Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [32,2,Mod(5,32)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(32, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("32.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 32.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.18939904.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 |
|
−1.26330 | − | 0.635665i | −1.07947 | − | 2.60607i | 1.19186 | + | 1.60607i | 0.707107 | + | 0.292893i | −0.292893 | + | 3.97844i | 1.68554 | + | 1.68554i | −0.484753 | − | 2.78658i | −3.50504 | + | 3.50504i | −0.707107 | − | 0.819496i | ||||||||||||||||||||||||
5.2 | −0.443806 | + | 1.34277i | 0.0794708 | + | 0.191860i | −1.60607 | − | 1.19186i | 0.707107 | + | 0.292893i | −0.292893 | + | 0.0215628i | −2.27133 | − | 2.27133i | 2.31318 | − | 1.62764i | 2.09083 | − | 2.09083i | −0.707107 | + | 0.819496i | |||||||||||||||||||||||||
13.1 | −1.26330 | + | 0.635665i | −1.07947 | + | 2.60607i | 1.19186 | − | 1.60607i | 0.707107 | − | 0.292893i | −0.292893 | − | 3.97844i | 1.68554 | − | 1.68554i | −0.484753 | + | 2.78658i | −3.50504 | − | 3.50504i | −0.707107 | + | 0.819496i | |||||||||||||||||||||||||
13.2 | −0.443806 | − | 1.34277i | 0.0794708 | − | 0.191860i | −1.60607 | + | 1.19186i | 0.707107 | − | 0.292893i | −0.292893 | − | 0.0215628i | −2.27133 | + | 2.27133i | 2.31318 | + | 1.62764i | 2.09083 | + | 2.09083i | −0.707107 | − | 0.819496i | |||||||||||||||||||||||||
21.1 | −1.40426 | + | 0.167452i | 1.27882 | − | 0.529706i | 1.94392 | − | 0.470294i | −0.707107 | + | 1.70711i | −1.70711 | + | 0.957989i | −2.74912 | − | 2.74912i | −2.65103 | + | 0.985930i | −0.766519 | + | 0.766519i | 0.707107 | − | 2.51564i | |||||||||||||||||||||||||
21.2 | 1.11137 | − | 0.874559i | −2.27882 | + | 0.943920i | 0.470294 | − | 1.94392i | −0.707107 | + | 1.70711i | −1.70711 | + | 3.04201i | −0.665096 | − | 0.665096i | −1.17740 | − | 2.57172i | 2.18073 | − | 2.18073i | 0.707107 | + | 2.51564i | |||||||||||||||||||||||||
29.1 | −1.40426 | − | 0.167452i | 1.27882 | + | 0.529706i | 1.94392 | + | 0.470294i | −0.707107 | − | 1.70711i | −1.70711 | − | 0.957989i | −2.74912 | + | 2.74912i | −2.65103 | − | 0.985930i | −0.766519 | − | 0.766519i | 0.707107 | + | 2.51564i | |||||||||||||||||||||||||
29.2 | 1.11137 | + | 0.874559i | −2.27882 | − | 0.943920i | 0.470294 | + | 1.94392i | −0.707107 | − | 1.70711i | −1.70711 | − | 3.04201i | −0.665096 | + | 0.665096i | −1.17740 | + | 2.57172i | 2.18073 | + | 2.18073i | 0.707107 | − | 2.51564i | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
32.g | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 32.2.g.b | ✓ | 8 |
3.b | odd | 2 | 1 | 288.2.v.b | 8 | ||
4.b | odd | 2 | 1 | 128.2.g.b | 8 | ||
5.b | even | 2 | 1 | 800.2.y.b | 8 | ||
5.c | odd | 4 | 1 | 800.2.ba.c | 8 | ||
5.c | odd | 4 | 1 | 800.2.ba.d | 8 | ||
8.b | even | 2 | 1 | 256.2.g.d | 8 | ||
8.d | odd | 2 | 1 | 256.2.g.c | 8 | ||
12.b | even | 2 | 1 | 1152.2.v.b | 8 | ||
16.e | even | 4 | 1 | 512.2.g.e | 8 | ||
16.e | even | 4 | 1 | 512.2.g.h | 8 | ||
16.f | odd | 4 | 1 | 512.2.g.f | 8 | ||
16.f | odd | 4 | 1 | 512.2.g.g | 8 | ||
32.g | even | 8 | 1 | inner | 32.2.g.b | ✓ | 8 |
32.g | even | 8 | 1 | 256.2.g.d | 8 | ||
32.g | even | 8 | 1 | 512.2.g.e | 8 | ||
32.g | even | 8 | 1 | 512.2.g.h | 8 | ||
32.h | odd | 8 | 1 | 128.2.g.b | 8 | ||
32.h | odd | 8 | 1 | 256.2.g.c | 8 | ||
32.h | odd | 8 | 1 | 512.2.g.f | 8 | ||
32.h | odd | 8 | 1 | 512.2.g.g | 8 | ||
64.i | even | 16 | 2 | 4096.2.a.k | 8 | ||
64.j | odd | 16 | 2 | 4096.2.a.q | 8 | ||
96.o | even | 8 | 1 | 1152.2.v.b | 8 | ||
96.p | odd | 8 | 1 | 288.2.v.b | 8 | ||
160.v | odd | 8 | 1 | 800.2.ba.c | 8 | ||
160.z | even | 8 | 1 | 800.2.y.b | 8 | ||
160.bb | odd | 8 | 1 | 800.2.ba.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
32.2.g.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
32.2.g.b | ✓ | 8 | 32.g | even | 8 | 1 | inner |
128.2.g.b | 8 | 4.b | odd | 2 | 1 | ||
128.2.g.b | 8 | 32.h | odd | 8 | 1 | ||
256.2.g.c | 8 | 8.d | odd | 2 | 1 | ||
256.2.g.c | 8 | 32.h | odd | 8 | 1 | ||
256.2.g.d | 8 | 8.b | even | 2 | 1 | ||
256.2.g.d | 8 | 32.g | even | 8 | 1 | ||
288.2.v.b | 8 | 3.b | odd | 2 | 1 | ||
288.2.v.b | 8 | 96.p | odd | 8 | 1 | ||
512.2.g.e | 8 | 16.e | even | 4 | 1 | ||
512.2.g.e | 8 | 32.g | even | 8 | 1 | ||
512.2.g.f | 8 | 16.f | odd | 4 | 1 | ||
512.2.g.f | 8 | 32.h | odd | 8 | 1 | ||
512.2.g.g | 8 | 16.f | odd | 4 | 1 | ||
512.2.g.g | 8 | 32.h | odd | 8 | 1 | ||
512.2.g.h | 8 | 16.e | even | 4 | 1 | ||
512.2.g.h | 8 | 32.g | even | 8 | 1 | ||
800.2.y.b | 8 | 5.b | even | 2 | 1 | ||
800.2.y.b | 8 | 160.z | even | 8 | 1 | ||
800.2.ba.c | 8 | 5.c | odd | 4 | 1 | ||
800.2.ba.c | 8 | 160.v | odd | 8 | 1 | ||
800.2.ba.d | 8 | 5.c | odd | 4 | 1 | ||
800.2.ba.d | 8 | 160.bb | odd | 8 | 1 | ||
1152.2.v.b | 8 | 12.b | even | 2 | 1 | ||
1152.2.v.b | 8 | 96.o | even | 8 | 1 | ||
4096.2.a.k | 8 | 64.i | even | 16 | 2 | ||
4096.2.a.q | 8 | 64.j | odd | 16 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .