Properties

Label 3150.2.b.c.251.5
Level 31503150
Weight 22
Character 3150.251
Analytic conductor 25.15325.153
Analytic rank 00
Dimension 88
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3150,2,Mod(251,3150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3150.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3150=232527 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3150.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 25.152876636725.1528766367
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+7x4+1 x^{8} + 7x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 251.5
Root 0.437016+0.437016i0.437016 + 0.437016i of defining polynomial
Character χ\chi == 3150.251
Dual form 3150.2.b.c.251.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq21.00000q4+(2.121321.58114i)q71.00000iq8+1.41421iq11+3.16228iq13+(1.581142.12132i)q14+1.00000q164.47214q171.41421q226.00000iq233.16228q26+(2.12132+1.58114i)q28+2.82843iq29+1.00000iq324.47214iq34+4.24264q37+9.48683q41+8.48528q431.41421iq44+6.00000q464.47214q47+(2.00000+6.70820i)q493.16228iq526.00000iq53+(1.58114+2.12132i)q562.82843q589.48683q5913.4164iq611.00000q64+4.47214q68+5.65685iq716.32456iq73+4.24264iq74+(2.236073.00000i)q77+4.00000q79+9.48683iq828.94427q83+8.48528iq86+1.41421q88+9.48683q89+(5.000006.70820i)q91+6.00000iq924.47214iq9412.6491iq97+(6.70820+2.00000i)q98+O(q100)q+1.00000i q^{2} -1.00000 q^{4} +(-2.12132 - 1.58114i) q^{7} -1.00000i q^{8} +1.41421i q^{11} +3.16228i q^{13} +(1.58114 - 2.12132i) q^{14} +1.00000 q^{16} -4.47214 q^{17} -1.41421 q^{22} -6.00000i q^{23} -3.16228 q^{26} +(2.12132 + 1.58114i) q^{28} +2.82843i q^{29} +1.00000i q^{32} -4.47214i q^{34} +4.24264 q^{37} +9.48683 q^{41} +8.48528 q^{43} -1.41421i q^{44} +6.00000 q^{46} -4.47214 q^{47} +(2.00000 + 6.70820i) q^{49} -3.16228i q^{52} -6.00000i q^{53} +(-1.58114 + 2.12132i) q^{56} -2.82843 q^{58} -9.48683 q^{59} -13.4164i q^{61} -1.00000 q^{64} +4.47214 q^{68} +5.65685i q^{71} -6.32456i q^{73} +4.24264i q^{74} +(2.23607 - 3.00000i) q^{77} +4.00000 q^{79} +9.48683i q^{82} -8.94427 q^{83} +8.48528i q^{86} +1.41421 q^{88} +9.48683 q^{89} +(5.00000 - 6.70820i) q^{91} +6.00000i q^{92} -4.47214i q^{94} -12.6491i q^{97} +(-6.70820 + 2.00000i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q4+8q16+48q46+16q498q64+32q79+40q91+O(q100) 8 q - 8 q^{4} + 8 q^{16} + 48 q^{46} + 16 q^{49} - 8 q^{64} + 32 q^{79} + 40 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3150Z)×\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times.

nn 127127 451451 28012801
χ(n)\chi(n) 11 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 0.707107i
33 0 0
44 −1.00000 −0.500000
55 0 0
66 0 0
77 −2.12132 1.58114i −0.801784 0.597614i
88 1.00000i 0.353553i
99 0 0
1010 0 0
1111 1.41421i 0.426401i 0.977008 + 0.213201i 0.0683888π0.0683888\pi
−0.977008 + 0.213201i 0.931611π0.931611\pi
1212 0 0
1313 3.16228i 0.877058i 0.898717 + 0.438529i 0.144500π0.144500\pi
−0.898717 + 0.438529i 0.855500π0.855500\pi
1414 1.58114 2.12132i 0.422577 0.566947i
1515 0 0
1616 1.00000 0.250000
1717 −4.47214 −1.08465 −0.542326 0.840168i 0.682456π-0.682456\pi
−0.542326 + 0.840168i 0.682456π0.682456\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 −1.41421 −0.301511
2323 6.00000i 1.25109i −0.780189 0.625543i 0.784877π-0.784877\pi
0.780189 0.625543i 0.215123π-0.215123\pi
2424 0 0
2525 0 0
2626 −3.16228 −0.620174
2727 0 0
2828 2.12132 + 1.58114i 0.400892 + 0.298807i
2929 2.82843i 0.525226i 0.964901 + 0.262613i 0.0845842π0.0845842\pi
−0.964901 + 0.262613i 0.915416π0.915416\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 1.00000i 0.176777i
3333 0 0
3434 4.47214i 0.766965i
3535 0 0
3636 0 0
3737 4.24264 0.697486 0.348743 0.937218i 0.386609π-0.386609\pi
0.348743 + 0.937218i 0.386609π0.386609\pi
3838 0 0
3939 0 0
4040 0 0
4141 9.48683 1.48159 0.740797 0.671729i 0.234448π-0.234448\pi
0.740797 + 0.671729i 0.234448π0.234448\pi
4242 0 0
4343 8.48528 1.29399 0.646997 0.762493i 0.276025π-0.276025\pi
0.646997 + 0.762493i 0.276025π0.276025\pi
4444 1.41421i 0.213201i
4545 0 0
4646 6.00000 0.884652
4747 −4.47214 −0.652328 −0.326164 0.945313i 0.605756π-0.605756\pi
−0.326164 + 0.945313i 0.605756π0.605756\pi
4848 0 0
4949 2.00000 + 6.70820i 0.285714 + 0.958315i
5050 0 0
5151 0 0
5252 3.16228i 0.438529i
5353 6.00000i 0.824163i −0.911147 0.412082i 0.864802π-0.864802\pi
0.911147 0.412082i 0.135198π-0.135198\pi
5454 0 0
5555 0 0
5656 −1.58114 + 2.12132i −0.211289 + 0.283473i
5757 0 0
5858 −2.82843 −0.371391
5959 −9.48683 −1.23508 −0.617540 0.786539i 0.711871π-0.711871\pi
−0.617540 + 0.786539i 0.711871π0.711871\pi
6060 0 0
6161 13.4164i 1.71780i −0.512148 0.858898i 0.671150π-0.671150\pi
0.512148 0.858898i 0.328850π-0.328850\pi
6262 0 0
6363 0 0
6464 −1.00000 −0.125000
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 4.47214 0.542326
6969 0 0
7070 0 0
7171 5.65685i 0.671345i 0.941979 + 0.335673i 0.108964π0.108964\pi
−0.941979 + 0.335673i 0.891036π0.891036\pi
7272 0 0
7373 6.32456i 0.740233i −0.928985 0.370117i 0.879318π-0.879318\pi
0.928985 0.370117i 0.120682π-0.120682\pi
7474 4.24264i 0.493197i
7575 0 0
7676 0 0
7777 2.23607 3.00000i 0.254824 0.341882i
7878 0 0
7979 4.00000 0.450035 0.225018 0.974355i 0.427756π-0.427756\pi
0.225018 + 0.974355i 0.427756π0.427756\pi
8080 0 0
8181 0 0
8282 9.48683i 1.04765i
8383 −8.94427 −0.981761 −0.490881 0.871227i 0.663325π-0.663325\pi
−0.490881 + 0.871227i 0.663325π0.663325\pi
8484 0 0
8585 0 0
8686 8.48528i 0.914991i
8787 0 0
8888 1.41421 0.150756
8989 9.48683 1.00560 0.502801 0.864402i 0.332303π-0.332303\pi
0.502801 + 0.864402i 0.332303π0.332303\pi
9090 0 0
9191 5.00000 6.70820i 0.524142 0.703211i
9292 6.00000i 0.625543i
9393 0 0
9494 4.47214i 0.461266i
9595 0 0
9696 0 0
9797 12.6491i 1.28432i −0.766570 0.642161i 0.778038π-0.778038\pi
0.766570 0.642161i 0.221962π-0.221962\pi
9898 −6.70820 + 2.00000i −0.677631 + 0.202031i
9999 0 0
100100 0 0
101101 18.9737 1.88795 0.943975 0.330017i 0.107054π-0.107054\pi
0.943975 + 0.330017i 0.107054π0.107054\pi
102102 0 0
103103 15.8114i 1.55794i −0.627060 0.778971i 0.715742π-0.715742\pi
0.627060 0.778971i 0.284258π-0.284258\pi
104104 3.16228 0.310087
105105 0 0
106106 6.00000 0.582772
107107 12.0000i 1.16008i −0.814587 0.580042i 0.803036π-0.803036\pi
0.814587 0.580042i 0.196964π-0.196964\pi
108108 0 0
109109 10.0000 0.957826 0.478913 0.877862i 0.341031π-0.341031\pi
0.478913 + 0.877862i 0.341031π0.341031\pi
110110 0 0
111111 0 0
112112 −2.12132 1.58114i −0.200446 0.149404i
113113 6.00000i 0.564433i 0.959351 + 0.282216i 0.0910696π0.0910696\pi
−0.959351 + 0.282216i 0.908930π0.908930\pi
114114 0 0
115115 0 0
116116 2.82843i 0.262613i
117117 0 0
118118 9.48683i 0.873334i
119119 9.48683 + 7.07107i 0.869657 + 0.648204i
120120 0 0
121121 9.00000 0.818182
122122 13.4164 1.21466
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 21.2132 1.88237 0.941184 0.337895i 0.109715π-0.109715\pi
0.941184 + 0.337895i 0.109715π0.109715\pi
128128 1.00000i 0.0883883i
129129 0 0
130130 0 0
131131 −9.48683 −0.828868 −0.414434 0.910079i 0.636021π-0.636021\pi
−0.414434 + 0.910079i 0.636021π0.636021\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 4.47214i 0.383482i
137137 18.0000i 1.53784i −0.639343 0.768922i 0.720793π-0.720793\pi
0.639343 0.768922i 0.279207π-0.279207\pi
138138 0 0
139139 13.4164i 1.13796i −0.822350 0.568982i 0.807337π-0.807337\pi
0.822350 0.568982i 0.192663π-0.192663\pi
140140 0 0
141141 0 0
142142 −5.65685 −0.474713
143143 −4.47214 −0.373979
144144 0 0
145145 0 0
146146 6.32456 0.523424
147147 0 0
148148 −4.24264 −0.348743
149149 11.3137i 0.926855i 0.886135 + 0.463428i 0.153381π0.153381\pi
−0.886135 + 0.463428i 0.846619π0.846619\pi
150150 0 0
151151 20.0000 1.62758 0.813788 0.581161i 0.197401π-0.197401\pi
0.813788 + 0.581161i 0.197401π0.197401\pi
152152 0 0
153153 0 0
154154 3.00000 + 2.23607i 0.241747 + 0.180187i
155155 0 0
156156 0 0
157157 15.8114i 1.26189i 0.775829 + 0.630943i 0.217332π0.217332\pi
−0.775829 + 0.630943i 0.782668π0.782668\pi
158158 4.00000i 0.318223i
159159 0 0
160160 0 0
161161 −9.48683 + 12.7279i −0.747667 + 1.00310i
162162 0 0
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 −9.48683 −0.740797
165165 0 0
166166 8.94427i 0.694210i
167167 8.94427 0.692129 0.346064 0.938211i 0.387518π-0.387518\pi
0.346064 + 0.938211i 0.387518π0.387518\pi
168168 0 0
169169 3.00000 0.230769
170170 0 0
171171 0 0
172172 −8.48528 −0.646997
173173 −8.94427 −0.680020 −0.340010 0.940422i 0.610431π-0.610431\pi
−0.340010 + 0.940422i 0.610431π0.610431\pi
174174 0 0
175175 0 0
176176 1.41421i 0.106600i
177177 0 0
178178 9.48683i 0.711068i
179179 18.3848i 1.37414i −0.726590 0.687071i 0.758896π-0.758896\pi
0.726590 0.687071i 0.241104π-0.241104\pi
180180 0 0
181181 13.4164i 0.997234i −0.866822 0.498617i 0.833841π-0.833841\pi
0.866822 0.498617i 0.166159π-0.166159\pi
182182 6.70820 + 5.00000i 0.497245 + 0.370625i
183183 0 0
184184 −6.00000 −0.442326
185185 0 0
186186 0 0
187187 6.32456i 0.462497i
188188 4.47214 0.326164
189189 0 0
190190 0 0
191191 22.6274i 1.63726i 0.574320 + 0.818631i 0.305267π0.305267\pi
−0.574320 + 0.818631i 0.694733π0.694733\pi
192192 0 0
