Properties

Label 3150.2.m.g.2843.4
Level $3150$
Weight $2$
Character 3150.2843
Analytic conductor $25.153$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3150,2,Mod(1457,3150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3150.1457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2843.4
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 3150.2843
Dual form 3150.2.m.g.1457.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-0.707107 + 0.707107i) q^{7} +(-0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-0.707107 + 0.707107i) q^{7} +(-0.707107 + 0.707107i) q^{8} -0.585786i q^{11} +(0.0249440 + 0.0249440i) q^{13} -1.00000 q^{14} -1.00000 q^{16} +(-1.92152 - 1.92152i) q^{17} -4.87832i q^{19} +(0.414214 - 0.414214i) q^{22} +(5.15660 - 5.15660i) q^{23} +0.0352762i q^{26} +(-0.707107 - 0.707107i) q^{28} +4.58114 q^{29} +9.83839 q^{31} +(-0.707107 - 0.707107i) q^{32} -2.71744i q^{34} +(-2.87832 + 2.87832i) q^{37} +(3.44949 - 3.44949i) q^{38} -0.979336i q^{41} +(4.27463 + 4.27463i) q^{43} +0.585786 q^{44} +7.29253 q^{46} +(6.32780 + 6.32780i) q^{47} -1.00000i q^{49} +(-0.0249440 + 0.0249440i) q^{52} +(1.56084 - 1.56084i) q^{53} -1.00000i q^{56} +(3.23936 + 3.23936i) q^{58} +0.670951 q^{59} +2.35363 q^{61} +(6.95680 + 6.95680i) q^{62} -1.00000i q^{64} +(-5.08516 + 5.08516i) q^{67} +(1.92152 - 1.92152i) q^{68} +2.92820i q^{71} +(-2.51059 - 2.51059i) q^{73} -4.07055 q^{74} +4.87832 q^{76} +(0.414214 + 0.414214i) q^{77} +8.71279i q^{79} +(0.692495 - 0.692495i) q^{82} +(2.99207 - 2.99207i) q^{83} +6.04524i q^{86} +(0.414214 + 0.414214i) q^{88} +9.72741 q^{89} -0.0352762 q^{91} +(5.15660 + 5.15660i) q^{92} +8.94887i q^{94} +(-4.74666 + 4.74666i) q^{97} +(0.707107 - 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{13} - 8 q^{14} - 8 q^{16} - 8 q^{22} + 16 q^{23} + 16 q^{37} + 8 q^{38} + 8 q^{43} + 16 q^{44} + 8 q^{46} - 8 q^{47} + 8 q^{52} + 32 q^{53} + 8 q^{58} - 8 q^{59} - 32 q^{61} + 32 q^{62} - 16 q^{67} - 16 q^{74} - 8 q^{77} + 8 q^{82} - 8 q^{83} - 8 q^{88} + 16 q^{89} + 8 q^{91} + 16 q^{92} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.707107 + 0.707107i −0.267261 + 0.267261i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) 0.585786i 0.176621i −0.996093 0.0883106i \(-0.971853\pi\)
0.996093 0.0883106i \(-0.0281468\pi\)
\(12\) 0 0
\(13\) 0.0249440 + 0.0249440i 0.00691823 + 0.00691823i 0.710557 0.703639i \(-0.248443\pi\)
−0.703639 + 0.710557i \(0.748443\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.92152 1.92152i −0.466037 0.466037i 0.434591 0.900628i \(-0.356893\pi\)
−0.900628 + 0.434591i \(0.856893\pi\)
\(18\) 0 0
\(19\) 4.87832i 1.11916i −0.828776 0.559581i \(-0.810962\pi\)
0.828776 0.559581i \(-0.189038\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.414214 0.414214i 0.0883106 0.0883106i
\(23\) 5.15660 5.15660i 1.07522 1.07522i 0.0782944 0.996930i \(-0.475053\pi\)
0.996930 0.0782944i \(-0.0249474\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.0352762i 0.00691823i
\(27\) 0 0
\(28\) −0.707107 0.707107i −0.133631 0.133631i
\(29\) 4.58114 0.850697 0.425348 0.905030i \(-0.360152\pi\)
0.425348 + 0.905030i \(0.360152\pi\)
\(30\) 0 0
\(31\) 9.83839 1.76703 0.883514 0.468405i \(-0.155171\pi\)
0.883514 + 0.468405i \(0.155171\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 2.71744i 0.466037i
\(35\) 0 0
\(36\) 0 0
\(37\) −2.87832 + 2.87832i −0.473192 + 0.473192i −0.902946 0.429754i \(-0.858600\pi\)
0.429754 + 0.902946i \(0.358600\pi\)
\(38\) 3.44949 3.44949i 0.559581 0.559581i
\(39\) 0 0
\(40\) 0 0
\(41\) 0.979336i 0.152947i −0.997072 0.0764733i \(-0.975634\pi\)
0.997072 0.0764733i \(-0.0243660\pi\)
\(42\) 0 0
\(43\) 4.27463 + 4.27463i 0.651875 + 0.651875i 0.953444 0.301569i \(-0.0975103\pi\)
−0.301569 + 0.953444i \(0.597510\pi\)
\(44\) 0.585786 0.0883106
\(45\) 0 0
\(46\) 7.29253 1.07522
\(47\) 6.32780 + 6.32780i 0.923005 + 0.923005i 0.997241 0.0742355i \(-0.0236517\pi\)
−0.0742355 + 0.997241i \(0.523652\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.0249440 + 0.0249440i −0.00345911 + 0.00345911i
\(53\) 1.56084 1.56084i 0.214398 0.214398i −0.591735 0.806133i \(-0.701557\pi\)
0.806133 + 0.591735i \(0.201557\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000i 0.133631i
\(57\) 0 0
\(58\) 3.23936 + 3.23936i 0.425348 + 0.425348i
\(59\) 0.670951 0.0873503 0.0436752 0.999046i \(-0.486093\pi\)
0.0436752 + 0.999046i \(0.486093\pi\)
\(60\) 0 0
\(61\) 2.35363 0.301351 0.150676 0.988583i \(-0.451855\pi\)
0.150676 + 0.988583i \(0.451855\pi\)
\(62\) 6.95680 + 6.95680i 0.883514 + 0.883514i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) −5.08516 + 5.08516i −0.621252 + 0.621252i −0.945851 0.324600i \(-0.894770\pi\)
0.324600 + 0.945851i \(0.394770\pi\)
\(68\) 1.92152 1.92152i 0.233018 0.233018i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.92820i 0.347514i 0.984789 + 0.173757i \(0.0555907\pi\)
−0.984789 + 0.173757i \(0.944409\pi\)
\(72\) 0 0
\(73\) −2.51059 2.51059i −0.293842 0.293842i 0.544754 0.838596i \(-0.316623\pi\)
−0.838596 + 0.544754i \(0.816623\pi\)
\(74\) −4.07055 −0.473192
\(75\) 0 0
\(76\) 4.87832 0.559581
\(77\) 0.414214 + 0.414214i 0.0472040 + 0.0472040i
