Properties

Label 3150.2.b.c.251.5
Level $3150$
Weight $2$
Character 3150.251
Analytic conductor $25.153$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3150,2,Mod(251,3150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3150.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.5
Root \(0.437016 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 3150.251
Dual form 3150.2.b.c.251.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-2.12132 - 1.58114i) q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-2.12132 - 1.58114i) q^{7} -1.00000i q^{8} +1.41421i q^{11} +3.16228i q^{13} +(1.58114 - 2.12132i) q^{14} +1.00000 q^{16} -4.47214 q^{17} -1.41421 q^{22} -6.00000i q^{23} -3.16228 q^{26} +(2.12132 + 1.58114i) q^{28} +2.82843i q^{29} +1.00000i q^{32} -4.47214i q^{34} +4.24264 q^{37} +9.48683 q^{41} +8.48528 q^{43} -1.41421i q^{44} +6.00000 q^{46} -4.47214 q^{47} +(2.00000 + 6.70820i) q^{49} -3.16228i q^{52} -6.00000i q^{53} +(-1.58114 + 2.12132i) q^{56} -2.82843 q^{58} -9.48683 q^{59} -13.4164i q^{61} -1.00000 q^{64} +4.47214 q^{68} +5.65685i q^{71} -6.32456i q^{73} +4.24264i q^{74} +(2.23607 - 3.00000i) q^{77} +4.00000 q^{79} +9.48683i q^{82} -8.94427 q^{83} +8.48528i q^{86} +1.41421 q^{88} +9.48683 q^{89} +(5.00000 - 6.70820i) q^{91} +6.00000i q^{92} -4.47214i q^{94} -12.6491i q^{97} +(-6.70820 + 2.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} + 8 q^{16} + 48 q^{46} + 16 q^{49} - 8 q^{64} + 32 q^{79} + 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −2.12132 1.58114i −0.801784 0.597614i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) 0 0
\(13\) 3.16228i 0.877058i 0.898717 + 0.438529i \(0.144500\pi\)
−0.898717 + 0.438529i \(0.855500\pi\)
\(14\) 1.58114 2.12132i 0.422577 0.566947i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.47214 −1.08465 −0.542326 0.840168i \(-0.682456\pi\)
−0.542326 + 0.840168i \(0.682456\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.41421 −0.301511
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −3.16228 −0.620174
\(27\) 0 0
\(28\) 2.12132 + 1.58114i 0.400892 + 0.298807i
\(29\) 2.82843i 0.525226i 0.964901 + 0.262613i \(0.0845842\pi\)
−0.964901 + 0.262613i \(0.915416\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 4.47214i 0.766965i
\(35\) 0 0
\(36\) 0 0
\(37\) 4.24264 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.48683 1.48159 0.740797 0.671729i \(-0.234448\pi\)
0.740797 + 0.671729i \(0.234448\pi\)
\(42\) 0 0
\(43\) 8.48528 1.29399 0.646997 0.762493i \(-0.276025\pi\)
0.646997 + 0.762493i \(0.276025\pi\)
\(44\) 1.41421i 0.213201i
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) −4.47214 −0.652328 −0.326164 0.945313i \(-0.605756\pi\)
−0.326164 + 0.945313i \(0.605756\pi\)
\(48\) 0 0
\(49\) 2.00000 + 6.70820i 0.285714 + 0.958315i
\(50\) 0 0
\(51\) 0 0
\(52\) 3.16228i 0.438529i
\(53\) 6.00000i 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.58114 + 2.12132i −0.211289 + 0.283473i
\(57\) 0 0
\(58\) −2.82843 −0.371391
\(59\) −9.48683 −1.23508 −0.617540 0.786539i \(-0.711871\pi\)
−0.617540 + 0.786539i \(0.711871\pi\)
\(60\) 0 0
\(61\) 13.4164i 1.71780i −0.512148 0.858898i \(-0.671150\pi\)
0.512148 0.858898i \(-0.328850\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 4.47214 0.542326
\(69\) 0 0
\(70\) 0 0
\(71\) 5.65685i 0.671345i 0.941979 + 0.335673i \(0.108964\pi\)
−0.941979 + 0.335673i \(0.891036\pi\)
\(72\) 0 0
\(73\) 6.32456i 0.740233i −0.928985 0.370117i \(-0.879318\pi\)
0.928985 0.370117i \(-0.120682\pi\)
\(74\) 4.24264i 0.493197i
\(75\) 0 0
\(76\) 0 0
\(77\) 2.23607 3.00000i 0.254824 0.341882i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.48683i 1.04765i
\(83\) −8.94427 −0.981761 −0.490881 0.871227i \(-0.663325\pi\)
−0.490881 + 0.871227i \(0.663325\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.48528i 0.914991i
\(87\) 0 0
\(88\) 1.41421 0.150756
\(89\) 9.48683 1.00560 0.502801 0.864402i \(-0.332303\pi\)
0.502801 + 0.864402i \(0.332303\pi\)
\(90\) 0 0
\(91\) 5.00000 6.70820i 0.524142 0.703211i
\(92\) 6.00000i 0.625543i
\(93\) 0 0
\(94\) 4.47214i 0.461266i
\(95\) 0 0
\(96\) 0 0
\(97\) 12.6491i 1.28432i −0.766570 0.642161i \(-0.778038\pi\)