193193 −8.48528 −0.610784 −0.305392 0.952227i 0.598787π-0.598787\pi
−0.305392 + 0.952227i 0.598787π0.598787\pi
194194 12.6491 0.908153
195195 0 0
196196 −2.00000 6.70820i −0.142857 0.479157i
197197 12.0000i 0.854965i 0.904024 + 0.427482i 0.140599π0.140599\pi
−0.904024 + 0.427482i 0.859401π0.859401\pi
198198 0 0
199199 26.8328i 1.90213i −0.308994 0.951064i 0.599992π-0.599992\pi
0.308994 0.951064i 0.400008π-0.400008\pi
200200 0 0
201201 0 0
202202 18.9737i 1.33498i
203203 4.47214 6.00000i 0.313882 0.421117i
204204 0 0
205205 0 0
206206 15.8114 1.10163
207207 0 0
208208 3.16228i 0.219265i
209209 0 0
210210 0 0
211211 20.0000 1.37686 0.688428 0.725304i 0.258301π-0.258301\pi
0.688428 + 0.725304i 0.258301π0.258301\pi
212212 6.00000i 0.412082i
213213 0 0
214214 12.0000 0.820303
215215 0 0
216216 0 0
217217 0 0
218218 10.0000i 0.677285i
219219 0 0
220220 0 0
221221 14.1421i 0.951303i
222222 0 0
223223 22.1359i 1.48233i 0.671322 + 0.741166i 0.265727π0.265727\pi
−0.671322 + 0.741166i 0.734273π0.734273\pi
224224 1.58114 2.12132i 0.105644 0.141737i
225225 0 0
226226 −6.00000 −0.399114
227227 −17.8885 −1.18730 −0.593652 0.804722i 0.702314π-0.702314\pi
−0.593652 + 0.804722i 0.702314π0.702314\pi
228228 0 0
229229 13.4164i 0.886581i 0.896378 + 0.443291i 0.146189π0.146189\pi
−0.896378 + 0.443291i 0.853811π0.853811\pi
230230 0 0
231231 0 0
232232 2.82843 0.185695
233233 6.00000i 0.393073i 0.980497 + 0.196537i 0.0629694π0.0629694\pi
−0.980497 + 0.196537i 0.937031π0.937031\pi
234234 0 0
235235 0 0
236236 9.48683 0.617540
237237 0 0
238238 −7.07107 + 9.48683i −0.458349 + 0.614940i
239239 11.3137i 0.731823i 0.930650 + 0.365911i 0.119243π0.119243\pi
−0.930650 + 0.365911i 0.880757π0.880757\pi
240240 0 0
241241 13.4164i 0.864227i 0.901819 + 0.432113i 0.142232π0.142232\pi
−0.901819 + 0.432113i 0.857768π0.857768\pi
242242 9.00000i 0.578542i
243243 0 0
244244 13.4164i 0.858898i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −9.48683 −0.598804 −0.299402 0.954127i 0.596787π-0.596787\pi
−0.299402 + 0.954127i 0.596787π0.596787\pi
252252 0 0
253253 8.48528 0.533465
254254 21.2132i 1.33103i
255255 0 0
256256 1.00000 0.0625000
257257 −4.47214 −0.278964 −0.139482 0.990225i 0.544544π-0.544544\pi
−0.139482 + 0.990225i 0.544544π0.544544\pi
258258 0 0
259259 −9.00000 6.70820i −0.559233 0.416828i
260260 0 0
261261 0 0
262262 9.48683i 0.586098i
263263 6.00000i 0.369976i −0.982741 0.184988i 0.940775π-0.940775\pi
0.982741 0.184988i 0.0592246π-0.0592246\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 −18.9737 −1.15684 −0.578422 0.815737i 0.696331π-0.696331\pi
−0.578422 + 0.815737i 0.696331π0.696331\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 −4.47214 −0.271163
273273 0 0
274274 18.0000 1.08742
275275 0 0
276276 0 0
277277 −21.2132 −1.27458 −0.637289 0.770625i 0.719944π-0.719944\pi
−0.637289 + 0.770625i 0.719944π0.719944\pi
278278 13.4164 0.804663
279279 0 0
280280 0 0
281281 1.41421i 0.0843649i 0.999110 + 0.0421825i 0.0134311π0.0134311\pi
−0.999110 + 0.0421825i 0.986569π0.986569\pi
282282 0 0
283283 6.32456i 0.375956i −0.982173 0.187978i 0.939807π-0.939807\pi
0.982173 0.187978i 0.0601933π-0.0601933\pi
284284 5.65685i 0.335673i
285285 0 0
286286 4.47214i 0.264443i
287287 −20.1246 15.0000i −1.18792 0.885422i
288288 0 0
289289 3.00000 0.176471
290290 0 0
291291 0 0
292292 6.32456i 0.370117i
293293 4.47214 0.261265 0.130632 0.991431i 0.458299π-0.458299\pi
0.130632 + 0.991431i 0.458299π0.458299\pi
294294 0 0
295295 0 0
296296 4.24264i 0.246598i
297297 0 0
298298 −11.3137 −0.655386
299299 18.9737 1.09728
300300 0 0
301301 −18.0000 13.4164i −1.03750 0.773309i
302302 20.0000i 1.15087i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 12.6491i 0.721923i −0.932581 0.360961i 0.882449π-0.882449\pi
0.932581 0.360961i 0.117551π-0.117551\pi
308308 −2.23607 + 3.00000i −0.127412 + 0.170941i
309309 0 0
310310 0 0
311311 18.9737 1.07590 0.537949 0.842977i 0.319199π-0.319199\pi
0.537949 + 0.842977i 0.319199π0.319199\pi
312312 0 0
313313 31.6228i 1.78743i 0.448640 + 0.893713i 0.351909π0.351909\pi
−0.448640 + 0.893713i 0.648091π0.648091\pi
314314 −15.8114 −0.892288
315315 0 0
316316 −4.00000 −0.225018
317317 12.0000i 0.673987i 0.941507 + 0.336994i 0.109410π0.109410\pi
−0.941507 + 0.336994i 0.890590π0.890590\pi
318318 0 0
319319 −4.00000 −0.223957
320320 0 0
321321 0 0
322322 −12.7279 9.48683i −0.709299 0.528681i
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 9.48683i 0.523823i
329329 9.48683 + 7.07107i 0.523026 + 0.389841i
330330 0 0
331331 −10.0000 −0.549650 −0.274825 0.961494i 0.588620π-0.588620\pi
−0.274825 + 0.961494i 0.588620π0.588620\pi
332332 8.94427 0.490881
333333 0 0
334334 8.94427i 0.489409i
335335 0 0
336336 0 0
337337 25.4558 1.38667 0.693334 0.720616i 0.256141π-0.256141\pi
0.693334 + 0.720616i 0.256141π0.256141\pi
338338 3.00000i 0.163178i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 6.36396 17.3925i 0.343622 0.939108i
344344 8.48528i 0.457496i
345345 0 0
346346 8.94427i 0.480847i
347347 12.0000i 0.644194i −0.946707 0.322097i 0.895612π-0.895612\pi
0.946707 0.322097i 0.104388π-0.104388\pi
348348 0 0
349349 13.4164i 0.718164i 0.933306 + 0.359082i 0.116910π0.116910\pi
−0.933306 + 0.359082i 0.883090π0.883090\pi
350350 0 0
351351 0 0
352352 −1.41421 −0.0753778
353353 31.3050 1.66619 0.833097 0.553127i 0.186565π-0.186565\pi
0.833097 + 0.553127i 0.186565π0.186565\pi
354354 0 0
355355 0 0
356356 −9.48683 −0.502801
357357 0 0
358358 18.3848 0.971666
359359 31.1127i 1.64207i −0.570881 0.821033i 0.693398π-0.693398\pi
0.570881 0.821033i 0.306602π-0.306602\pi
360360 0 0
361361 19.0000 1.00000
362362 13.4164 0.705151
363363 0 0
364364 −5.00000 + 6.70820i −0.262071 + 0.351605i
365365 0 0
366366 0 0
367367 22.1359i 1.15549i −0.816218 0.577743i 0.803933π-0.803933\pi
0.816218 0.577743i 0.196067π-0.196067\pi
368368 6.00000i 0.312772i
369369 0 0
370370 0 0
371371 −9.48683 + 12.7279i −0.492532 + 0.660801i
372372 0 0
373373 −21.2132 −1.09838 −0.549189 0.835698i 0.685063π-0.685063\pi
−0.549189 + 0.835698i 0.685063π0.685063\pi
374374 6.32456 0.327035
375375 0 0
376376 4.47214i 0.230633i
377377 −8.94427 −0.460653
378378 0 0
379379 −20.0000 −1.02733 −0.513665 0.857991i 0.671713π-0.671713\pi
−0.513665 + 0.857991i 0.671713π0.671713\pi
380380 0 0
381381 0 0
382382 −22.6274 −1.15772
383383 4.47214 0.228515 0.114258 0.993451i 0.463551π-0.463551\pi
0.114258 + 0.993451i 0.463551π0.463551\pi
384384 0 0
385385 0 0
386386 8.48528i 0.431889i
387387 0 0
388388 12.6491i 0.642161i
389389 11.3137i 0.573628i 0.957986 + 0.286814i 0.0925961π0.0925961\pi
−0.957986 + 0.286814i 0.907404π0.907404\pi
390390 0 0
391391 26.8328i 1.35699i
392392 6.70820 2.00000i 0.338815 0.101015i
393393 0 0
394394 −12.0000 −0.604551
395395 0 0
396396 0 0
397397 22.1359i 1.11097i −0.831526 0.555486i 0.812532π-0.812532\pi
0.831526 0.555486i 0.187468π-0.187468\pi
398398 26.8328 1.34501
399399 0 0
400400 0 0
401401 1.41421i 0.0706225i 0.999376 + 0.0353112i 0.0112422π0.0112422\pi
−0.999376 + 0.0353112i 0.988758π0.988758\pi
402402 0 0
403403 0 0
404404 −18.9737 −0.943975
405405 0 0
406406 6.00000 + 4.47214i 0.297775 + 0.221948i
407407 6.00000i 0.297409i
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 15.8114i 0.778971i
413413 20.1246 + 15.0000i 0.990267 + 0.738102i
414414 0 0
415415 0 0
416416 −3.16228 −0.155043
417417 0 0
418418 0 0
419419 −9.48683 −0.463462 −0.231731 0.972780i 0.574439π-0.574439\pi
−0.231731 + 0.972780i 0.574439π0.574439\pi
420420 0 0
421421 −22.0000 −1.07221 −0.536107 0.844150i 0.680106π-0.680106\pi
−0.536107 + 0.844150i 0.680106π0.680106\pi
422422 20.0000i 0.973585i
423423 0 0
424424 −6.00000 −0.291386
425425 0 0
426426 0 0
427427 −21.2132 + 28.4605i −1.02658 + 1.37730i
428428 12.0000i 0.580042i
429429 0 0
430430 0 0
431431 36.7696i 1.77113i −0.464518 0.885564i 0.653773π-0.653773\pi
0.464518 0.885564i 0.346227π-0.346227\pi
432432 0 0
433433 6.32456i 0.303939i −0.988385 0.151969i 0.951438π-0.951438\pi
0.988385 0.151969i 0.0485615π-0.0485615\pi
434434 0 0
435435 0 0
436436 −10.0000 −0.478913
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 14.1421 0.672673
443443 24.0000i 1.14027i −0.821549 0.570137i 0.806890π-0.806890\pi
0.821549 0.570137i 0.193110π-0.193110\pi
444444 0 0
445445 0 0
446446 −22.1359 −1.04817
447447 0 0
448448 2.12132 + 1.58114i 0.100223 + 0.0747018i
449449 18.3848i 0.867631i −0.901002 0.433816i 0.857167π-0.857167\pi
0.901002 0.433816i 0.142833π-0.142833\pi
450450 0 0
451451 13.4164i 0.631754i
452452 6.00000i 0.282216i
453453 0 0
454454 17.8885i 0.839551i
455455 0 0
456456 0 0
457457 16.9706 0.793849 0.396925 0.917851i 0.370077π-0.370077\pi
0.396925 + 0.917851i 0.370077π0.370077\pi
458458 −13.4164 −0.626908
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 21.2132 0.985861 0.492931 0.870069i 0.335926π-0.335926\pi
0.492931 + 0.870069i 0.335926π0.335926\pi
464464 2.82843i 0.131306i
465465 0 0
466466 −6.00000 −0.277945
467467 8.94427 0.413892 0.206946 0.978352i 0.433648π-0.433648\pi
0.206946 + 0.978352i 0.433648π0.433648\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 9.48683i 0.436667i
473473 12.0000i 0.551761i
474474 0 0
475475 0 0
476476 −9.48683 7.07107i −0.434828 0.324102i
477477 0 0
478478 −11.3137 −0.517477
479479 18.9737 0.866929 0.433464 0.901171i 0.357291π-0.357291\pi
0.433464 + 0.901171i 0.357291π0.357291\pi
480480 0 0
481481 13.4164i 0.611736i
482482 −13.4164 −0.611101
483483 0 0
484484 −9.00000 −0.409091
485485 0 0
486486 0 0
487487 −4.24264 −0.192252 −0.0961262 0.995369i 0.530645π-0.530645\pi
−0.0961262 + 0.995369i 0.530645π0.530645\pi
488488 −13.4164 −0.607332
489489 0 0
490490 0 0
491491 15.5563i 0.702048i −0.936366 0.351024i 0.885834π-0.885834\pi
0.936366 0.351024i 0.114166π-0.114166\pi
492492 0 0
493493 12.6491i 0.569687i
494494 0 0
495495 0 0
496496 0 0
497497 8.94427 12.0000i 0.401205 0.538274i
498498 0 0
499499 10.0000 0.447661 0.223831 0.974628i 0.428144π-0.428144\pi
0.223831 + 0.974628i 0.428144π0.428144\pi
500500 0 0
501501 0 0
502502 9.48683i 0.423418i
503503 −22.3607 −0.997013 −0.498507 0.866886i 0.666118π-0.666118\pi
−0.498507 + 0.866886i 0.666118π0.666118\pi
504504 0 0
505505 0 0
506506 8.48528i 0.377217i
507507 0 0
508508 −21.2132 −0.941184
509509 −18.9737 −0.840993 −0.420496 0.907294i 0.638144π-0.638144\pi
−0.420496 + 0.907294i 0.638144π0.638144\pi
510510 0 0
511511 −10.0000 + 13.4164i −0.442374 + 0.593507i
512512 1.00000i 0.0441942i
513513 0 0
514514 4.47214i 0.197257i
515515 0 0
516516 0 0
517517 6.32456i 0.278154i
518518 6.70820 9.00000i 0.294742 0.395437i
519519 0 0
520520 0 0
521521 −28.4605 −1.24688 −0.623439 0.781872i 0.714265π-0.714265\pi
−0.623439 + 0.781872i 0.714265π0.714265\pi
522522 0 0
523523 6.32456i 0.276553i −0.990394 0.138277i 0.955844π-0.955844\pi
0.990394 0.138277i 0.0441563π-0.0441563\pi
524524 9.48683 0.414434
525525 0 0
526526 6.00000 0.261612
527527 0 0
528528 0 0
529529 −13.0000 −0.565217
530530 0 0
531531 0 0
532532 0 0
533533 30.0000i 1.29944i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 18.9737i 0.818013i
539539 −9.48683 + 2.82843i −0.408627 + 0.121829i
540540 0 0
541541 −22.0000 −0.945854 −0.472927 0.881102i 0.656803π-0.656803\pi
−0.472927 + 0.881102i 0.656803π0.656803\pi
542542 0 0
543543 0 0
544544 4.47214i 0.191741i
545545 0 0
546546 0 0
547547 42.4264 1.81402 0.907011 0.421107i 0.138358π-0.138358\pi
0.907011 + 0.421107i 0.138358π0.138358\pi
548548 18.0000i 0.768922i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 −8.48528 6.32456i −0.360831 0.268947i
554554 21.2132i 0.901263i
555555 0 0
556556 13.4164i 0.568982i
557557 18.0000i 0.762684i −0.924434 0.381342i 0.875462π-0.875462\pi
0.924434 0.381342i 0.124538π-0.124538\pi
558558 0 0
559559 26.8328i 1.13491i
560560 0 0
561561 0 0
562562 −1.41421 −0.0596550
563563 −35.7771 −1.50782 −0.753912 0.656975i 0.771836π-0.771836\pi
−0.753912 + 0.656975i 0.771836π0.771836\pi
564564 0 0
565565 0 0
566566 6.32456 0.265841
567567 0 0
568568 5.65685 0.237356
569569 9.89949i 0.415008i −0.978234 0.207504i 0.933466π-0.933466\pi
0.978234 0.207504i 0.0665341π-0.0665341\pi
570570 0 0
571571 −22.0000 −0.920671 −0.460336 0.887745i 0.652271π-0.652271\pi
−0.460336 + 0.887745i 0.652271π0.652271\pi
572572 4.47214 0.186989
573573 0 0
574574 15.0000 20.1246i 0.626088 0.839985i
575575 0 0
576576 0 0
577577 25.2982i 1.05318i 0.850120 + 0.526589i 0.176529π0.176529\pi
−0.850120 + 0.526589i 0.823471π0.823471\pi
578578 3.00000i 0.124784i
579579 0 0
580580 0 0
581581 18.9737 + 14.1421i 0.787160 + 0.586715i
582582 0 0
583583 8.48528 0.351424
584584 −6.32456 −0.261712
585585 0 0
586586 4.47214i 0.184742i
587587 8.94427 0.369170 0.184585 0.982817i 0.440906π-0.440906\pi
0.184585 + 0.982817i 0.440906π0.440906\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 4.24264 0.174371
593593 −22.3607 −0.918243 −0.459122 0.888373i 0.651836π-0.651836\pi
−0.459122 + 0.888373i 0.651836π0.651836\pi
594594 0 0
595595 0 0
596596 11.3137i 0.463428i
597597 0 0
598598 18.9737i 0.775891i
599599 2.82843i 0.115566i 0.998329 + 0.0577832i 0.0184032π0.0184032\pi
−0.998329 + 0.0577832i 0.981597π0.981597\pi
600600 0 0
601601 13.4164i 0.547267i 0.961834 + 0.273633i 0.0882255π0.0882255\pi
−0.961834 + 0.273633i 0.911775π0.911775\pi
602602 13.4164 18.0000i 0.546812 0.733625i
603603 0 0
604604 −20.0000 −0.813788
605605 0 0
606606 0 0
607607 15.8114i 0.641764i 0.947119 + 0.320882i 0.103979π0.103979\pi
−0.947119 + 0.320882i 0.896021π0.896021\pi
608608 0 0
609609 0 0
610610 0 0
611611 14.1421i 0.572130i
612612 0 0
613613 −21.2132 −0.856793 −0.428397 0.903591i 0.640921π-0.640921\pi
−0.428397 + 0.903591i 0.640921π0.640921\pi
614614 12.6491 0.510477
615615 0 0
616616 −3.00000 2.23607i −0.120873 0.0900937i
617617 18.0000i 0.724653i 0.932051 + 0.362326i 0.118017π0.118017\pi