\(78\) 0 0
\(79\) 8.71279i 0.980266i 0.871648 + 0.490133i \(0.163052\pi\)
−0.871648 + 0.490133i \(0.836948\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0.692495 0.692495i 0.0764733 0.0764733i
\(83\) 2.99207 2.99207i 0.328423 0.328423i −0.523564 0.851986i \(-0.675398\pi\)
0.851986 + 0.523564i \(0.175398\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.04524i 0.651875i
\(87\) 0 0
\(88\) 0.414214 + 0.414214i 0.0441553 + 0.0441553i
\(89\) 9.72741 1.03110 0.515552 0.856859i \(-0.327587\pi\)
0.515552 + 0.856859i \(0.327587\pi\)
\(90\) 0 0
\(91\) −0.0352762 −0.00369795
\(92\) 5.15660 + 5.15660i 0.537612 + 0.537612i
\(93\) 0 0
\(94\) 8.94887i 0.923005i
\(95\) 0 0
\(96\) 0 0
\(97\) −4.74666 + 4.74666i −0.481951 + 0.481951i −0.905754 0.423804i \(-0.860695\pi\)
0.423804 + 0.905754i \(0.360695\pi\)
\(98\) 0.707107 0.707107i 0.0714286 0.0714286i
\(99\) 0 0
\(100\) 0 0
\(101\) 6.18618i 0.615548i −0.951459 0.307774i \(-0.900416\pi\)
0.951459 0.307774i \(-0.0995841\pi\)
\(102\) 0 0
\(103\) 0.272229 + 0.272229i 0.0268235 + 0.0268235i 0.720391 0.693568i \(-0.243962\pi\)
−0.693568 + 0.720391i \(0.743962\pi\)
\(104\) −0.0352762 −0.00345911
\(105\) 0 0
\(106\) 2.20736 0.214398
\(107\) −3.97934 3.97934i −0.384697 0.384697i 0.488094 0.872791i \(-0.337692\pi\)
−0.872791 + 0.488094i \(0.837692\pi\)
\(108\) 0 0
\(109\) 8.61982i 0.825629i −0.910815 0.412814i \(-0.864546\pi\)
0.910815 0.412814i \(-0.135454\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.707107 0.707107i 0.0668153 0.0668153i
\(113\) 6.13165 6.13165i 0.576817 0.576817i −0.357208 0.934025i \(-0.616271\pi\)
0.934025 + 0.357208i \(0.116271\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.58114i 0.425348i
\(117\) 0 0
\(118\) 0.474434 + 0.474434i 0.0436752 + 0.0436752i
\(119\) 2.71744 0.249107
\(120\) 0 0
\(121\) 10.6569 0.968805
\(122\) 1.66427 + 1.66427i 0.150676 + 0.150676i
\(123\) 0 0
\(124\) 9.83839i 0.883514i
\(125\) 0 0
\(126\) 0 0
\(127\) −14.1356 + 14.1356i −1.25433 + 1.25433i −0.300569 + 0.953760i \(0.597176\pi\)
−0.953760 + 0.300569i \(0.902824\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) 19.3843i 1.69361i −0.531903 0.846805i \(-0.678523\pi\)
0.531903 0.846805i \(-0.321477\pi\)
\(132\) 0 0
\(133\) 3.44949 + 3.44949i 0.299109 + 0.299109i
\(134\) −7.19151 −0.621252
\(135\) 0 0
\(136\) 2.71744 0.233018
\(137\) 5.29858 + 5.29858i 0.452688 + 0.452688i 0.896246 0.443558i \(-0.146284\pi\)
−0.443558 + 0.896246i \(0.646284\pi\)
\(138\) 0 0
\(139\) 4.33386i 0.367593i −0.982964 0.183796i \(-0.941161\pi\)
0.982964 0.183796i \(-0.0588387\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.07055 + 2.07055i −0.173757 + 0.173757i
\(143\) 0.0146119 0.0146119i 0.00122191 0.00122191i
\(144\) 0 0
\(145\) 0 0
\(146\) 3.55051i 0.293842i
\(147\) 0 0
\(148\) −2.87832 2.87832i −0.236596 0.236596i
\(149\) 16.4083 1.34422 0.672111 0.740450i \(-0.265388\pi\)
0.672111 + 0.740450i \(0.265388\pi\)
\(150\) 0 0
\(151\) 6.19275 0.503959 0.251980 0.967733i \(-0.418918\pi\)
0.251980 + 0.967733i \(0.418918\pi\)
\(152\) 3.44949 + 3.44949i 0.279791 + 0.279791i
\(153\) 0 0
\(154\) 0.585786i 0.0472040i
\(155\) 0 0
\(156\) 0 0
\(157\) −6.65561 + 6.65561i −0.531175 + 0.531175i −0.920922 0.389747i \(-0.872563\pi\)
0.389747 + 0.920922i \(0.372563\pi\)
\(158\) −6.16088 + 6.16088i −0.490133 + 0.490133i
\(159\) 0 0
\(160\) 0 0
\(161\) 7.29253i 0.574732i
\(162\) 0 0
\(163\) 7.26002 + 7.26002i 0.568649 + 0.568649i 0.931750 0.363101i \(-0.118282\pi\)
−0.363101 + 0.931750i \(0.618282\pi\)
\(164\) 0.979336 0.0764733
\(165\) 0 0
\(166\) 4.23143 0.328423
\(167\) 0.484766 + 0.484766i 0.0375123 + 0.0375123i 0.725614 0.688102i \(-0.241556\pi\)
−0.688102 + 0.725614i \(0.741556\pi\)
\(168\) 0 0
\(169\) 12.9988i 0.999904i
\(170\) 0 0
\(171\) 0 0
\(172\) −4.27463 + 4.27463i −0.325938 + 0.325938i
\(173\) 15.8126 15.8126i 1.20221 1.20221i 0.228714 0.973494i \(-0.426548\pi\)
0.973494 0.228714i \(-0.0734520\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.585786i 0.0441553i
\(177\) 0 0
\(178\) 6.87832 + 6.87832i 0.515552 + 0.515552i
\(179\) 5.14235 0.384357 0.192179 0.981360i \(-0.438445\pi\)
0.192179 + 0.981360i \(0.438445\pi\)
\(180\) 0 0
\(181\) 15.0411 1.11800 0.558999 0.829169i \(-0.311186\pi\)
0.558999 + 0.829169i \(0.311186\pi\)
\(182\) −0.0249440 0.0249440i −0.00184897 0.00184897i
\(183\) 0 0
\(184\) 7.29253i 0.537612i
\(185\) 0 0
\(186\) 0 0
\(187\) −1.12560 + 1.12560i −0.0823120 + 0.0823120i
\(188\) −6.32780 + 6.32780i −0.461503 + 0.461503i
\(189\) 0 0
\(190\) 0 0
\(191\) 11.8732i 0.859111i −0.903040 0.429556i \(-0.858670\pi\)
0.903040 0.429556i \(-0.141330\pi\)
\(192\) 0 0
\(193\) −0.0864086 0.0864086i −0.00621983 0.00621983i 0.703990 0.710210i \(-0.251400\pi\)
−0.710210 + 0.703990i \(0.751400\pi\)
\(194\) −6.71279 −0.481951
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 15.3374 + 15.3374i 1.09275 + 1.09275i 0.995234 + 0.0975106i \(0.0310880\pi\)
0.0975106 + 0.995234i \(0.468912\pi\)
\(198\) 0 0
\(199\) 13.4256i 0.951715i 0.879522 + 0.475857i \(0.157862\pi\)
−0.879522 + 0.475857i \(0.842138\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4.37429 4.37429i 0.307774 0.307774i
\(203\) −3.23936 + 3.23936i −0.227358 + 0.227358i
\(204\) 0 0
\(205\) 0 0
\(206\) 0.384990i 0.0268235i
\(207\) 0 0
\(208\) −0.0249440 0.0249440i −0.00172956 0.00172956i
\(209\) −2.85765 −0.197668
\(210\) 0 0
\(211\) −16.2263 −1.11706 −0.558531 0.829484i \(-0.688635\pi\)
−0.558531 + 0.829484i \(0.688635\pi\)
\(212\) 1.56084 + 1.56084i 0.107199 + 0.107199i
\(213\) 0 0
\(214\) 5.62763i 0.384697i
\(215\) 0 0
\(216\) 0 0
\(217\) −6.95680 + 6.95680i −0.472258 + 0.472258i
\(218\) 6.09513 6.09513i 0.412814 0.412814i
\(219\) 0 0
\(220\) 0 0
\(221\) 0.0958609i 0.00644830i
\(222\) 0 0
\(223\) −11.1919 11.1919i −0.749463 0.749463i 0.224915 0.974378i \(-0.427790\pi\)
−0.974378 + 0.224915i \(0.927790\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 8.67147 0.576817
\(227\) −14.5784 14.5784i −0.967601 0.967601i 0.0318907 0.999491i \(-0.489847\pi\)
−0.999491 + 0.0318907i \(0.989847\pi\)
\(228\) 0 0
\(229\) 16.0905i 1.06329i 0.846967 + 0.531645i \(0.178426\pi\)
−0.846967 + 0.531645i \(0.821574\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.23936 + 3.23936i −0.212674 + 0.212674i
\(233\) −13.7162 + 13.7162i −0.898578 + 0.898578i −0.995310 0.0967326i \(-0.969161\pi\)
0.0967326 + 0.995310i \(0.469161\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.670951i 0.0436752i
\(237\) 0 0
\(238\) 1.92152 + 1.92152i 0.124554 + 0.124554i
\(239\) 0.485281 0.0313902 0.0156951 0.999877i \(-0.495004\pi\)
0.0156951 + 0.999877i \(0.495004\pi\)
\(240\) 0 0
\(241\) 9.57598 0.616843 0.308422 0.951250i \(-0.400199\pi\)
0.308422 + 0.951250i \(0.400199\pi\)
\(242\) 7.53553 + 7.53553i 0.484402 + 0.484402i
\(243\) 0 0
\(244\) 2.35363i 0.150676i
\(245\) 0 0
\(246\) 0 0
\(247\) 0.121685 0.121685i 0.00774262 0.00774262i
\(248\) −6.95680 + 6.95680i −0.441757 + 0.441757i
\(249\) 0 0
\(250\) 0 0
\(251\) 23.8532i 1.50560i −0.658250 0.752799i \(-0.728703\pi\)
0.658250 0.752799i \(-0.271297\pi\)
\(252\) 0 0
\(253\) −3.02066 3.02066i −0.189908 0.189908i
\(254\) −19.9907 −1.25433
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.62095 4.62095i −0.288247 0.288247i 0.548140 0.836387i \(-0.315336\pi\)
−0.836387 + 0.548140i \(0.815336\pi\)
\(258\) 0 0
\(259\) 4.07055i 0.252932i
\(260\) 0 0
\(261\) 0 0
\(262\) 13.7067 13.7067i 0.846805 0.846805i
\(263\) −7.67183 + 7.67183i −0.473065 + 0.473065i −0.902905 0.429840i \(-0.858570\pi\)
0.429840 + 0.902905i \(0.358570\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 4.87832i 0.299109i
\(267\) 0 0
\(268\) −5.08516 5.08516i −0.310626 0.310626i
\(269\) 20.4629 1.24764 0.623821 0.781567i \(-0.285579\pi\)
0.623821 + 0.781567i \(0.285579\pi\)
\(270\) 0 0
\(271\) −23.2500 −1.41233 −0.706167 0.708045i \(-0.749577\pi\)
−0.706167 + 0.708045i \(0.749577\pi\)
\(272\) 1.92152 + 1.92152i 0.116509 + 0.116509i
\(273\) 0 0
\(274\) 7.49333i 0.452688i
\(275\) 0 0
\(276\) 0 0
\(277\) −20.3636 + 20.3636i −1.22353 + 1.22353i −0.257161 + 0.966368i \(0.582787\pi\)
−0.966368 + 0.257161i \(0.917213\pi\)
\(278\) 3.06450 3.06450i 0.183796 0.183796i
\(279\) 0 0
\(280\) 0 0
\(281\) 22.1421i 1.32089i −0.750875 0.660445i \(-0.770368\pi\)
0.750875 0.660445i \(-0.229632\pi\)
\(282\) 0 0
\(283\) 14.4600 + 14.4600i 0.859556 + 0.859556i 0.991286 0.131730i \(-0.0420530\pi\)
−0.131730 + 0.991286i \(0.542053\pi\)
\(284\) −2.92820 −0.173757
\(285\) 0 0
\(286\) 0.0206643 0.00122191
\(287\) 0.692495 + 0.692495i 0.0408767 + 0.0408767i
\(288\) 0 0
\(289\) 9.61553i 0.565619i
\(290\) 0 0
\(291\) 0 0
\(292\) 2.51059 2.51059i 0.146921 0.146921i
\(293\) 0.442922 0.442922i 0.0258758 0.0258758i −0.694051 0.719926i \(-0.744176\pi\)
0.719926 + 0.694051i \(0.244176\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.07055i 0.236596i
\(297\) 0 0
\(298\) 11.6024 + 11.6024i 0.672111 + 0.672111i
\(299\) 0.257253 0.0148773
\(300\) 0 0
\(301\) −6.04524 −0.348442
\(302\) 4.37894 + 4.37894i 0.251980 + 0.251980i
\(303\) 0 0
\(304\) 4.87832i 0.279791i
\(305\) 0 0
\(306\) 0 0
\(307\) −14.3696 + 14.3696i −0.820119 + 0.820119i −0.986125 0.166006i \(-0.946913\pi\)
0.166006 + 0.986125i \(0.446913\pi\)
\(308\) −0.414214 + 0.414214i −0.0236020 + 0.0236020i
\(309\) 0 0
\(310\) 0 0
\(311\) 17.0892i 0.969042i −0.874780 0.484521i \(-0.838994\pi\)
0.874780 0.484521i \(-0.161006\pi\)
\(312\) 0 0
\(313\) 2.66098 + 2.66098i 0.150408 + 0.150408i 0.778300 0.627892i \(-0.216082\pi\)
−0.627892 + 0.778300i \(0.716082\pi\)
\(314\) −9.41245 −0.531175
\(315\) 0 0
\(316\) −8.71279 −0.490133
\(317\) −9.56011 9.56011i −0.536949 0.536949i 0.385682 0.922632i \(-0.373966\pi\)
−0.922632 + 0.385682i \(0.873966\pi\)
\(318\) 0 0
\(319\) 2.68357i 0.150251i
\(320\) 0 0
\(321\) 0 0
\(322\) −5.15660 + 5.15660i −0.287366 + 0.287366i
\(323\) −9.37378 + 9.37378i −0.521571 + 0.521571i
\(324\) 0 0
\(325\) 0 0
\(326\) 10.2672i 0.568649i
\(327\) 0 0
\(328\) 0.692495 + 0.692495i 0.0382366 + 0.0382366i
\(329\) −8.94887 −0.493367
\(330\) 0 0
\(331\) 2.71404 0.149177 0.0745885 0.997214i \(-0.476236\pi\)
0.0745885 + 0.997214i \(0.476236\pi\)
\(332\) 2.99207 + 2.99207i 0.164211 + 0.164211i
\(333\) 0 0
\(334\) 0.685563i 0.0375123i
\(335\) 0 0
\(336\) 0 0
\(337\) 15.9867 15.9867i 0.870851 0.870851i −0.121714 0.992565i \(-0.538839\pi\)
0.992565 + 0.121714i \(0.0388391\pi\)
\(338\) 9.19151 9.19151i 0.499952 0.499952i
\(339\) 0 0
\(340\) 0 0
\(341\) 5.76320i 0.312095i
\(342\) 0 0
\(343\) 0.707107 + 0.707107i 0.0381802 + 0.0381802i
\(344\) −6.04524 −0.325938
\(345\) 0 0
\(346\) 22.3624 1.20221
\(347\) −18.0228 18.0228i −0.967516 0.967516i 0.0319731 0.999489i \(-0.489821\pi\)
−0.999489 + 0.0319731i \(0.989821\pi\)
\(348\) 0 0
\(349\) 22.6437i 1.21209i −0.795431 0.606044i \(-0.792756\pi\)
0.795431 0.606044i \(-0.207244\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.414214 + 0.414214i −0.0220777 + 0.0220777i
\(353\) 14.5266 14.5266i 0.773173 0.773173i −0.205487 0.978660i \(-0.565878\pi\)
0.978660 + 0.205487i \(0.0658777\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 9.72741i 0.515552i
\(357\) 0 0
\(358\) 3.63619 + 3.63619i 0.192179 + 0.192179i
\(359\) 12.3264 0.650562 0.325281 0.945617i \(-0.394541\pi\)
0.325281 + 0.945617i \(0.394541\pi\)
\(360\) 0 0
\(361\) −4.79796 −0.252524
\(362\) 10.6357 + 10.6357i 0.558999 + 0.558999i
\(363\) 0 0
\(364\) 0.0352762i 0.00184897i
\(365\) 0 0
\(366\) 0 0
\(367\) 20.3428 20.3428i 1.06188 1.06188i 0.0639302 0.997954i \(-0.479637\pi\)
0.997954 0.0639302i \(-0.0203635\pi\)
\(368\) −5.15660 + 5.15660i −0.268806 + 0.268806i
\(369\) 0 0
\(370\) 0 0
\(371\) 2.20736i 0.114601i
\(372\) 0 0
\(373\) 16.7980 + 16.7980i 0.869765 + 0.869765i 0.992446 0.122681i \(-0.0391491\pi\)
−0.122681 + 0.992446i \(0.539149\pi\)
\(374\) −1.59184 −0.0823120
\(375\) 0 0
\(376\) −8.94887 −0.461503
\(377\) 0.114272 + 0.114272i 0.00588531 + 0.00588531i
\(378\) 0 0
\(379\) 13.5108i 0.694001i −0.937865 0.347000i \(-0.887200\pi\)
0.937865 0.347000i \(-0.112800\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8.39559 8.39559i 0.429556 0.429556i
\(383\) −3.84377 + 3.84377i −0.196407 + 0.196407i −0.798458 0.602051i \(-0.794351\pi\)
0.602051 + 0.798458i \(0.294351\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0.122200i 0.00621983i
\(387\) 0 0
\(388\) −4.74666 4.74666i −0.240975 0.240975i
\(389\) −35.9081 −1.82061 −0.910305 0.413937i \(-0.864153\pi\)
−0.910305 + 0.413937i \(0.864153\pi\)
\(390\) 0 0
\(391\) −19.8170 −1.00219
\(392\) 0.707107 + 0.707107i 0.0357143 + 0.0357143i
\(393\) 0 0
\(394\) 21.6904i 1.09275i
\(395\) 0 0
\(396\) 0 0
\(397\) 17.9227 17.9227i 0.899513 0.899513i −0.0958795 0.995393i \(-0.530566\pi\)
0.995393 + 0.0958795i \(0.0305663\pi\)
\(398\) −9.49333 + 9.49333i −0.475857 + 0.475857i
\(399\) 0 0
\(400\) 0 0
\(401\) 33.4042i 1.66813i 0.551669 + 0.834063i \(0.313991\pi\)
−0.551669 + 0.834063i \(0.686009\pi\)
\(402\) 0 0
\(403\) 0.245409 + 0.245409i 0.0122247 + 0.0122247i
\(404\) 6.18618 0.307774
\(405\) 0 0
\(406\) −4.58114 −0.227358
\(407\) 1.68608 + 1.68608i 0.0835758 + 0.0835758i
\(408\) 0 0
\(409\) 39.4438i 1.95037i 0.221395 + 0.975184i \(0.428939\pi\)
−0.221395 + 0.975184i \(0.571061\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.272229 + 0.272229i −0.0134118 + 0.0134118i
\(413\) −0.474434 + 0.474434i −0.0233454 + 0.0233454i
\(414\) 0 0
\(415\) 0 0
\(416\) 0.0352762i 0.00172956i
\(417\) 0 0
\(418\) −2.02066 2.02066i −0.0988339 0.0988339i
\(419\) −32.5989 −1.59256 −0.796281 0.604927i \(-0.793202\pi\)
−0.796281 + 0.604927i \(0.793202\pi\)
\(420\) 0 0
\(421\) −14.6330 −0.713167 −0.356583 0.934264i \(-0.616058\pi\)
−0.356583 + 0.934264i \(0.616058\pi\)
\(422\) −11.4737 11.4737i −0.558531 0.558531i
\(423\) 0 0
\(424\) 2.20736i 0.107199i
\(425\) 0 0
\(426\) 0 0
\(427\) −1.66427 + 1.66427i −0.0805395 + 0.0805395i
\(428\) 3.97934 3.97934i 0.192348 0.192348i
\(429\) 0 0
\(430\) 0 0
\(431\) 5.88347i 0.283397i 0.989910 + 0.141699i \(0.0452564\pi\)
−0.989910 + 0.141699i \(0.954744\pi\)
\(432\) 0 0
\(433\) −7.55532 7.55532i −0.363085 0.363085i 0.501862 0.864948i \(-0.332648\pi\)
−0.864948 + 0.501862i \(0.832648\pi\)
\(434\) −9.83839 −0.472258
\(435\) 0 0
\(436\) 8.61982 0.412814
\(437\) −25.1555 25.1555i −1.20335 1.20335i
\(438\) 0 0
\(439\) 21.1614i 1.00998i −0.863126 0.504989i \(-0.831497\pi\)
0.863126 0.504989i \(-0.168503\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.0677839 0.0677839i 0.00322415 0.00322415i
\(443\) −4.32640 + 4.32640i −0.205553 + 0.205553i −0.802374 0.596821i \(-0.796430\pi\)
0.596821 + 0.802374i \(0.296430\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 15.8277i 0.749463i
\(447\) 0 0
\(448\) 0.707107 + 0.707107i 0.0334077 + 0.0334077i
\(449\) 4.38623 0.206999 0.103500 0.994629i \(-0.466996\pi\)
0.103500 + 0.994629i \(0.466996\pi\)
\(450\) 0 0
\(451\) −0.573682 −0.0270136
\(452\) 6.13165 + 6.13165i 0.288409 + 0.288409i
\(453\) 0 0
\(454\) 20.6169i 0.967601i
\(455\) 0 0
\(456\) 0 0
\(457\) 1.36960 1.36960i 0.0640672 0.0640672i −0.674347 0.738414i \(-0.735575\pi\)
0.738414 + 0.674347i \(0.235575\pi\)
\(458\) −11.3777 + 11.3777i −0.531645 + 0.531645i
\(459\) 0 0
\(460\) 0 0
\(461\) 0.856388i 0.0398860i −0.999801 0.0199430i \(-0.993652\pi\)
0.999801 0.0199430i \(-0.00634847\pi\)
\(462\) 0 0
\(463\) 3.76393 + 3.76393i 0.174925 + 0.174925i 0.789139 0.614215i \(-0.210527\pi\)
−0.614215 + 0.789139i \(0.710527\pi\)
\(464\) −4.58114 −0.212674
\(465\) 0 0
\(466\) −19.3976 −0.898578
\(467\) 19.3844 + 19.3844i 0.897002 + 0.897002i 0.995170 0.0981679i \(-0.0312982\pi\)
−0.0981679 + 0.995170i \(0.531298\pi\)
\(468\) 0 0
\(469\) 7.19151i 0.332073i
\(470\) 0 0
\(471\) 0 0
\(472\) −0.474434 + 0.474434i −0.0218376 + 0.0218376i
\(473\) 2.50402 2.50402i 0.115135 0.115135i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.71744i 0.124554i
\(477\) 0 0
\(478\) 0.343146 + 0.343146i 0.0156951 + 0.0156951i
\(479\) 27.8192 1.27109 0.635545 0.772064i \(-0.280776\pi\)
0.635545 + 0.772064i \(0.280776\pi\)
\(480\) 0 0
\(481\) −0.143594 −0.00654730
\(482\) 6.77124 + 6.77124i 0.308422 + 0.308422i
\(483\) 0 0
\(484\) 10.6569i 0.484402i
\(485\) 0 0
\(486\) 0 0
\(487\) −19.7899 + 19.7899i −0.896767 + 0.896767i −0.995149 0.0983821i \(-0.968633\pi\)
0.0983821 + 0.995149i \(0.468633\pi\)
\(488\) −1.66427 + 1.66427i −0.0753378 + 0.0753378i
\(489\) 0 0
\(490\) 0 0
\(491\) 11.2817i 0.509135i 0.967055 + 0.254567i \(0.0819330\pi\)
−0.967055 + 0.254567i \(0.918067\pi\)
\(492\) 0 0
\(493\) −8.80275 8.80275i −0.396456 0.396456i
\(494\) 0.172088 0.00774262
\(495\) 0 0
\(496\) −9.83839 −0.441757
\(497\) −2.07055 2.07055i −0.0928770 0.0928770i
\(498\) 0 0
\(499\) 25.0825i 1.12285i 0.827529 + 0.561423i \(0.189746\pi\)
−0.827529 + 0.561423i \(0.810254\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 16.8667 16.8667i 0.752799 0.752799i
\(503\) −3.68357 + 3.68357i −0.164242 + 0.164242i −0.784443 0.620201i \(-0.787051\pi\)
0.620201 + 0.784443i \(0.287051\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 4.27186i 0.189908i
\(507\) 0 0
\(508\) −14.1356 14.1356i −0.627164 0.627164i
\(509\) 41.1742 1.82501 0.912507 0.409061i \(-0.134144\pi\)
0.912507 + 0.409061i \(0.134144\pi\)
\(510\) 0 0
\(511\) 3.55051 0.157065
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 6.53501i 0.288247i
\(515\) 0 0
\(516\) 0 0
\(517\) 3.70674 3.70674i 0.163022 0.163022i
\(518\) 2.87832 2.87832i 0.126466 0.126466i
\(519\) 0 0
\(520\) 0 0
\(521\) 7.30639i 0.320099i 0.987109 + 0.160049i \(0.0511654\pi\)
−0.987109 + 0.160049i \(0.948835\pi\)
\(522\) 0 0
\(523\) 1.96060 + 1.96060i 0.0857308 + 0.0857308i 0.748672 0.662941i \(-0.230692\pi\)
−0.662941 + 0.748672i \(0.730692\pi\)
\(524\) 19.3843 0.846805
\(525\) 0 0
\(526\) −10.8496 −0.473065
\(527\) −18.9047 18.9047i −0.823500 0.823500i
\(528\) 0 0
\(529\) 30.1810i 1.31222i
\(530\) 0 0
\(531\) 0 0
\(532\) −3.44949 + 3.44949i −0.149554 + 0.149554i
\(533\) 0.0244286 0.0244286i 0.00105812 0.00105812i
\(534\) 0 0
\(535\) 0 0
\(536\) 7.19151i 0.310626i
\(537\) 0 0
\(538\) 14.4694 + 14.4694i 0.623821 + 0.623821i
\(539\) −0.585786 −0.0252316
\(540\) 0 0
\(541\) −13.5423 −0.582227 −0.291113 0.956689i \(-0.594026\pi\)
−0.291113 + 0.956689i \(0.594026\pi\)
\(542\) −16.4402 16.4402i −0.706167 0.706167i
\(543\) 0 0
\(544\) 2.71744i 0.116509i
\(545\) 0 0
\(546\) 0 0
\(547\) −17.5392 + 17.5392i −0.749921 + 0.749921i −0.974464 0.224543i \(-0.927911\pi\)
0.224543 + 0.974464i \(0.427911\pi\)
\(548\) −5.29858 + 5.29858i −0.226344 + 0.226344i
\(549\) 0 0
\(550\) 0 0
\(551\) 22.3483i 0.952068i
\(552\) 0 0
\(553\) −6.16088 6.16088i −0.261987 0.261987i
\(554\) −28.7985 −1.22353
\(555\) 0 0
\(556\) 4.33386 0.183796
\(557\) −19.5639 19.5639i −0.828948 0.828948i 0.158423 0.987371i \(-0.449359\pi\)
−0.987371 + 0.158423i \(0.949359\pi\)
\(558\) 0 0
\(559\) 0.213253i 0.00901965i
\(560\) 0 0
\(561\) 0 0
\(562\) 15.6569 15.6569i 0.660445 0.660445i
\(563\) −9.44156 + 9.44156i −0.397914 + 0.397914i −0.877497 0.479582i \(-0.840788\pi\)
0.479582 + 0.877497i \(0.340788\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 20.4495i 0.859556i
\(567\) 0 0
\(568\) −2.07055 2.07055i −0.0868784 0.0868784i
\(569\) 17.2613 0.723633 0.361816 0.932249i \(-0.382157\pi\)
0.361816 + 0.932249i \(0.382157\pi\)
\(570\) 0 0
\(571\) −9.88415 −0.413639 −0.206819 0.978379i \(-0.566311\pi\)
−0.206819 + 0.978379i \(0.566311\pi\)
\(572\) 0.0146119 + 0.0146119i 0.000610953 + 0.000610953i
\(573\) 0 0
\(574\) 0.979336i 0.0408767i
\(575\) 0 0
\(576\) 0 0
\(577\) 27.5140 27.5140i 1.14542 1.14542i 0.157980 0.987442i \(-0.449502\pi\)
0.987442 0.157980i \(-0.0504982\pi\)
\(578\) 6.79920 6.79920i 0.282810 0.282810i
\(579\) 0 0
\(580\) 0 0
\(581\) 4.23143i 0.175549i
\(582\) 0 0
\(583\) −0.914320 0.914320i −0.0378673 0.0378673i
\(584\) 3.55051 0.146921
\(585\) 0 0
\(586\) 0.626386 0.0258758
\(587\) −7.47632 7.47632i −0.308581 0.308581i 0.535778 0.844359i \(-0.320018\pi\)
−0.844359 + 0.535778i \(0.820018\pi\)
\(588\) 0 0
\(589\) 47.9948i 1.97759i
\(590\) 0 0
\(591\) 0 0
\(592\) 2.87832 2.87832i 0.118298 0.118298i
\(593\) −10.2024 + 10.2024i −0.418961 + 0.418961i −0.884846 0.465884i \(-0.845736\pi\)
0.465884 + 0.884846i \(0.345736\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 16.4083i 0.672111i
\(597\) 0 0
\(598\) 0.181905 + 0.181905i 0.00743865 + 0.00743865i
\(599\) −32.7293 −1.33728 −0.668642 0.743584i \(-0.733124\pi\)
−0.668642 + 0.743584i \(0.733124\pi\)
\(600\) 0 0
\(601\) −37.5685 −1.53245 −0.766225 0.642573i \(-0.777867\pi\)
−0.766225 + 0.642573i \(0.777867\pi\)
\(602\) −4.27463 4.27463i −0.174221 0.174221i
\(603\) 0 0
\(604\) 6.19275i 0.251980i
\(605\) 0 0
\(606\) 0 0
\(607\) 28.4243 28.4243i 1.15371 1.15371i 0.167905 0.985803i \(-0.446300\pi\)
0.985803 0.167905i \(-0.0537003\pi\)
\(608\) −3.44949 + 3.44949i −0.139895 + 0.139895i
\(609\) 0 0
\(610\) 0 0
\(611\) 0.315682i 0.0127711i
\(612\) 0 0
\(613\) −32.4894 32.4894i −1.31223 1.31223i −0.919766 0.392467i \(-0.871622\pi\)
−0.392467 0.919766i \(-0.628378\pi\)
\(614\) −20.3218 −0.820119
\(615\) 0 0
\(616\) −0.585786 −0.0236020
\(617\) 14.0451 + 14.0451i 0.565434 + 0.565434i 0.930846 0.365412i \(-0.119072\pi\)
−0.365412 + 0.930846i \(0.619072\pi\)
\(618\) 0 0
\(619\) 29.1719i 1.17252i 0.810124 + 0.586259i \(0.199400\pi\)
−0.810124 + 0.586259i \(0.800600\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.0839 12.0839i 0.484521 0.484521i
\(623\) −6.87832 + 6.87832i −0.275574 + 0.275574i
\(624\) 0 0
\(625\) 0 0
\(626\) 3.76320i 0.150408i
\(627\) 0 0
\(628\) −6.65561 6.65561i −0.265588 0.265588i
\(629\) 11.0615 0.441050
\(630\) 0 0
\(631\) −36.5826 −1.45633 −0.728165 0.685402i \(-0.759626\pi\)
−0.728165 + 0.685402i \(0.759626\pi\)
\(632\) −6.16088 6.16088i −0.245066 0.245066i
\(633\) 0 0
\(634\) 13.5200i 0.536949i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.0249440 0.0249440i 0.000988318 0.000988318i
\(638\) 1.89757 1.89757i 0.0751256 0.0751256i
\(639\) 0 0
\(640\) 0 0
\(641\) 45.6957i 1.80487i 0.430825 + 0.902436i \(0.358223\pi\)
−0.430825 + 0.902436i \(0.641777\pi\)
\(642\) 0 0
\(643\) −18.3877 18.3877i −0.725139 0.725139i 0.244509 0.969647i \(-0.421373\pi\)
−0.969647 + 0.244509i \(0.921373\pi\)
\(644\) −7.29253 −0.287366
\(645\) 0 0
\(646\) −13.2565 −0.521571
\(647\) −16.5423 16.5423i −0.650343 0.650343i 0.302733 0.953076i \(-0.402101\pi\)
−0.953076 + 0.302733i \(0.902101\pi\)
\(648\) 0 0
\(649\) 0.393034i 0.0154279i
\(650\) 0 0
\(651\) 0 0
\(652\) −7.26002 + 7.26002i −0.284324 + 0.284324i
\(653\) 6.67876 6.67876i 0.261360 0.261360i −0.564246 0.825607i \(-0.690833\pi\)
0.825607 + 0.564246i \(0.190833\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.979336i 0.0382366i
\(657\) 0 0
\(658\) −6.32780 6.32780i −0.246684 0.246684i
\(659\) −31.7335 −1.23616 −0.618080 0.786115i \(-0.712089\pi\)
−0.618080 + 0.786115i \(0.712089\pi\)
\(660\) 0 0
\(661\) 42.4019 1.64924 0.824622 0.565684i \(-0.191388\pi\)
0.824622 + 0.565684i \(0.191388\pi\)
\(662\) 1.91912 + 1.91912i 0.0745885 + 0.0745885i
\(663\) 0 0
\(664\) 4.23143i 0.164211i
\(665\) 0 0
\(666\) 0 0
\(667\) 23.6231 23.6231i 0.914690 0.914690i
\(668\) −0.484766 + 0.484766i −0.0187562 + 0.0187562i
\(669\) 0 0
\(670\) 0 0
\(671\) 1.37872i 0.0532250i
\(672\) 0 0
\(673\) −27.8748 27.8748i −1.07450 1.07450i −0.996992 0.0775032i \(-0.975305\pi\)
−0.0775032 0.996992i \(-0.524695\pi\)
\(674\) 22.6086 0.870851
\(675\) 0 0
\(676\) 12.9988 0.499952
\(677\) −1.95616 1.95616i −0.0751815 0.0751815i 0.668516 0.743698i \(-0.266930\pi\)
−0.743698 + 0.668516i \(0.766930\pi\)
\(678\) 0 0
\(679\) 6.71279i 0.257613i
\(680\) 0 0
\(681\) 0 0
\(682\) 4.07520 4.07520i 0.156047 0.156047i
\(683\) −24.5400 + 24.5400i −0.938996 + 0.938996i −0.998243 0.0592472i \(-0.981130\pi\)
0.0592472 + 0.998243i \(0.481130\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000i 0.0381802i
\(687\) 0 0
\(688\) −4.27463 4.27463i −0.162969 0.162969i
\(689\) 0.0778674 0.00296651
\(690\) 0 0
\(691\) −0.993716 −0.0378027 −0.0189014 0.999821i \(-0.506017\pi\)
−0.0189014 + 0.999821i \(0.506017\pi\)
\(692\) 15.8126 + 15.8126i 0.601104 + 0.601104i
\(693\) 0 0
\(694\) 25.4881i 0.967516i
\(695\) 0 0
\(696\) 0 0
\(697\) −1.88181 + 1.88181i −0.0712787 + 0.0712787i
\(698\) 16.0115 16.0115i 0.606044 0.606044i
\(699\) 0 0
\(700\) 0 0
\(701\) 46.4565i 1.75464i 0.479909 + 0.877318i \(0.340669\pi\)
−0.479909 + 0.877318i \(0.659331\pi\)
\(702\) 0 0
\(703\) 14.0413 + 14.0413i 0.529579 + 0.529579i
\(704\) −0.585786 −0.0220777
\(705\) 0 0
\(706\) 20.5437 0.773173
\(707\) 4.37429 + 4.37429i 0.164512 + 0.164512i
\(708\) 0 0
\(709\) 10.5904i 0.397729i 0.980027 + 0.198865i \(0.0637254\pi\)
−0.980027 + 0.198865i \(0.936275\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.87832 + 6.87832i −0.257776 + 0.257776i
\(713\) 50.7326 50.7326i 1.89995 1.89995i
\(714\) 0 0
\(715\) 0 0
\(716\) 5.14235i 0.192179i
\(717\) 0 0
\(718\) 8.71608 + 8.71608i 0.325281 + 0.325281i
\(719\) 16.2086 0.604479 0.302240 0.953232i \(-0.402266\pi\)
0.302240 + 0.953232i \(0.402266\pi\)
\(720\) 0 0
\(721\) −0.384990 −0.0143378
\(722\) −3.39267 3.39267i −0.126262 0.126262i
\(723\) 0 0
\(724\) 15.0411i 0.558999i
\(725\) 0 0
\(726\) 0 0
\(727\) 4.44183 4.44183i 0.164738 0.164738i −0.619924 0.784662i \(-0.712836\pi\)
0.784662 + 0.619924i \(0.212836\pi\)
\(728\) 0.0249440 0.0249440i 0.000924487 0.000924487i
\(729\) 0 0
\(730\) 0 0
\(731\) 16.4276i 0.607596i
\(732\) 0 0
\(733\) −22.9524 22.9524i −0.847767 0.847767i 0.142087 0.989854i \(-0.454619\pi\)
−0.989854 + 0.142087i \(0.954619\pi\)
\(734\) 28.7690 1.06188
\(735\) 0 0
\(736\) −7.29253 −0.268806
\(737\) 2.97882 + 2.97882i 0.109726 + 0.109726i
\(738\) 0 0
\(739\) 2.01607i 0.0741623i 0.999312 + 0.0370812i \(0.0118060\pi\)
−0.999312 + 0.0370812i \(0.988194\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.56084 + 1.56084i −0.0573003 + 0.0573003i