0.766570 0.642161i \(-0.221962\pi\)
\(98\) −6.70820 + 2.00000i −0.677631 + 0.202031i
\(99\) 0 0
\(100\) 0 0
\(101\) 18.9737 1.88795 0.943975 0.330017i \(-0.107054\pi\)
0.943975 + 0.330017i \(0.107054\pi\)
\(102\) 0 0
\(103\) 15.8114i 1.55794i −0.627060 0.778971i \(-0.715742\pi\)
0.627060 0.778971i \(-0.284258\pi\)
\(104\) 3.16228 0.310087
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.12132 1.58114i −0.200446 0.149404i
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.82843i 0.262613i
\(117\) 0 0
\(118\) 9.48683i 0.873334i
\(119\) 9.48683 + 7.07107i 0.869657 + 0.648204i
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 13.4164 1.21466
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 21.2132 1.88237 0.941184 0.337895i \(-0.109715\pi\)
0.941184 + 0.337895i \(0.109715\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −9.48683 −0.828868 −0.414434 0.910079i \(-0.636021\pi\)
−0.414434 + 0.910079i \(0.636021\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 4.47214i 0.383482i
\(137\) 18.0000i 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 0 0
\(139\) 13.4164i 1.13796i −0.822350 0.568982i \(-0.807337\pi\)
0.822350 0.568982i \(-0.192663\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.65685 −0.474713
\(143\) −4.47214 −0.373979
\(144\) 0 0
\(145\) 0 0
\(146\) 6.32456 0.523424
\(147\) 0 0
\(148\) −4.24264 −0.348743
\(149\) 11.3137i 0.926855i 0.886135 + 0.463428i \(0.153381\pi\)
−0.886135 + 0.463428i \(0.846619\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 3.00000 + 2.23607i 0.241747 + 0.180187i
\(155\) 0 0
\(156\) 0 0
\(157\) 15.8114i 1.26189i 0.775829 + 0.630943i \(0.217332\pi\)
−0.775829 + 0.630943i \(0.782668\pi\)
\(158\) 4.00000i 0.318223i
\(159\) 0 0
\(160\) 0 0
\(161\) −9.48683 + 12.7279i −0.747667 + 1.00310i
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) −9.48683 −0.740797
\(165\) 0 0
\(166\) 8.94427i 0.694210i
\(167\) 8.94427 0.692129 0.346064 0.938211i \(-0.387518\pi\)
0.346064 + 0.938211i \(0.387518\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) −8.48528 −0.646997
\(173\) −8.94427 −0.680020 −0.340010 0.940422i \(-0.610431\pi\)
−0.340010 + 0.940422i \(0.610431\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.41421i 0.106600i
\(177\) 0 0
\(178\) 9.48683i 0.711068i
\(179\) 18.3848i 1.37414i −0.726590 0.687071i \(-0.758896\pi\)
0.726590 0.687071i \(-0.241104\pi\)
\(180\) 0 0
\(181\) 13.4164i 0.997234i −0.866822 0.498617i \(-0.833841\pi\)
0.866822 0.498617i \(-0.166159\pi\)
\(182\) 6.70820 + 5.00000i 0.497245 + 0.370625i
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) 0 0
\(186\) 0 0
\(187\) 6.32456i 0.462497i
\(188\) 4.47214 0.326164
\(189\) 0 0
\(190\) 0 0
\(191\) 22.6274i 1.63726i 0.574320 + 0.818631i \(0.305267\pi\)
−0.574320 + 0.818631i \(0.694733\pi\)
\(192\) 0 0
\(193\) −8.48528 −0.610784 −0.305392 0.952227i \(-0.598787\pi\)
−0.305392 + 0.952227i \(0.598787\pi\)
\(194\) 12.6491 0.908153
\(195\) 0 0
\(196\) −2.00000 6.70820i −0.142857 0.479157i
\(197\) 12.0000i 0.854965i 0.904024 + 0.427482i \(0.140599\pi\)
−0.904024 + 0.427482i \(0.859401\pi\)
\(198\) 0 0
\(199\) 26.8328i 1.90213i −0.308994 0.951064i \(-0.599992\pi\)
0.308994 0.951064i \(-0.400008\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 18.9737i 1.33498i
\(203\) 4.47214 6.00000i 0.313882 0.421117i
\(204\) 0 0
\(205\) 0 0
\(206\) 15.8114 1.10163
\(207\) 0 0
\(208\) 3.16228i 0.219265i
\(209\) 0 0
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 10.0000i 0.677285i
\(219\) 0 0
\(220\) 0 0
\(221\) 14.1421i 0.951303i
\(222\) 0 0
\(223\) 22.1359i 1.48233i 0.671322 + 0.741166i \(0.265727\pi\)
−0.671322 + 0.741166i \(0.734273\pi\)
\(224\) 1.58114 2.12132i 0.105644 0.141737i
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −17.8885 −1.18730 −0.593652 0.804722i \(-0.702314\pi\)
−0.593652 + 0.804722i \(0.702314\pi\)
\(228\) 0 0
\(229\) 13.4164i 0.886581i 0.896378 + 0.443291i \(0.146189\pi\)
−0.896378 + 0.443291i \(0.853811\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.82843 0.185695
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 9.48683 0.617540
\(237\) 0 0