−0.932051 + 0.362326i 0.881983π0.881983\pi
618618 0 0
619619 40.2492i 1.61775i 0.587979 + 0.808876i 0.299924π0.299924\pi
−0.587979 + 0.808876i 0.700076π0.700076\pi
620620 0 0
621621 0 0
622622 18.9737i 0.760775i
623623 −20.1246 15.0000i −0.806276 0.600962i
624624 0 0
625625 0 0
626626 −31.6228 −1.26390
627627 0 0
628628 15.8114i 0.630943i
629629 −18.9737 −0.756530
630630 0 0
631631 −28.0000 −1.11466 −0.557331 0.830290i 0.688175π-0.688175\pi
−0.557331 + 0.830290i 0.688175π0.688175\pi
632632 4.00000i 0.159111i
633633 0 0
634634 −12.0000 −0.476581
635635 0 0
636636 0 0
637637 −21.2132 + 6.32456i −0.840498 + 0.250588i
638638 4.00000i 0.158362i
639639 0 0
640640 0 0
641641 15.5563i 0.614439i −0.951639 0.307219i 0.900601π-0.900601\pi
0.951639 0.307219i 0.0993986π-0.0993986\pi
642642 0 0
643643 6.32456i 0.249416i −0.992193 0.124708i 0.960201π-0.960201\pi
0.992193 0.124708i 0.0397994π-0.0397994\pi
644644 9.48683 12.7279i 0.373834 0.501550i
645645 0 0
646646 0 0
647647 22.3607 0.879089 0.439545 0.898221i 0.355140π-0.355140\pi
0.439545 + 0.898221i 0.355140π0.355140\pi
648648 0 0
649649 13.4164i 0.526640i
650650 0 0
651651 0 0
652652 0 0
653653 24.0000i 0.939193i 0.882881 + 0.469596i 0.155601π0.155601\pi
−0.882881 + 0.469596i 0.844399π0.844399\pi
654654 0 0
655655 0 0
656656 9.48683 0.370399
657657 0 0
658658 −7.07107 + 9.48683i −0.275659 + 0.369835i
659659 32.5269i 1.26707i 0.773715 + 0.633534i 0.218396π0.218396\pi
−0.773715 + 0.633534i 0.781604π0.781604\pi
660660 0 0
661661 40.2492i 1.56551i −0.622328 0.782757i 0.713813π-0.713813\pi
0.622328 0.782757i 0.286187π-0.286187\pi
662662 10.0000i 0.388661i
663663 0 0
664664 8.94427i 0.347105i
665665 0 0
666666 0 0
667667 16.9706 0.657103
668668 −8.94427 −0.346064
669669 0 0
670670 0 0
671671 18.9737 0.732470
672672 0 0
673673 −8.48528 −0.327084 −0.163542 0.986536i 0.552292π-0.552292\pi
−0.163542 + 0.986536i 0.552292π0.552292\pi
674674 25.4558i 0.980522i
675675 0 0
676676 −3.00000 −0.115385
677677 22.3607 0.859391 0.429695 0.902974i 0.358621π-0.358621\pi
0.429695 + 0.902974i 0.358621π0.358621\pi
678678 0 0
679679 −20.0000 + 26.8328i −0.767530 + 1.02975i
680680 0 0
681681 0 0
682682 0 0
683683 36.0000i 1.37750i −0.724998 0.688751i 0.758159π-0.758159\pi
0.724998 0.688751i 0.241841π-0.241841\pi
684684 0 0
685685 0 0
686686 17.3925 + 6.36396i 0.664050 + 0.242977i
687687 0 0
688688 8.48528 0.323498
689689 18.9737 0.722839
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 8.94427 0.340010
693693 0 0
694694 12.0000 0.455514
695695 0 0
696696 0 0
697697 −42.4264 −1.60701
698698 −13.4164 −0.507819
699699 0 0
700700 0 0
701701 36.7696i 1.38877i −0.719605 0.694383i 0.755677π-0.755677\pi
0.719605 0.694383i 0.244323π-0.244323\pi
702702 0 0
703703 0 0
704704 1.41421i 0.0533002i
705705 0 0
706706 31.3050i 1.17818i
707707 −40.2492 30.0000i −1.51373 1.12827i
708708 0 0
709709 10.0000 0.375558 0.187779 0.982211i 0.439871π-0.439871\pi
0.187779 + 0.982211i 0.439871π0.439871\pi
710710 0 0
711711 0 0
712712 9.48683i 0.355534i
713713 0 0
714714 0 0
715715 0 0
716716 18.3848i 0.687071i
717717 0 0
718718 31.1127 1.16112
719719 −37.9473 −1.41520 −0.707598 0.706615i 0.750221π-0.750221\pi
−0.707598 + 0.706615i 0.750221π0.750221\pi
720720 0 0
721721 −25.0000 + 33.5410i −0.931049 + 1.24913i
722722 19.0000i 0.707107i
723723 0 0
724724 13.4164i 0.498617i
725725 0 0
726726 0 0
727727 3.16228i 0.117282i −0.998279 0.0586412i 0.981323π-0.981323\pi
0.998279 0.0586412i 0.0186768π-0.0186768\pi
728728 −6.70820 5.00000i −0.248623 0.185312i
729729 0 0
730730 0 0
731731 −37.9473 −1.40353
732732 0 0
733733 41.1096i 1.51842i 0.650847 + 0.759209i 0.274414π0.274414\pi
−0.650847 + 0.759209i 0.725586π0.725586\pi
734734 22.1359 0.817053
735735 0 0
736736 6.00000 0.221163
737737 0 0
738738 0 0
739739 34.0000 1.25071 0.625355 0.780340i 0.284954π-0.284954\pi
0.625355 + 0.780340i 0.284954π0.284954\pi
740740 0 0
741741 0 0
742742 −12.7279 9.48683i −0.467257 0.348273i
743743 24.0000i 0.880475i −0.897881 0.440237i 0.854894π-0.854894\pi
0.897881 0.440237i 0.145106π-0.145106\pi
744744 0 0
745745 0 0
746746 21.2132i 0.776671i
747747 0 0
748748 6.32456i 0.231249i
749749 −18.9737 + 25.4558i −0.693283 + 0.930136i
750750 0 0
751751 −40.0000 −1.45962 −0.729810 0.683650i 0.760392π-0.760392\pi
−0.729810 + 0.683650i 0.760392π0.760392\pi
752752 −4.47214 −0.163082
753753 0 0
754754 8.94427i 0.325731i
755755 0 0
756756 0 0
757757 46.6690 1.69622 0.848108 0.529824i 0.177742π-0.177742\pi
0.848108 + 0.529824i 0.177742π0.177742\pi
758758 20.0000i 0.726433i
759759 0 0
760760 0 0
761761 −9.48683 −0.343897 −0.171949 0.985106i 0.555006π-0.555006\pi