\(743\) −4.57937 + 4.57937i −0.168001 + 0.168001i −0.786100 0.618099i \(-0.787903\pi\)
0.618099 + 0.786100i \(0.287903\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 23.7559i 0.869765i
\(747\) 0 0
\(748\) −1.12560 1.12560i −0.0411560 0.0411560i
\(749\) 5.62763 0.205629
\(750\) 0 0
\(751\) 13.5894 0.495882 0.247941 0.968775i \(-0.420246\pi\)
0.247941 + 0.968775i \(0.420246\pi\)
\(752\) −6.32780 6.32780i −0.230751 0.230751i
\(753\) 0 0
\(754\) 0.161605i 0.00588531i
\(755\) 0 0
\(756\) 0 0
\(757\) −19.4354 + 19.4354i −0.706391 + 0.706391i −0.965775 0.259383i \(-0.916481\pi\)
0.259383 + 0.965775i \(0.416481\pi\)
\(758\) 9.55355 9.55355i 0.347000 0.347000i
\(759\) 0 0
\(760\) 0 0
\(761\) 4.32354i 0.156728i 0.996925 + 0.0783641i \(0.0249697\pi\)
−0.996925 + 0.0783641i \(0.975030\pi\)
\(762\) 0 0
\(763\) 6.09513 + 6.09513i 0.220659 + 0.220659i
\(764\) 11.8732 0.429556
\(765\) 0 0
\(766\) −5.43591 −0.196407
\(767\) 0.0167362 + 0.0167362i 0.000604310 + 0.000604310i
\(768\) 0 0
\(769\) 23.5218i 0.848219i 0.905611 + 0.424109i \(0.139413\pi\)
−0.905611 + 0.424109i \(0.860587\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.0864086 0.0864086i 0.00310992 0.00310992i
\(773\) −20.3027 + 20.3027i −0.730236 + 0.730236i −0.970666 0.240430i \(-0.922711\pi\)
0.240430 + 0.970666i \(0.422711\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 6.71279i 0.240975i
\(777\) 0 0
\(778\) −25.3908 25.3908i −0.910305 0.910305i
\(779\) −4.77751 −0.171172
\(780\) 0 0
\(781\) 1.71530 0.0613783
\(782\) −14.0127 14.0127i −0.501094 0.501094i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) 0 0
\(786\) 0 0
\(787\) 36.8569 36.8569i 1.31381 1.31381i 0.395222 0.918586i \(-0.370668\pi\)
0.918586 0.395222i \(-0.129332\pi\)
\(788\) −15.3374 + 15.3374i −0.546373 + 0.546373i
\(789\) 0 0
\(790\) 0 0
\(791\) 8.67147i 0.308322i
\(792\) 0 0
\(793\) 0.0587090 + 0.0587090i 0.00208482 + 0.00208482i
\(794\) 25.3465 0.899513
\(795\) 0 0
\(796\) −13.4256 −0.475857
\(797\) 5.72865 + 5.72865i 0.202919 + 0.202919i 0.801250 0.598330i \(-0.204169\pi\)
−0.598330 + 0.801250i \(0.704169\pi\)
\(798\) 0 0
\(799\) 24.3180i 0.860309i
\(800\) 0 0
\(801\) 0 0
\(802\) −23.6203 + 23.6203i −0.834063 + 0.834063i
\(803\) −1.47067 + 1.47067i −0.0518988 + 0.0518988i
\(804\) 0 0
\(805\) 0 0
\(806\) 0.347061i 0.0122247i
\(807\) 0 0
\(808\) 4.37429 + 4.37429i 0.153887 + 0.153887i
\(809\) 27.2215 0.957056 0.478528 0.878072i \(-0.341171\pi\)
0.478528 + 0.878072i \(0.341171\pi\)
\(810\) 0 0
\(811\) −33.2813 −1.16866 −0.584332 0.811515i \(-0.698643\pi\)
−0.584332 + 0.811515i \(0.698643\pi\)
\(812\) −3.23936 3.23936i −0.113679 0.113679i
\(813\) 0 0
\(814\) 2.38447i 0.0835758i
\(815\) 0 0
\(816\) 0 0
\(817\) 20.8530 20.8530i 0.729554 0.729554i
\(818\) −27.8910 + 27.8910i −0.975184 + 0.975184i
\(819\) 0 0
\(820\) 0 0
\(821\) 12.0545i 0.420704i 0.977626 + 0.210352i \(0.0674610\pi\)
−0.977626 + 0.210352i \(0.932539\pi\)
\(822\) 0 0
\(823\) 19.1280 + 19.1280i 0.666762 + 0.666762i 0.956965 0.290203i \(-0.0937230\pi\)
−0.290203 + 0.956965i \(0.593723\pi\)
\(824\) −0.384990 −0.0134118
\(825\) 0 0
\(826\) −0.670951 −0.0233454
\(827\) 26.4601 + 26.4601i 0.920109 + 0.920109i 0.997037 0.0769276i \(-0.0245110\pi\)
−0.0769276 + 0.997037i \(0.524511\pi\)
\(828\) 0 0
\(829\) 2.18260i 0.0758047i 0.999281 + 0.0379024i \(0.0120676\pi\)
−0.999281 + 0.0379024i \(0.987932\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.0249440 0.0249440i 0.000864779 0.000864779i
\(833\) −1.92152 + 1.92152i −0.0665767 + 0.0665767i
\(834\) 0 0
\(835\) 0 0
\(836\) 2.85765i 0.0988339i
\(837\) 0 0
\(838\) −23.0509 23.0509i −0.796281 0.796281i
\(839\) −52.0744 −1.79781 −0.898904 0.438146i \(-0.855635\pi\)
−0.898904 + 0.438146i \(0.855635\pi\)
\(840\) 0 0
\(841\) −8.01314 −0.276315
\(842\) −10.3471 10.3471i −0.356583 0.356583i
\(843\) 0 0
\(844\) 16.2263i 0.558531i
\(845\) 0 0
\(846\) 0 0
\(847\) −7.53553 + 7.53553i −0.258924 + 0.258924i
\(848\) −1.56084 + 1.56084i −0.0535995 + 0.0535995i
\(849\) 0 0
\(850\) 0 0
\(851\) 29.6846i 1.01758i
\(852\) 0 0
\(853\) −33.9351 33.9351i −1.16192 1.16192i −0.984056 0.177859i \(-0.943083\pi\)
−0.177859 0.984056i \(-0.556917\pi\)
\(854\) −2.35363 −0.0805395
\(855\) 0 0
\(856\) 5.62763 0.192348
\(857\) −25.7965 25.7965i −0.881192 0.881192i 0.112464 0.993656i \(-0.464126\pi\)
−0.993656 + 0.112464i \(0.964126\pi\)
\(858\) 0 0
\(859\) 28.1396i 0.960112i 0.877238 + 0.480056i \(0.159384\pi\)
−0.877238 + 0.480056i \(0.840616\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −4.16024 + 4.16024i −0.141699 + 0.141699i
\(863\) −26.5740 + 26.5740i −0.904590 + 0.904590i −0.995829 0.0912392i \(-0.970917\pi\)
0.0912392 + 0.995829i \(0.470917\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 10.6848i 0.363085i
\(867\) 0 0
\(868\) −6.95680 6.95680i −0.236129 0.236129i
\(869\) 5.10384 0.173136
\(870\) 0 0
\(871\) −0.253689 −0.00859592
\(872\) 6.09513 + 6.09513i 0.206407 + 0.206407i
\(873\) 0 0
\(874\) 35.5753i 1.20335i
\(875\) 0 0
\(876\) 0 0
\(877\) 22.9574 22.9574i 0.775217 0.775217i −0.203796 0.979013i \(-0.565328\pi\)
0.979013 + 0.203796i \(0.0653280\pi\)