\(238\) −7.07107 + 9.48683i −0.458349 + 0.614940i
\(239\) 11.3137i 0.731823i 0.930650 + 0.365911i \(0.119243\pi\)
−0.930650 + 0.365911i \(0.880757\pi\)
\(240\) 0 0
\(241\) 13.4164i 0.864227i 0.901819 + 0.432113i \(0.142232\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) 9.00000i 0.578542i
\(243\) 0 0
\(244\) 13.4164i 0.858898i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.48683 −0.598804 −0.299402 0.954127i \(-0.596787\pi\)
−0.299402 + 0.954127i \(0.596787\pi\)
\(252\) 0 0
\(253\) 8.48528 0.533465
\(254\) 21.2132i 1.33103i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.47214 −0.278964 −0.139482 0.990225i \(-0.544544\pi\)
−0.139482 + 0.990225i \(0.544544\pi\)
\(258\) 0 0
\(259\) −9.00000 6.70820i −0.559233 0.416828i
\(260\) 0 0
\(261\) 0 0
\(262\) 9.48683i 0.586098i
\(263\) 6.00000i 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.9737 −1.15684 −0.578422 0.815737i \(-0.696331\pi\)
−0.578422 + 0.815737i \(0.696331\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −4.47214 −0.271163
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) −21.2132 −1.27458 −0.637289 0.770625i \(-0.719944\pi\)
−0.637289 + 0.770625i \(0.719944\pi\)
\(278\) 13.4164 0.804663
\(279\) 0 0
\(280\) 0 0
\(281\) 1.41421i 0.0843649i 0.999110 + 0.0421825i \(0.0134311\pi\)
−0.999110 + 0.0421825i \(0.986569\pi\)
\(282\) 0 0
\(283\) 6.32456i 0.375956i −0.982173 0.187978i \(-0.939807\pi\)
0.982173 0.187978i \(-0.0601933\pi\)
\(284\) 5.65685i 0.335673i
\(285\) 0 0
\(286\) 4.47214i 0.264443i
\(287\) −20.1246 15.0000i −1.18792 0.885422i
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) 0 0
\(292\) 6.32456i 0.370117i
\(293\) 4.47214 0.261265 0.130632 0.991431i \(-0.458299\pi\)
0.130632 + 0.991431i \(0.458299\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.24264i 0.246598i
\(297\) 0 0
\(298\) −11.3137 −0.655386
\(299\) 18.9737 1.09728
\(300\) 0 0
\(301\) −18.0000 13.4164i −1.03750 0.773309i
\(302\) 20.0000i 1.15087i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.6491i 0.721923i −0.932581 0.360961i \(-0.882449\pi\)
0.932581 0.360961i \(-0.117551\pi\)
\(308\) −2.23607 + 3.00000i −0.127412 + 0.170941i
\(309\) 0 0
\(310\) 0 0
\(311\) 18.9737 1.07590 0.537949 0.842977i \(-0.319199\pi\)
0.537949 + 0.842977i \(0.319199\pi\)
\(312\) 0 0
\(313\) 31.6228i 1.78743i 0.448640 + 0.893713i \(0.351909\pi\)
−0.448640 + 0.893713i \(0.648091\pi\)
\(314\) −15.8114 −0.892288
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 12.0000i 0.673987i 0.941507 + 0.336994i \(0.109410\pi\)
−0.941507 + 0.336994i \(0.890590\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 0 0
\(321\) 0 0
\(322\) −12.7279 9.48683i −0.709299 0.528681i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 9.48683i 0.523823i
\(329\) 9.48683 + 7.07107i 0.523026 + 0.389841i
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 8.94427 0.490881
\(333\) 0 0
\(334\) 8.94427i 0.489409i
\(335\) 0 0
\(336\) 0 0
\(337\) 25.4558 1.38667 0.693334 0.720616i \(-0.256141\pi\)
0.693334 + 0.720616i \(0.256141\pi\)
\(338\) 3.00000i 0.163178i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 6.36396 17.3925i 0.343622 0.939108i
\(344\) 8.48528i 0.457496i
\(345\) 0 0
\(346\) 8.94427i 0.480847i
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 13.4164i 0.718164i 0.933306 + 0.359082i \(0.116910\pi\)
−0.933306 + 0.359082i \(0.883090\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.41421 −0.0753778
\(353\) 31.3050 1.66619 0.833097 0.553127i \(-0.186565\pi\)
0.833097 + 0.553127i \(0.186565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −9.48683 −0.502801
\(357\) 0 0
\(358\) 18.3848 0.971666
\(359\) 31.1127i 1.64207i −0.570881 0.821033i \(-0.693398\pi\)
0.570881 0.821033i \(-0.306602\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 13.4164 0.705151
\(363\) 0 0
\(364\) −5.00000 + 6.70820i −0.262071 + 0.351605i
\(365\) 0 0
\(366\) 0 0
\(367\) 22.1359i 1.15549i −0.816218 0.577743i \(-0.803933\pi\)
0.816218 0.577743i \(-0.196067\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 0 0
\(370\) 0 0
\(371\) −9.48683 + 12.7279i −0.492532 + 0.660801i
\(372\) 0 0
\(373\) −21.2132 −1.09838 −0.549189 0.835698i \(-0.685063\pi\)
