Properties

Label 32.4.a.a
Level 3232
Weight 44
Character orbit 32.a
Self dual yes
Analytic conductor 1.8881.888
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [32,4,Mod(1,32)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(32, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("32.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 32=25 32 = 2^{5}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 32.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.888061120181.88806112018
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8q310q516q7+37q9+40q1150q13+80q1530q1740q19+128q2148q2325q2580q2734q29320q31320q33+160q35++1480q99+O(q100) q - 8 q^{3} - 10 q^{5} - 16 q^{7} + 37 q^{9} + 40 q^{11} - 50 q^{13} + 80 q^{15} - 30 q^{17} - 40 q^{19} + 128 q^{21} - 48 q^{23} - 25 q^{25} - 80 q^{27} - 34 q^{29} - 320 q^{31} - 320 q^{33} + 160 q^{35}+ \cdots + 1480 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −8.00000 0 −10.0000 0 −16.0000 0 37.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 32.4.a.a 1
3.b odd 2 1 288.4.a.h 1
4.b odd 2 1 32.4.a.c yes 1
5.b even 2 1 800.4.a.k 1
5.c odd 4 2 800.4.c.b 2
7.b odd 2 1 1568.4.a.o 1
8.b even 2 1 64.4.a.e 1
8.d odd 2 1 64.4.a.a 1
12.b even 2 1 288.4.a.i 1
16.e even 4 2 256.4.b.e 2
16.f odd 4 2 256.4.b.c 2
20.d odd 2 1 800.4.a.a 1
20.e even 4 2 800.4.c.a 2
24.f even 2 1 576.4.a.h 1
24.h odd 2 1 576.4.a.g 1
28.d even 2 1 1568.4.a.c 1
40.e odd 2 1 1600.4.a.bw 1
40.f even 2 1 1600.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.4.a.a 1 1.a even 1 1 trivial
32.4.a.c yes 1 4.b odd 2 1
64.4.a.a 1 8.d odd 2 1
64.4.a.e 1 8.b even 2 1
256.4.b.c 2 16.f odd 4 2
256.4.b.e 2 16.e even 4 2
288.4.a.h 1 3.b odd 2 1
288.4.a.i 1 12.b even 2 1
576.4.a.g 1 24.h odd 2 1
576.4.a.h 1 24.f even 2 1
800.4.a.a 1 20.d odd 2 1
800.4.a.k 1 5.b even 2 1
800.4.c.a 2 20.e even 4 2
800.4.c.b 2 5.c odd 4 2
1568.4.a.c 1 28.d even 2 1
1568.4.a.o 1 7.b odd 2 1
1600.4.a.e 1 40.f even 2 1
1600.4.a.bw 1 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+8 T_{3} + 8 acting on S4new(Γ0(32))S_{4}^{\mathrm{new}}(\Gamma_0(32)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+8 T + 8 Copy content Toggle raw display
55 T+10 T + 10 Copy content Toggle raw display
77 T+16 T + 16 Copy content Toggle raw display
1111 T40 T - 40 Copy content Toggle raw display
1313 T+50 T + 50 Copy content Toggle raw display
1717 T+30 T + 30 Copy content Toggle raw display
1919 T+40 T + 40 Copy content Toggle raw display
2323 T+48 T + 48 Copy content Toggle raw display
2929 T+34 T + 34 Copy content Toggle raw display
3131 T+320 T + 320 Copy content Toggle raw display
3737 T310 T - 310 Copy content Toggle raw display
4141 T410 T - 410 Copy content Toggle raw display
4343 T+152 T + 152 Copy content Toggle raw display
4747 T416 T - 416 Copy content Toggle raw display
5353 T+410 T + 410 Copy content Toggle raw display
5959 T200 T - 200 Copy content Toggle raw display
6161 T30 T - 30 Copy content Toggle raw display
6767 T+776 T + 776 Copy content Toggle raw display
7171 T+400 T + 400 Copy content Toggle raw display
7373 T+630 T + 630 Copy content Toggle raw display
7979 T1120 T - 1120 Copy content Toggle raw display
8383 T+552 T + 552 Copy content Toggle raw display
8989 T+326 T + 326 Copy content Toggle raw display
9797 T+110 T + 110 Copy content Toggle raw display
show more
show less