−0.171949 + 0.985106i 0.555006π0.555006\pi
762762 0 0
763763 −21.2132 15.8114i −0.767970 0.572411i
764764 22.6274i 0.818631i
765765 0 0
766766 4.47214i 0.161585i
767767 30.0000i 1.08324i
768768 0 0
769769 40.2492i 1.45142i −0.687999 0.725712i 0.741510π-0.741510\pi
0.687999 0.725712i 0.258490π-0.258490\pi
770770 0 0
771771 0 0
772772 8.48528 0.305392
773773 31.3050 1.12596 0.562980 0.826470i 0.309655π-0.309655\pi
0.562980 + 0.826470i 0.309655π0.309655\pi
774774 0 0
775775 0 0
776776 −12.6491 −0.454077
777777 0 0
778778 −11.3137 −0.405616
779779 0 0
780780 0 0
781781 −8.00000 −0.286263
782782 −26.8328 −0.959540
783783 0 0
784784 2.00000 + 6.70820i 0.0714286 + 0.239579i
785785 0 0
786786 0 0
787787 31.6228i 1.12723i −0.826038 0.563615i 0.809410π-0.809410\pi
0.826038 0.563615i 0.190590π-0.190590\pi
788788 12.0000i 0.427482i
789789 0 0
790790 0 0
791791 9.48683 12.7279i 0.337313 0.452553i
792792 0 0
793793 42.4264 1.50661
794794 22.1359 0.785575
795795 0 0
796796 26.8328i 0.951064i
797797 8.94427 0.316822 0.158411 0.987373i 0.449363π-0.449363\pi
0.158411 + 0.987373i 0.449363π0.449363\pi
798798 0 0
799799 20.0000 0.707549
800800 0 0
801801 0 0
802802 −1.41421 −0.0499376
803803 8.94427 0.315637
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 18.9737i 0.667491i
809809 52.3259i 1.83968i −0.392293 0.919840i 0.628318π-0.628318\pi
0.392293 0.919840i 0.371682π-0.371682\pi
810810 0 0
811811 40.2492i 1.41334i −0.707543 0.706671i 0.750196π-0.750196\pi
0.707543 0.706671i 0.249804π-0.249804\pi
812812 −4.47214 + 6.00000i −0.156941 + 0.210559i
813813 0 0
814814 −6.00000 −0.210300
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 19.7990i 0.690990i −0.938421 0.345495i 0.887711π-0.887711\pi
0.938421 0.345495i 0.112289π-0.112289\pi
822822 0 0
823823 21.2132 0.739446 0.369723 0.929142i 0.379453π-0.379453\pi
0.369723 + 0.929142i 0.379453π0.379453\pi
824824 −15.8114 −0.550816
825825 0 0
826826 −15.0000 + 20.1246i −0.521917 + 0.700225i
827827 48.0000i 1.66912i 0.550914 + 0.834562i 0.314279π0.314279\pi
−0.550914 + 0.834562i 0.685721π0.685721\pi
828828 0 0
829829 13.4164i 0.465971i 0.972480 + 0.232986i 0.0748495π0.0748495\pi
−0.972480 + 0.232986i 0.925151π0.925151\pi
830830 0 0
831831 0 0
832832 3.16228i 0.109632i
833833 −8.94427 30.0000i −0.309901 1.03944i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 9.48683i 0.327717i
839839 37.9473 1.31009 0.655044 0.755591i 0.272650π-0.272650\pi
0.655044 + 0.755591i 0.272650π0.272650\pi
840840 0 0
841841 21.0000 0.724138
842842 22.0000i 0.758170i
843843 0 0
844844 −20.0000 −0.688428
845845 0 0
846846 0 0
847847 −19.0919 14.2302i −0.656005 0.488957i
848848 6.00000i 0.206041i
849849 0 0
850850 0 0
851851 25.4558i 0.872615i
852852 0 0
853853 3.16228i 0.108274i 0.998534 + 0.0541372i 0.0172408π0.0172408\pi
−0.998534 + 0.0541372i 0.982759π0.982759\pi
854854 −28.4605 21.2132i −0.973898 0.725901i
855855 0 0
856856 −12.0000 −0.410152
857857 −31.3050 −1.06936 −0.534678 0.845056i 0.679567π-0.679567\pi
−0.534678 + 0.845056i 0.679567π0.679567\pi
858858 0 0
859859 13.4164i 0.457762i −0.973454 0.228881i 0.926493π-0.926493\pi
0.973454 0.228881i 0.0735067π-0.0735067\pi
860860 0 0
861861 0 0
862862 36.7696 1.25238
863863 6.00000i 0.204242i 0.994772 + 0.102121i 0.0325630π0.0325630\pi
−0.994772 + 0.102121i 0.967437π0.967437\pi
864864 0 0
865865 0 0
866866 6.32456 0.214917
867867 0 0
868868 0 0
869869 5.65685i 0.191896i
870870 0 0
871871 0 0
872872 10.0000i 0.338643i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −21.2132 −0.716319 −0.358159 0.933660i 0.616596π-0.616596\pi
−0.358159 + 0.933660i 0.616596π0.616596\pi
878878 0 0
879879 0 0
880880 0 0
881881 −47.4342 −1.59810 −0.799049 0.601266i 0.794663π-0.794663\pi
−0.799049 + 0.601266i 0.794663π0.794663\pi
882882 0 0
883883 33.9411 1.14221 0.571105 0.820877i 0.306515π-0.306515\pi
0.571105 + 0.820877i 0.306515π0.306515\pi
884884 14.1421i 0.475651i
885885 0 0
886886 24.0000 0.806296
887887 −44.7214 −1.50160 −0.750798 0.660532i 0.770331π-0.770331\pi
−0.750798 + 0.660532i 0.770331π0.770331\pi
888888 0 0
889889 −45.0000 33.5410i −1.50925 1.12493i
890890 0 0
891891 0 0
892892 22.1359i 0.741166i
893893 0 0
894894 0 0
895895 0 0
896896 −1.58114 + 2.12132i −0.0528221 + 0.0708683i
897897 0 0
898898 18.3848 0.613508
899899 0 0
900900 0 0
901901 26.8328i 0.893931i
902902 −13.4164 −0.446718
903903 0 0
904904 6.00000 0.199557
905905 0 0
906906 0 0
907907 −25.4558 −0.845247 −0.422624 0.906305i 0.638891π-0.638891\pi
−0.422624 + 0.906305i 0.638891π0.638891\pi
908908 17.8885 0.593652
