0 0
T^6 - 4284*T^5 - 25789476*T^4 + 109450262768*T^3 + 88628534902848*T^2 - 395272110721555200*T + 188087223318397644800
13 13 1 3
T 6 + ⋯ + 19 ⋯ 96 T^{6} + \cdots + 19\!\cdots\!96 T 6 + ⋯ + 1 9 ⋯ 9 6
T^6 - 840*T^5 - 173627688*T^4 + 123819945760*T^3 + 2993870128682640*T^2 + 4900562752047277056*T + 1999274311076378218496
17 17 1 7
T 6 + ⋯ − 36 ⋯ 16 T^{6} + \cdots - 36\!\cdots\!16 T 6 + ⋯ − 3 6 ⋯ 1 6
T^6 + 16188*T^5 - 1100206776*T^4 - 8444189061952*T^3 + 288913442846561616*T^2 - 589622788491589446336*T - 3697547760896525658006016
19 19 1 9
T 6 + ⋯ − 12 ⋯ 00 T^{6} + \cdots - 12\!\cdots\!00 T 6 + ⋯ − 1 2 ⋯ 0 0
T^6 + 17892*T^5 - 1099713432*T^4 - 13014585644256*T^3 + 99855182985107472*T^2 + 816764042174719222080*T - 1207886243716426941075200
23 23 2 3
T 6 + ⋯ + 11 ⋯ 00 T^{6} + \cdots + 11\!\cdots\!00 T 6 + ⋯ + 1 1 ⋯ 0 0
T^6 + 9072*T^5 - 10982164920*T^4 - 256759926631936*T^3 + 18515408154156411216*T^2 + 384075984956967869529600*T + 1109023244066133226951654400
29 29 2 9
T 6 + ⋯ − 10 ⋯ 00 T^{6} + \cdots - 10\!\cdots\!00 T 6 + ⋯ − 1 0 ⋯ 0 0
T^6 - 41244*T^5 - 26827945020*T^4 + 61602238347776*T^3 + 194778739402220043264*T^2 + 5306412379208824745164800*T - 105669975330508712028196044800
31 31 3 1
T 6 + ⋯ + 94 ⋯ 68 T^{6} + \cdots + 94\!\cdots\!68 T 6 + ⋯ + 9 4 ⋯ 6 8
T^6 + 506436*T^5 + 71619766884*T^4 - 526394900114496*T^3 - 561691674594672518016*T^2 - 3866831955613519443677952*T + 948771217749655115087092512768
37 37 3 7
T 6 + ⋯ + 11 ⋯ 24 T^{6} + \cdots + 11\!\cdots\!24 T 6 + ⋯ + 1 1 ⋯ 2 4
T^6 - 91260*T^5 - 197003270376*T^4 + 25860126330959616*T^3 + 1958438773200161618064*T^2 - 144835810693321151111439168*T + 1156280923407966836614934874624
41 41 4 1
T 6 + ⋯ + 38 ⋯ 96 T^{6} + \cdots + 38\!\cdots\!96 T 6 + ⋯ + 3 8 ⋯ 9 6
T^6 - 734556*T^5 - 411752264532*T^4 + 472300218758278624*T^3 - 120565985449072486239120*T^2 + 6926544250556541178345430592*T + 380973974665246712492538081010496
43 43 4 3
T 6 + ⋯ + 20 ⋯ 44 T^{6} + \cdots + 20\!\cdots\!44 T 6 + ⋯ + 2 0 ⋯ 4 4
T^6 - 281772*T^5 - 274169648700*T^4 + 75708189447587360*T^3 + 10366839452610162888192*T^2 - 3632905087895202676028505600*T + 201728092417761232942460069817344
47 47 4 7
T 6 + ⋯ − 16 ⋯ 72 T^{6} + \cdots - 16\!\cdots\!72 T 6 + ⋯ − 1 6 ⋯ 7 2
T^6 + 79524*T^5 - 764959166124*T^4 - 33572289607265632*T^3 + 129442685636831750464320*T^2 + 4608400206865392923262348288*T - 163690872846636990332105506844672
53 53 5 3
T 6 + ⋯ + 24 ⋯ 92 T^{6} + \cdots + 24\!\cdots\!92 T 6 + ⋯ + 2 4 ⋯ 9 2