\(878\) 14.9634 14.9634i 0.504989 0.504989i
\(879\) 0 0
\(880\) 0 0
\(881\) 48.8268i 1.64502i 0.568753 + 0.822508i \(0.307426\pi\)
−0.568753 + 0.822508i \(0.692574\pi\)
\(882\) 0 0
\(883\) −1.18290 1.18290i −0.0398078 0.0398078i 0.686923 0.726730i \(-0.258961\pi\)
−0.726730 + 0.686923i \(0.758961\pi\)
\(884\) 0.0958609 0.00322415
\(885\) 0 0
\(886\) −6.11845 −0.205553
\(887\) −7.01262 7.01262i −0.235461 0.235461i 0.579507 0.814967i \(-0.303245\pi\)
−0.814967 + 0.579507i \(0.803245\pi\)
\(888\) 0 0
\(889\) 19.9907i 0.670467i
\(890\) 0 0
\(891\) 0 0
\(892\) 11.1919 11.1919i 0.374732 0.374732i
\(893\) 30.8690 30.8690i 1.03299 1.03299i
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000i 0.0334077i
\(897\) 0 0
\(898\) 3.10154 + 3.10154i 0.103500 + 0.103500i
\(899\) 45.0711 1.50320
\(900\) 0 0
\(901\) −5.99838 −0.199835
\(902\) −0.405654 0.405654i −0.0135068 0.0135068i
\(903\) 0 0
\(904\) 8.67147i 0.288409i
\(905\) 0 0
\(906\) 0 0
\(907\) 6.95267 6.95267i 0.230860 0.230860i −0.582192 0.813051i \(-0.697805\pi\)
0.813051 + 0.582192i \(0.197805\pi\)
\(908\) 14.5784 14.5784i 0.483800 0.483800i
\(909\) 0 0
\(910\) 0 0
\(911\) 6.43828i 0.213310i −0.994296 0.106655i \(-0.965986\pi\)
0.994296 0.106655i \(-0.0340140\pi\)
\(912\) 0 0
\(913\) −1.75272 1.75272i −0.0580064 0.0580064i
\(914\) 1.93691 0.0640672
\(915\) 0 0
\(916\) −16.0905 −0.531645
\(917\) 13.7067 + 13.7067i 0.452637 + 0.452637i
\(918\) 0 0
\(919\) 16.4598i 0.542959i −0.962444 0.271480i \(-0.912487\pi\)
0.962444 0.271480i \(-0.0875129\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.605558 0.605558i 0.0199430 0.0199430i
\(923\) −0.0730412 + 0.0730412i −0.00240418 + 0.00240418i
\(924\) 0 0
\(925\) 0 0
\(926\) 5.32300i 0.174925i
\(927\) 0 0
\(928\) −3.23936 3.23936i −0.106337 0.106337i
\(929\) −35.6763 −1.17050 −0.585250 0.810853i \(-0.699004\pi\)
−0.585250 + 0.810853i \(0.699004\pi\)
\(930\) 0 0
\(931\) −4.87832 −0.159880
\(932\) −13.7162 13.7162i −0.449289 0.449289i
\(933\) 0 0
\(934\) 27.4136i 0.897002i
\(935\) 0 0
\(936\) 0 0
\(937\) −22.6490 + 22.6490i −0.739912 + 0.739912i −0.972561 0.232649i \(-0.925261\pi\)
0.232649 + 0.972561i \(0.425261\pi\)
\(938\) 5.08516 5.08516i 0.166036 0.166036i
\(939\) 0 0
\(940\) 0 0
\(941\) 31.3964i 1.02349i 0.859137 + 0.511746i \(0.171001\pi\)
−0.859137 + 0.511746i \(0.828999\pi\)
\(942\) 0 0
\(943\) −5.05004 5.05004i −0.164452 0.164452i
\(944\) −0.670951 −0.0218376
\(945\) 0 0
\(946\) 3.54122 0.115135
\(947\) −13.7087 13.7087i −0.445472 0.445472i 0.448374 0.893846i \(-0.352003\pi\)
−0.893846 + 0.448374i \(0.852003\pi\)
\(948\) 0 0
\(949\) 0.125248i 0.00406574i
\(950\) 0 0
\(951\) 0 0
\(952\) −1.92152 + 1.92152i −0.0622768 + 0.0622768i
\(953\) −8.88969 + 8.88969i −0.287965 + 0.287965i −0.836275 0.548310i \(-0.815271\pi\)
0.548310 + 0.836275i \(0.315271\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.485281i 0.0156951i
\(957\) 0 0
\(958\) 19.6711 + 19.6711i 0.635545 + 0.635545i
\(959\) −7.49333 −0.241972
\(960\) 0 0
\(961\) 65.7940 2.12239
\(962\) −0.101536 0.101536i −0.00327365 0.00327365i
\(963\) 0 0
\(964\) 9.57598i 0.308422i
\(965\) 0 0
\(966\) 0 0
\(967\) 21.8890 21.8890i 0.703902 0.703902i −0.261344 0.965246i \(-0.584166\pi\)
0.965246 + 0.261344i \(0.0841657\pi\)
\(968\) −7.53553 + 7.53553i −0.242201 + 0.242201i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.40284i 0.0450192i 0.999747 + 0.0225096i \(0.00716563\pi\)
−0.999747 + 0.0225096i \(0.992834\pi\)
\(972\) 0 0
\(973\) 3.06450 + 3.06450i 0.0982434 + 0.0982434i
\(974\) −27.9872 −0.896767
\(975\) 0 0
\(976\) −2.35363 −0.0753378
\(977\) 34.6622 + 34.6622i 1.10894 + 1.10894i 0.993290 + 0.115651i \(0.0368956\pi\)
0.115651 + 0.993290i \(0.463104\pi\)
\(978\) 0 0
\(979\) 5.69818i 0.182115i
\(980\) 0 0
\(981\) 0 0
\(982\) −7.97734 + 7.97734i −0.254567 + 0.254567i
\(983\) 16.6955 16.6955i 0.532503 0.532503i −0.388813 0.921317i \(-0.627115\pi\)
0.921317 + 0.388813i \(0.127115\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 12.4490i 0.396456i
\(987\) 0 0
\(988\) 0.121685 + 0.121685i 0.00387131 + 0.00387131i
\(989\) 44.0851 1.40183
\(990\) 0 0
\(991\) −56.8845 −1.80700 −0.903498 0.428593i \(-0.859009\pi\)
−0.903498 + 0.428593i \(0.859009\pi\)
\(992\) −6.95680 6.95680i −0.220878 0.220878i
\(993\) 0 0
\(994\) 2.92820i 0.0928770i
\(995\) 0 0
\(996\) 0 0
\(997\) 19.0305 19.0305i 0.602701 0.602701i −0.338327 0.941028i \(-0.609861\pi\)
0.941028 + 0.338327i \(0.109861\pi\)
\(998\) −17.7360 + 17.7360i −0.561423 + 0.561423i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.m.g.2843.4 yes 8
3.2 odd 2 3150.2.m.h.2843.2 yes 8
5.2 odd 4 3150.2.m.h.1457.2 yes 8
5.3 odd 4 3150.2.m.l.1457.3 yes 8
5.4 even 2 3150.2.m.k.2843.1 yes 8
15.2 even 4 inner 3150.2.m.g.1457.4 8
15.8 even 4 3150.2.m.k.1457.1 yes 8
15.14 odd 2 3150.2.m.l.2843.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3150.2.m.g.1457.4 8 15.2 even 4 inner
3150.2.m.g.2843.4 yes 8 1.1 even 1 trivial
3150.2.m.h.1457.2 yes 8 5.2 odd 4
3150.2.m.h.2843.2 yes 8 3.2 odd 2
3150.2.m.k.1457.1 yes 8 15.8 even 4
3150.2.m.k.2843.1 yes 8 5.4 even 2
3150.2.m.l.1457.3 yes 8 5.3 odd 4
3150.2.m.l.2843.3 yes 8 15.14 odd 2