−0.549189 + 0.835698i \(0.685063\pi\)
\(374\) 6.32456 0.327035
\(375\) 0 0
\(376\) 4.47214i 0.230633i
\(377\) −8.94427 −0.460653
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −22.6274 −1.15772
\(383\) 4.47214 0.228515 0.114258 0.993451i \(-0.463551\pi\)
0.114258 + 0.993451i \(0.463551\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 8.48528i 0.431889i
\(387\) 0 0
\(388\) 12.6491i 0.642161i
\(389\) 11.3137i 0.573628i 0.957986 + 0.286814i \(0.0925961\pi\)
−0.957986 + 0.286814i \(0.907404\pi\)
\(390\) 0 0
\(391\) 26.8328i 1.35699i
\(392\) 6.70820 2.00000i 0.338815 0.101015i
\(393\) 0 0
\(394\) −12.0000 −0.604551
\(395\) 0 0
\(396\) 0 0
\(397\) 22.1359i 1.11097i −0.831526 0.555486i \(-0.812532\pi\)
0.831526 0.555486i \(-0.187468\pi\)
\(398\) 26.8328 1.34501
\(399\) 0 0
\(400\) 0 0
\(401\) 1.41421i 0.0706225i 0.999376 + 0.0353112i \(0.0112422\pi\)
−0.999376 + 0.0353112i \(0.988758\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −18.9737 −0.943975
\(405\) 0 0
\(406\) 6.00000 + 4.47214i 0.297775 + 0.221948i
\(407\) 6.00000i 0.297409i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15.8114i 0.778971i
\(413\) 20.1246 + 15.0000i 0.990267 + 0.738102i
\(414\) 0 0
\(415\) 0 0
\(416\) −3.16228 −0.155043
\(417\) 0 0
\(418\) 0 0
\(419\) −9.48683 −0.463462 −0.231731 0.972780i \(-0.574439\pi\)
−0.231731 + 0.972780i \(0.574439\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 20.0000i 0.973585i
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) −21.2132 + 28.4605i −1.02658 + 1.37730i
\(428\) 12.0000i 0.580042i
\(429\) 0 0
\(430\) 0 0
\(431\) 36.7696i 1.77113i −0.464518 0.885564i \(-0.653773\pi\)
0.464518 0.885564i \(-0.346227\pi\)
\(432\) 0 0
\(433\) 6.32456i 0.303939i −0.988385 0.151969i \(-0.951438\pi\)
0.988385 0.151969i \(-0.0485615\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 14.1421 0.672673
\(443\) 24.0000i 1.14027i −0.821549 0.570137i \(-0.806890\pi\)
0.821549 0.570137i \(-0.193110\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −22.1359 −1.04817
\(447\) 0 0
\(448\) 2.12132 + 1.58114i 0.100223 + 0.0747018i
\(449\) 18.3848i 0.867631i −0.901002 0.433816i \(-0.857167\pi\)
0.901002 0.433816i \(-0.142833\pi\)
\(450\) 0 0
\(451\) 13.4164i 0.631754i
\(452\) 6.00000i 0.282216i
\(453\) 0 0
\(454\) 17.8885i 0.839551i
\(455\) 0 0
\(456\) 0 0
\(457\) 16.9706 0.793849 0.396925 0.917851i \(-0.370077\pi\)
0.396925 + 0.917851i \(0.370077\pi\)
\(458\) −13.4164 −0.626908
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 21.2132 0.985861 0.492931 0.870069i \(-0.335926\pi\)
0.492931 + 0.870069i \(0.335926\pi\)
\(464\) 2.82843i 0.131306i
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) 8.94427 0.413892 0.206946 0.978352i \(-0.433648\pi\)
0.206946 + 0.978352i \(0.433648\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 9.48683i 0.436667i
\(473\) 12.0000i 0.551761i
\(474\) 0 0
\(475\) 0 0
\(476\) −9.48683 7.07107i −0.434828 0.324102i
\(477\) 0 0
\(478\) −11.3137 −0.517477
\(479\) 18.9737 0.866929 0.433464 0.901171i \(-0.357291\pi\)
0.433464 + 0.901171i \(0.357291\pi\)
\(480\) 0 0
\(481\) 13.4164i 0.611736i
\(482\) −13.4164 −0.611101
\(483\) 0 0
\(484\) −9.00000 −0.409091
\(485\) 0 0
\(486\) 0 0
\(487\) −4.24264 −0.192252 −0.0961262 0.995369i \(-0.530645\pi\)
−0.0961262 + 0.995369i \(0.530645\pi\)
\(488\) −13.4164 −0.607332
\(489\) 0 0
\(490\) 0 0
\(491\) 15.5563i 0.702048i −0.936366 0.351024i \(-0.885834\pi\)
0.936366 0.351024i \(-0.114166\pi\)
\(492\) 0 0
\(493\) 12.6491i 0.569687i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.94427 12.0000i 0.401205 0.538274i
\(498\) 0 0
\(499\) 10.0000 0.447661 0.223831 0.974628i \(-0.428144\pi\)
0.223831 + 0.974628i \(0.428144\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 9.48683i 0.423418i
\(503\) −22.3607 −0.997013 −0.498507 0.866886i \(-0.666118\pi\)
−0.498507 + 0.866886i \(0.666118\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 8.48528i 0.377217i
\(507\) 0 0
\(508\) −21.2132 −0.941184
\(509\) −18.9737 −0.840993 −0.420496 0.907294i \(-0.638144\pi\)
−0.420496 + 0.907294i \(0.638144\pi\)
\(510\) 0 0