909909 0 0
910910 0 0
911911 48.0833i 1.59307i 0.604593 + 0.796535i 0.293336π0.293336\pi
−0.604593 + 0.796535i 0.706664π0.706664\pi
912912 0 0
913913 12.6491i 0.418624i
914914 16.9706i 0.561336i
915915 0 0
916916 13.4164i 0.443291i
917917 20.1246 + 15.0000i 0.664573 + 0.495344i
918918 0 0
919919 −20.0000 −0.659739 −0.329870 0.944027i 0.607005π-0.607005\pi
−0.329870 + 0.944027i 0.607005π0.607005\pi
920920 0 0
921921 0 0
922922 0 0
923923 −17.8885 −0.588809
924924 0 0
925925 0 0
926926 21.2132i 0.697109i
927927 0 0
928928 −2.82843 −0.0928477
929929 −9.48683 −0.311253 −0.155626 0.987816i 0.549740π-0.549740\pi
−0.155626 + 0.987816i 0.549740π0.549740\pi
930930 0 0
931931 0 0
932932 6.00000i 0.196537i
933933 0 0
934934 8.94427i 0.292666i
935935 0 0
936936 0 0
937937 12.6491i 0.413228i −0.978422 0.206614i 0.933755π-0.933755\pi
0.978422 0.206614i 0.0662445π-0.0662445\pi
938938 0 0
939939 0 0
940940 0 0
941941 −37.9473 −1.23705 −0.618524 0.785766i 0.712269π-0.712269\pi
−0.618524 + 0.785766i 0.712269π0.712269\pi
942942 0 0
943943 56.9210i 1.85360i
944944 −9.48683 −0.308770
945945 0 0
946946 −12.0000 −0.390154
947947 12.0000i 0.389948i 0.980808 + 0.194974i 0.0624622π0.0624622\pi
−0.980808 + 0.194974i 0.937538π0.937538\pi
948948 0 0
949949 20.0000 0.649227
950950 0 0
951951 0 0
952952 7.07107 9.48683i 0.229175 0.307470i
953953 6.00000i 0.194359i 0.995267 + 0.0971795i 0.0309821π0.0309821\pi
−0.995267 + 0.0971795i 0.969018π0.969018\pi
954954 0 0
955955 0 0
956956 11.3137i 0.365911i
957957 0 0
958958 18.9737i 0.613011i
959959 −28.4605 + 38.1838i −0.919037 + 1.23302i
960960 0 0
961961 31.0000 1.00000
962962 −13.4164 −0.432562
963963 0 0
964964 13.4164i 0.432113i
965965 0 0
966966 0 0
967967 21.2132 0.682171 0.341085 0.940032i 0.389205π-0.389205\pi
0.341085 + 0.940032i 0.389205π0.389205\pi
968968 9.00000i 0.289271i
969969 0 0
970970 0 0
971971 28.4605 0.913341 0.456670 0.889636i 0.349042π-0.349042\pi
0.456670 + 0.889636i 0.349042π0.349042\pi
972972 0 0
973973 −21.2132 + 28.4605i −0.680064 + 0.912402i
974974 4.24264i 0.135943i
975975 0 0
976976 13.4164i 0.429449i
977977 18.0000i 0.575871i 0.957650 + 0.287936i 0.0929689π0.0929689\pi
−0.957650 + 0.287936i 0.907031π0.907031\pi
978978 0 0
979979 13.4164i 0.428790i
980980 0 0
981981 0 0
982982 15.5563 0.496423
983983 4.47214 0.142639 0.0713195 0.997454i 0.477279π-0.477279\pi
0.0713195 + 0.997454i 0.477279π0.477279\pi
984984 0 0
985985 0 0
986986 12.6491 0.402830
987987 0 0
988988 0 0
989989 50.9117i 1.61890i
990990 0 0
991991 20.0000 0.635321 0.317660 0.948205i 0.397103π-0.397103\pi
0.317660 + 0.948205i 0.397103π0.397103\pi
992992 0 0
993993 0 0
994994 12.0000 + 8.94427i 0.380617 + 0.283695i
995995 0 0
996996 0 0
997997 53.7587i 1.70256i 0.524715 + 0.851278i 0.324172π0.324172\pi
−0.524715 + 0.851278i 0.675828π0.675828\pi
998998 10.0000i 0.316544i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.b.c.251.5 8
3.2 odd 2 inner 3150.2.b.c.251.1 8
5.2 odd 4 630.2.d.a.629.2 yes 4
5.3 odd 4 630.2.d.d.629.3 yes 4
5.4 even 2 inner 3150.2.b.c.251.4 8
7.6 odd 2 inner 3150.2.b.c.251.6 8
15.2 even 4 630.2.d.d.629.4 yes 4
15.8 even 4 630.2.d.a.629.1 4
15.14 odd 2 inner 3150.2.b.c.251.8 8
20.3 even 4 5040.2.k.a.1889.4 4
20.7 even 4 5040.2.k.d.1889.1 4
21.20 even 2 inner 3150.2.b.c.251.2 8
35.13 even 4 630.2.d.d.629.2 yes 4
35.27 even 4 630.2.d.a.629.3 yes 4
35.34 odd 2 inner 3150.2.b.c.251.3 8
60.23 odd 4 5040.2.k.d.1889.2 4
60.47 odd 4 5040.2.k.a.1889.3 4
105.62 odd 4 630.2.d.d.629.1 yes 4
105.83 odd 4 630.2.d.a.629.4 yes 4
105.104 even 2 inner 3150.2.b.c.251.7 8
140.27 odd 4 5040.2.k.d.1889.4 4
140.83 odd 4 5040.2.k.a.1889.1 4
420.83 even 4 5040.2.k.d.1889.3 4
420.167 even 4 5040.2.k.a.1889.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.d.a.629.1 4 15.8 even 4
630.2.d.a.629.2 yes 4 5.2 odd 4
630.2.d.a.629.3 yes 4 35.27 even 4
630.2.d.a.629.4 yes 4 105.83 odd 4
630.2.d.d.629.1 yes 4 105.62 odd 4
630.2.d.d.629.2 yes 4 35.13 even 4
630.2.d.d.629.3 yes 4 5.3 odd 4
630.2.d.d.629.4 yes 4 15.2 even 4
3150.2.b.c.251.1 8 3.2 odd 2 inner
3150.2.b.c.251.2 8 21.20 even 2 inner
3150.2.b.c.251.3 8 35.34 odd 2 inner
3150.2.b.c.251.4 8 5.4 even 2 inner
3150.2.b.c.251.5 8 1.1 even 1 trivial
3150.2.b.c.251.6 8 7.6 odd 2 inner
3150.2.b.c.251.7 8 105.104 even 2 inner
3150.2.b.c.251.8 8 15.14 odd 2 inner
5040.2.k.a.1889.1 4 140.83 odd 4
5040.2.k.a.1889.2 4 420.167 even 4
5040.2.k.a.1889.3 4 60.47 odd 4
5040.2.k.a.1889.4 4 20.3 even 4
5040.2.k.d.1889.1 4 20.7 even 4
5040.2.k.d.1889.2 4 60.23 odd 4
5040.2.k.d.1889.3 4 420.83 even 4
5040.2.k.d.1889.4 4 140.27 odd 4