Properties

Label 3192.2.a.x
Level $3192$
Weight $2$
Character orbit 3192.a
Self dual yes
Analytic conductor $25.488$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,2,Mod(1,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3192.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.4882483252\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.9248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + \beta_1 q^{5} - q^{7} + q^{9} + (\beta_{2} - \beta_1) q^{11} - \beta_1 q^{15} + ( - \beta_{3} - \beta_{2} - 1) q^{17} - q^{19} + q^{21} + (\beta_{3} - 2 \beta_{2} + 1) q^{23} + (\beta_{3} + 2) q^{25}+ \cdots + (\beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{7} + 4 q^{9} - 4 q^{17} - 4 q^{19} + 4 q^{21} + 4 q^{23} + 8 q^{25} - 4 q^{27} + 4 q^{29} - 8 q^{31} + 4 q^{37} - 8 q^{41} - 12 q^{43} - 8 q^{47} + 4 q^{49} + 4 q^{51} + 12 q^{53} - 24 q^{55}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{2} + 5\beta_1 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.13578
0.662153
−0.662153
2.13578
0 −1.00000 0 −3.33513 0 −1.00000 0 1.00000 0
1.2 0 −1.00000 0 −1.69614 0 −1.00000 0 1.00000 0
1.3 0 −1.00000 0 1.69614 0 −1.00000 0 1.00000 0
1.4 0 −1.00000 0 3.33513 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3192.2.a.x 4
3.b odd 2 1 9576.2.a.cj 4
4.b odd 2 1 6384.2.a.cb 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3192.2.a.x 4 1.a even 1 1 trivial
6384.2.a.cb 4 4.b odd 2 1
9576.2.a.cj 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3192))\):

\( T_{5}^{4} - 14T_{5}^{2} + 32 \) Copy content Toggle raw display
\( T_{11}^{4} - 20T_{11}^{2} + 32 \) Copy content Toggle raw display
\( T_{17}^{4} + 4T_{17}^{3} - 38T_{17}^{2} - 152T_{17} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 14T^{2} + 32 \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 20T^{2} + 32 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( (T + 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots - 608 \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots + 104 \) Copy content Toggle raw display
$31$ \( T^{4} + 8 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$37$ \( T^{4} - 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$41$ \( T^{4} + 8 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$43$ \( T^{4} + 12 T^{3} + \cdots - 1664 \) Copy content Toggle raw display
$47$ \( T^{4} + 8 T^{3} + \cdots + 2416 \) Copy content Toggle raw display
$53$ \( T^{4} - 12 T^{3} + \cdots - 472 \) Copy content Toggle raw display
$59$ \( T^{4} - 112T^{2} + 2048 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots + 208 \) Copy content Toggle raw display
$67$ \( T^{4} + 8 T^{3} + \cdots + 2144 \) Copy content Toggle raw display
$71$ \( T^{4} + 12 T^{3} + \cdots - 416 \) Copy content Toggle raw display
$73$ \( T^{4} + 8 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$79$ \( T^{4} + 20 T^{3} + \cdots - 5312 \) Copy content Toggle raw display
$83$ \( T^{4} + 20 T^{3} + \cdots - 1696 \) Copy content Toggle raw display
$89$ \( T^{4} - 192 T^{2} + \cdots + 1328 \) Copy content Toggle raw display
$97$ \( T^{4} + 8 T^{3} + \cdots + 32 \) Copy content Toggle raw display
show more
show less