\(511\) −10.0000 + 13.4164i −0.442374 + 0.593507i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 4.47214i 0.197257i
\(515\) 0 0
\(516\) 0 0
\(517\) 6.32456i 0.278154i
\(518\) 6.70820 9.00000i 0.294742 0.395437i
\(519\) 0 0
\(520\) 0 0
\(521\) −28.4605 −1.24688 −0.623439 0.781872i \(-0.714265\pi\)
−0.623439 + 0.781872i \(0.714265\pi\)
\(522\) 0 0
\(523\) 6.32456i 0.276553i −0.990394 0.138277i \(-0.955844\pi\)
0.990394 0.138277i \(-0.0441563\pi\)
\(524\) 9.48683 0.414434
\(525\) 0 0
\(526\) 6.00000 0.261612
\(527\) 0 0
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 30.0000i 1.29944i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 18.9737i 0.818013i
\(539\) −9.48683 + 2.82843i −0.408627 + 0.121829i
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 4.47214i 0.191741i
\(545\) 0 0
\(546\) 0 0
\(547\) 42.4264 1.81402 0.907011 0.421107i \(-0.138358\pi\)
0.907011 + 0.421107i \(0.138358\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −8.48528 6.32456i −0.360831 0.268947i
\(554\) 21.2132i 0.901263i
\(555\) 0 0
\(556\) 13.4164i 0.568982i
\(557\) 18.0000i 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) 0 0
\(559\) 26.8328i 1.13491i
\(560\) 0 0
\(561\) 0 0
\(562\) −1.41421 −0.0596550
\(563\) −35.7771 −1.50782 −0.753912 0.656975i \(-0.771836\pi\)
−0.753912 + 0.656975i \(0.771836\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 6.32456 0.265841
\(567\) 0 0
\(568\) 5.65685 0.237356
\(569\) 9.89949i 0.415008i −0.978234 0.207504i \(-0.933466\pi\)
0.978234 0.207504i \(-0.0665341\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 4.47214 0.186989
\(573\) 0 0
\(574\) 15.0000 20.1246i 0.626088 0.839985i
\(575\) 0 0
\(576\) 0 0
\(577\) 25.2982i 1.05318i 0.850120 + 0.526589i \(0.176529\pi\)
−0.850120 + 0.526589i \(0.823471\pi\)
\(578\) 3.00000i 0.124784i
\(579\) 0 0
\(580\) 0 0
\(581\) 18.9737 + 14.1421i 0.787160 + 0.586715i
\(582\) 0 0
\(583\) 8.48528 0.351424
\(584\) −6.32456 −0.261712
\(585\) 0 0
\(586\) 4.47214i 0.184742i
\(587\) 8.94427 0.369170 0.184585 0.982817i \(-0.440906\pi\)
0.184585 + 0.982817i \(0.440906\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 4.24264 0.174371
\(593\) −22.3607 −0.918243 −0.459122 0.888373i \(-0.651836\pi\)
−0.459122 + 0.888373i \(0.651836\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 11.3137i 0.463428i
\(597\) 0 0
\(598\) 18.9737i 0.775891i
\(599\) 2.82843i 0.115566i 0.998329 + 0.0577832i \(0.0184032\pi\)
−0.998329 + 0.0577832i \(0.981597\pi\)
\(600\) 0 0
\(601\) 13.4164i 0.547267i 0.961834 + 0.273633i \(0.0882255\pi\)
−0.961834 + 0.273633i \(0.911775\pi\)
\(602\) 13.4164 18.0000i 0.546812 0.733625i
\(603\) 0 0
\(604\) −20.0000 −0.813788
\(605\) 0 0
\(606\) 0 0
\(607\) 15.8114i 0.641764i 0.947119 + 0.320882i \(0.103979\pi\)
−0.947119 + 0.320882i \(0.896021\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.1421i 0.572130i
\(612\) 0 0
\(613\) −21.2132 −0.856793 −0.428397 0.903591i \(-0.640921\pi\)
−0.428397 + 0.903591i \(0.640921\pi\)
\(614\) 12.6491 0.510477
\(615\) 0 0
\(616\) −3.00000 2.23607i −0.120873 0.0900937i
\(617\) 18.0000i 0.724653i 0.932051 + 0.362326i \(0.118017\pi\)
−0.932051 + 0.362326i \(0.881983\pi\)
\(618\) 0 0
\(619\) 40.2492i 1.61775i 0.587979 + 0.808876i \(0.299924\pi\)
−0.587979 + 0.808876i \(0.700076\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 18.9737i 0.760775i
\(623\) −20.1246 15.0000i −0.806276 0.600962i
\(624\) 0 0
\(625\) 0 0
\(626\) −31.6228 −1.26390
\(627\) 0 0
\(628\) 15.8114i 0.630943i
\(629\) −18.9737 −0.756530
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 4.00000i 0.159111i
\(633\) 0 0
\(634\) −12.0000 −0.476581
\(635\) 0 0
\(636\) 0 0
\(637\) −21.2132 + 6.32456i −0.840498 + 0.250588i
\(638\) 4.00000i 0.158362i
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5563i 0.614439i −0.951639 0.307219i \(-0.900601\pi\)
0.951639 0.307219i \(-0.0993986\pi\)
\(642\) 0 0
\(643\) 6.32456i 0.249416i −0.992193 0.124708i \(-0.960201\pi\)
0.992193 0.124708i \(-0.0397994\pi\)
\(644\) 9.48683 12.7279i 0.373834 0.501550i
\(645\) 0 0
\(646\) 0 0
\(647\) 22.3607 0.879089 0.439545 0.898221i \(-0.355140\pi\)
0.439545 + 0.898221i \(0.355140\pi\)
\(648\) 0 0