T^6 - 2902872*T^5 + 1515541865328*T^4 + 659399245137115952*T^3 - 451223408782730818305936*T^2 - 19939960740611057001056959296*T + 24185145282213325044987316389531392
59 59 5 9
T 6 + ⋯ − 27 ⋯ 68 T^{6} + \cdots - 27\!\cdots\!68 T 6 + ⋯ − 2 7 ⋯ 6 8
T^6 + 1328592*T^5 - 5027085912816*T^4 - 4875316974466015744*T^3 + 7054684338931646933072640*T^2 + 2807589109860628174749759197184*T - 2779384781712414697936837448028704768
61 61 6 1
T 6 + ⋯ + 23 ⋯ 00 T^{6} + \cdots + 23\!\cdots\!00 T 6 + ⋯ + 2 3 ⋯ 0 0
T^6 + 260568*T^5 - 11805147532584*T^4 - 5781065946685112160*T^3 + 16543790366532047392035600*T^2 + 14003697486683144740761352224000*T + 2304787463924745200626954192988160000
67 67 6 7
T 6 + ⋯ − 37 ⋯ 52 T^{6} + \cdots - 37\!\cdots\!52 T 6 + ⋯ − 3 7 ⋯ 5 2
T^6 - 3876108*T^5 - 8025743091564*T^4 + 24307399610892089408*T^3 + 31334163088763802270478464*T^2 - 32554327489390307821709227032576*T - 37440757654467112672593484773311613952
71 71 7 1
T 6 + ⋯ − 53 ⋯ 04 T^{6} + \cdots - 53\!\cdots\!04 T 6 + ⋯ − 5 3 ⋯ 0 4
T^6 - 937524*T^5 - 18978071361312*T^4 - 1334160945238279984*T^3 + 70738410183969246806292720*T^2 + 21947187322051988978669002522368*T - 53070398647071866482758533833911317504
73 73 7 3
T 6 + ⋯ − 83 ⋯ 96 T^{6} + \cdots - 83\!\cdots\!96 T 6 + ⋯ − 8 3 ⋯ 9 6
T^6 - 5903520*T^5 - 16680037081176*T^4 + 119522482173442139456*T^3 - 179510493611650573795786416*T^2 + 88492331007746748050903103197952*T - 8330594374401129164539668135171152896
79 79 7 9
T 6 + ⋯ + 15 ⋯ 08 T^{6} + \cdots + 15\!\cdots\!08 T 6 + ⋯ + 1 5 ⋯ 0 8
T^6 + 173040*T^5 - 40057075928640*T^4 - 97515819599518717440*T^3 + 15150715519800380176392192*T^2 + 43862549181495500671312945643520*T + 1565897232477436447861620538207633408
83 83 8 3
T 6 + ⋯ − 12 ⋯ 00 T^{6} + \cdots - 12\!\cdots\!00 T 6 + ⋯ − 1 2 ⋯ 0 0
T^6 + 13929552*T^5 - 46435556830128*T^4 - 1111963987065980743808*T^3 - 943692154870151372228757504*T^2 + 13941862694423819891007250477056000*T - 12840314773442792017222838526476288000000
89 89 8 9
T 6 + ⋯ − 13 ⋯ 96 T^{6} + \cdots - 13\!\cdots\!96 T 6 + ⋯ − 1 3 ⋯ 9 6
T^6 - 6242988*T^5 - 59070994575828*T^4 + 135744926302453978848*T^3 + 544567817311378572239238000*T^2 - 480003716383448338141531916931264*T - 1375056685180105340059328937495030984896
97 97 9 7
T 6 + ⋯ + 17 ⋯ 32 T^{6} + \cdots + 17\!\cdots\!32 T 6 + ⋯ + 1 7 ⋯ 3 2
T^6 + 20928096*T^5 - 17947534112376*T^4 - 1979497681143395299488*T^3 - 1989615882145757425339927920*T^2 + 47975331595525905811393841856690816*T + 17773495999232643858901121468028561740032
show more
show less