\(649\) 13.4164i 0.526640i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24.0000i 0.939193i 0.882881 + 0.469596i \(0.155601\pi\)
−0.882881 + 0.469596i \(0.844399\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 9.48683 0.370399
\(657\) 0 0
\(658\) −7.07107 + 9.48683i −0.275659 + 0.369835i
\(659\) 32.5269i 1.26707i 0.773715 + 0.633534i \(0.218396\pi\)
−0.773715 + 0.633534i \(0.781604\pi\)
\(660\) 0 0
\(661\) 40.2492i 1.56551i −0.622328 0.782757i \(-0.713813\pi\)
0.622328 0.782757i \(-0.286187\pi\)
\(662\) 10.0000i 0.388661i
\(663\) 0 0
\(664\) 8.94427i 0.347105i
\(665\) 0 0
\(666\) 0 0
\(667\) 16.9706 0.657103
\(668\) −8.94427 −0.346064
\(669\) 0 0
\(670\) 0 0
\(671\) 18.9737 0.732470
\(672\) 0 0
\(673\) −8.48528 −0.327084 −0.163542 0.986536i \(-0.552292\pi\)
−0.163542 + 0.986536i \(0.552292\pi\)
\(674\) 25.4558i 0.980522i
\(675\) 0 0
\(676\) −3.00000 −0.115385
\(677\) 22.3607 0.859391 0.429695 0.902974i \(-0.358621\pi\)
0.429695 + 0.902974i \(0.358621\pi\)
\(678\) 0 0
\(679\) −20.0000 + 26.8328i −0.767530 + 1.02975i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.0000i 1.37750i −0.724998 0.688751i \(-0.758159\pi\)
0.724998 0.688751i \(-0.241841\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 17.3925 + 6.36396i 0.664050 + 0.242977i
\(687\) 0 0
\(688\) 8.48528 0.323498
\(689\) 18.9737 0.722839
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 8.94427 0.340010
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) −42.4264 −1.60701
\(698\) −13.4164 −0.507819
\(699\) 0 0
\(700\) 0 0
\(701\) 36.7696i 1.38877i −0.719605 0.694383i \(-0.755677\pi\)
0.719605 0.694383i \(-0.244323\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.41421i 0.0533002i
\(705\) 0 0
\(706\) 31.3050i 1.17818i
\(707\) −40.2492 30.0000i −1.51373 1.12827i
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.48683i 0.355534i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 18.3848i 0.687071i
\(717\) 0 0
\(718\) 31.1127 1.16112
\(719\) −37.9473 −1.41520 −0.707598 0.706615i \(-0.750221\pi\)
−0.707598 + 0.706615i \(0.750221\pi\)
\(720\) 0 0
\(721\) −25.0000 + 33.5410i −0.931049 + 1.24913i
\(722\) 19.0000i 0.707107i
\(723\) 0 0
\(724\) 13.4164i 0.498617i
\(725\) 0 0
\(726\) 0 0
\(727\) 3.16228i 0.117282i −0.998279 0.0586412i \(-0.981323\pi\)
0.998279 0.0586412i \(-0.0186768\pi\)
\(728\) −6.70820 5.00000i −0.248623 0.185312i
\(729\) 0 0
\(730\) 0 0
\(731\) −37.9473 −1.40353
\(732\) 0 0
\(733\) 41.1096i 1.51842i 0.650847 + 0.759209i \(0.274414\pi\)
−0.650847 + 0.759209i \(0.725586\pi\)
\(734\) 22.1359 0.817053
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) 0 0
\(738\) 0 0
\(739\) 34.0000 1.25071 0.625355 0.780340i \(-0.284954\pi\)
0.625355 + 0.780340i \(0.284954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12.7279 9.48683i −0.467257 0.348273i
\(743\) 24.0000i 0.880475i −0.897881 0.440237i \(-0.854894\pi\)
0.897881 0.440237i \(-0.145106\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 21.2132i 0.776671i
\(747\) 0 0
\(748\) 6.32456i 0.231249i
\(749\) −18.9737 + 25.4558i −0.693283 + 0.930136i
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) −4.47214 −0.163082
\(753\) 0 0
\(754\) 8.94427i 0.325731i
\(755\) 0 0
\(756\) 0 0
\(757\) 46.6690 1.69622 0.848108 0.529824i \(-0.177742\pi\)
0.848108 + 0.529824i \(0.177742\pi\)
\(758\) 20.0000i 0.726433i
\(759\) 0 0
\(760\) 0 0
\(761\) −9.48683 −0.343897 −0.171949 0.985106i \(-0.555006\pi\)
−0.171949 + 0.985106i \(0.555006\pi\)
\(762\) 0 0
\(763\) −21.2132 15.8114i −0.767970 0.572411i
\(764\) 22.6274i 0.818631i
\(765\) 0 0
\(766\) 4.47214i 0.161585i
\(767\) 30.0000i 1.08324i
\(768\) 0 0
\(769\) 40.2492i 1.45142i −0.687999 0.725712i \(-0.741510\pi\)
0.687999 0.725712i \(-0.258490\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.48528 0.305392
\(773\) 31.3050 1.12596 0.562980 0.826470i \(-0.309655\pi\)
0.562980 + 0.826470i \(0.309655\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −12.6491 −0.454077
\(777\) 0 0
\(778\) −11.3137 −0.405616
\(779\) 0 0
\(780\) 0 0
\(781\) −8.00000 −0.286263
\(782\) −26.8328 −0.959540
\(783\) 0 0
\(784\) 2.00000 + 6.70820i 0.0714286 + 0.239579i
\(785\) 0 0
\(786\) 0 0
\(787\) 31.6228i 1.12723i −0.826038 0.563615i \(-0.809410\pi\)
0.826038 0.563615i \(-0.190590\pi\)
\(788\) 12.0000i 0.427482i
\(789\) 0 0
\(790\) 0 0
\(791\) 9.48683 12.7279i 0.337313 0.452553i
\(792\) 0 0
\(793\) 42.4264 1.50661
\(794\) 22.1359 0.785575
\(795\) 0 0
\(796\) 26.8328i 0.951064i
\(797\) 8.94427 0.316822 0.158411 0.987373i \(-0.449363\pi\)
0.158411 + 0.987373i \(0.449363\pi\)
\(798\) 0 0
\(799\) 20.0000 0.707549
\(800\) 0 0
\(801\) 0 0
\(802\) −1.41421 −0.0499376
\(803\) 8.94427 0.315637
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 18.9737i 0.667491i
\(809\) 52.3259i 1.83968i −0.392293 0.919840i \(-0.628318\pi\)
0.392293 0.919840i \(-0.371682\pi\)
\(810\) 0 0
\(811\) 40.2492i 1.41334i −0.707543 0.706671i \(-0.750196\pi\)
0.707543 0.706671i \(-0.249804\pi\)
\(812\) −4.47214 + 6.00000i −0.156941 + 0.210559i
\(813\) 0 0
\(814\) −6.00000 −0.210300
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.7990i 0.690990i −0.938421 0.345495i \(-0.887711\pi\)
0.938421 0.345495i \(-0.112289\pi\)
\(822\) 0 0
\(823\) 21.2132 0.739446 0.369723 0.929142i \(-0.379453\pi\)
0.369723 + 0.929142i \(0.379453\pi\)
\(824\) −15.8114 −0.550816
\(825\) 0 0
\(826\) −15.0000 + 20.1246i −0.521917 + 0.700225i
\(827\) 48.0000i 1.66912i 0.550914 + 0.834562i \(0.314279\pi\)
−0.550914 + 0.834562i \(0.685721\pi\)
\(828\) 0 0
\(829\) 13.4164i 0.465971i 0.972480 + 0.232986i \(0.0748495\pi\)
−0.972480 + 0.232986i \(0.925151\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3.16228i 0.109632i
\(833\) −8.94427 30.0000i −0.309901 1.03944i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 9.48683i 0.327717i
\(839\) 37.9473 1.31009 0.655044 0.755591i \(-0.272650\pi\)
0.655044 + 0.755591i \(0.272650\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 22.0000i 0.758170i
\(843\) 0 0
\(844\) −20.0000 −0.688428
\(845\) 0 0
\(846\) 0 0
\(847\) −19.0919 14.2302i −0.656005 0.488957i
\(848\) 6.00000i 0.206041i
\(849\) 0 0
\(850\) 0 0
\(851\) 25.4558i 0.872615i
\(852\) 0 0
\(853\) 3.16228i 0.108274i 0.998534 + 0.0541372i \(0.0172408\pi\)
−0.998534 + 0.0541372i \(0.982759\pi\)
\(854\) −28.4605 21.2132i −0.973898 0.725901i
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −31.3050 −1.06936 −0.534678 0.845056i \(-0.679567\pi\)
−0.534678 + 0.845056i \(0.679567\pi\)
\(858\) 0 0
\(859\) 13.4164i 0.457762i −0.973454 0.228881i \(-0.926493\pi\)
0.973454 0.228881i \(-0.0735067\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 36.7696 1.25238
\(863\) 6.00000i 0.204242i 0.994772 + 0.102121i \(0.0325630\pi\)
−0.994772 + 0.102121i \(0.967437\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 6.32456 0.214917
\(867\) 0 0
\(868\) 0 0
\(869\) 5.65685i 0.191896i
\(870\) 0 0
\(871\) 0 0
\(872\) 10.0000i 0.338643i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −21.2132 −0.716319 −0.358159 0.933660i \(-0.616596\pi\)
−0.358159 + 0.933660i \(0.616596\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −47.4342 −1.59810 −0.799049 0.601266i \(-0.794663\pi\)
−0.799049 + 0.601266i \(0.794663\pi\)
\(882\) 0 0
\(883\) 33.9411 1.14221 0.571105 0.820877i \(-0.306515\pi\)
0.571105 + 0.820877i \(0.306515\pi\)
\(884\) 14.1421i 0.475651i
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) −44.7214 −1.50160 −0.750798 0.660532i \(-0.770331\pi\)
−0.750798 + 0.660532i \(0.770331\pi\)
\(888\) 0 0
\(889\) −45.0000 33.5410i −1.50925 1.12493i
\(890\) 0 0
\(891\) 0 0
\(892\) 22.1359i 0.741166i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.58114 + 2.12132i −0.0528221 + 0.0708683i
\(897\) 0 0
\(898\) 18.3848 0.613508
\(899\) 0 0
\(900\) 0 0
\(901\) 26.8328i 0.893931i
\(902\) −13.4164 −0.446718
\(903\) 0 0
\(904\) 6.00000 0.199557
\(905\) 0 0
\(906\) 0 0
\(907\) −25.4558 −0.845247 −0.422624 0.906305i \(-0.638891\pi\)
−0.422624 + 0.906305i \(0.638891\pi\)
\(908\) 17.8885 0.593652
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0833i 1.59307i 0.604593 + 0.796535i \(0.293336\pi\)
−0.604593 + 0.796535i \(0.706664\pi\)
\(912\) 0 0
\(913\) 12.6491i 0.418624i
\(914\) 16.9706i 0.561336i
\(915\) 0 0
\(916\) 13.4164i 0.443291i
\(917\) 20.1246 + 15.0000i 0.664573 + 0.495344i
\(918\) 0 0
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −17.8885 −0.588809
\(924\) 0 0
\(925\) 0 0
\(926\) 21.2132i 0.697109i
\(927\) 0 0
\(928\) −2.82843 −0.0928477
\(929\) −9.48683 −0.311253 −0.155626 0.987816i \(-0.549740\pi\)
−0.155626 + 0.987816i \(0.549740\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.00000i 0.196537i
\(933\) 0 0
\(934\) 8.94427i 0.292666i
\(935\) 0 0
\(936\) 0 0
\(937\) 12.6491i 0.413228i −0.978422 0.206614i \(-0.933755\pi\)
0.978422 0.206614i \(-0.0662445\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −37.9473 −1.23705 −0.618524 0.785766i \(-0.712269\pi\)
−0.618524 + 0.785766i \(0.712269\pi\)
\(942\) 0 0
\(943\) 56.9210i 1.85360i
\(944\) −9.48683 −0.308770
\(945\) 0 0
\(946\) −12.0000 −0.390154
\(947\) 12.0000i 0.389948i 0.980808 + 0.194974i \(0.0624622\pi\)
−0.980808 + 0.194974i \(0.937538\pi\)
\(948\) 0 0
\(949\) 20.0000 0.649227
\(950\) 0 0
\(951\) 0 0
\(952\) 7.07107 9.48683i 0.229175 0.307470i
\(953\) 6.00000i 0.194359i 0.995267 + 0.0971795i \(0.0309821\pi\)
−0.995267 + 0.0971795i \(0.969018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 11.3137i 0.365911i
\(957\) 0 0
\(958\) 18.9737i 0.613011i
\(959\) −28.4605 + 38.1838i −0.919037 + 1.23302i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) −13.4164 −0.432562
\(963\) 0 0
\(964\) 13.4164i 0.432113i
\(965\) 0 0
\(966\) 0 0
\(967\) 21.2132 0.682171 0.341085 0.940032i \(-0.389205\pi\)
0.341085 + 0.940032i \(0.389205\pi\)
\(968\) 9.00000i 0.289271i
\(969\) 0 0
\(970\) 0 0
\(971\) 28.4605 0.913341 0.456670 0.889636i \(-0.349042\pi\)
0.456670 + 0.889636i \(0.349042\pi\)
\(972\) 0 0
\(973\) −21.2132 + 28.4605i −0.680064 + 0.912402i
\(974\) 4.24264i 0.135943i
\(975\) 0 0
\(976\) 13.4164i 0.429449i
\(977\) 18.0000i 0.575871i 0.957650 + 0.287936i \(0.0929689\pi\)
−0.957650 + 0.287936i \(0.907031\pi\)
\(978\) 0 0
\(979\) 13.4164i 0.428790i
\(980\) 0 0
\(981\) 0 0
\(982\) 15.5563 0.496423
\(983\) 4.47214 0.142639 0.0713195 0.997454i \(-0.477279\pi\)
0.0713195 + 0.997454i \(0.477279\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 12.6491 0.402830
\(987\) 0 0
\(988\) 0 0
\(989\) 50.9117i 1.61890i
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 12.0000 + 8.94427i 0.380617 + 0.283695i
\(995\) 0 0
\(996\) 0 0
\(997\) 53.7587i 1.70256i 0.524715 + 0.851278i \(0.324172\pi\)
−0.524715 + 0.851278i \(0.675828\pi\)
\(998\) 10.0000i 0.316544i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.b.c.251.5 8
3.2 odd 2 inner 3150.2.b.c.251.1 8
5.2 odd 4 630.2.d.a.629.2 yes 4
5.3 odd 4 630.2.d.d.629.3 yes 4
5.4 even 2 inner 3150.2.b.c.251.4 8
7.6 odd 2 inner 3150.2.b.c.251.6 8
15.2 even 4 630.2.d.d.629.4 yes 4
15.8 even 4 630.2.d.a.629.1 4
15.14 odd 2 inner 3150.2.b.c.251.8 8
20.3 even 4 5040.2.k.a.1889.4 4
20.7 even 4 5040.2.k.d.1889.1 4
21.20 even 2 inner 3150.2.b.c.251.2 8
35.13 even 4 630.2.d.d.629.2 yes 4
35.27 even 4 630.2.d.a.629.3 yes 4
35.34 odd 2 inner 3150.2.b.c.251.3 8
60.23 odd 4 5040.2.k.d.1889.2 4
60.47 odd 4 5040.2.k.a.1889.3 4
105.62 odd 4 630.2.d.d.629.1 yes 4
105.83 odd 4 630.2.d.a.629.4 yes 4
105.104 even 2 inner 3150.2.b.c.251.7 8
140.27 odd 4 5040.2.k.d.1889.4 4
140.83 odd 4 5040.2.k.a.1889.1 4
420.83 even 4 5040.2.k.d.1889.3 4
420.167 even 4 5040.2.k.a.1889.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.d.a.629.1 4 15.8 even 4
630.2.d.a.629.2 yes 4 5.2 odd 4
630.2.d.a.629.3 yes 4 35.27 even 4
630.2.d.a.629.4 yes 4 105.83 odd 4
630.2.d.d.629.1 yes 4 105.62 odd 4
630.2.d.d.629.2 yes 4 35.13 even 4
630.2.d.d.629.3 yes 4 5.3 odd 4
630.2.d.d.629.4 yes 4 15.2 even 4
3150.2.b.c.251.1 8 3.2 odd 2 inner
3150.2.b.c.251.2 8 21.20 even 2 inner
3150.2.b.c.251.3 8 35.34 odd 2 inner
3150.2.b.c.251.4 8 5.4 even 2 inner
3150.2.b.c.251.5 8 1.1 even 1 trivial
3150.2.b.c.251.6 8 7.6 odd 2 inner
3150.2.b.c.251.7 8 105.104 even 2 inner
3150.2.b.c.251.8 8 15.14 odd 2 inner
5040.2.k.a.1889.1 4 140.83 odd 4
5040.2.k.a.1889.2 4 420.167 even 4
5040.2.k.a.1889.3 4 60.47 odd 4
5040.2.k.a.1889.4 4 20.3 even 4
5040.2.k.d.1889.1 4 20.7 even 4
5040.2.k.d.1889.2 4 60.23 odd 4
5040.2.k.d.1889.3 4 420.83 even 4
5040.2.k.d.1889.4 4 140.27 odd 4