Properties

Label 320.8.a.h.1.1
Level $320$
Weight $8$
Character 320.1
Self dual yes
Analytic conductor $99.963$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [320,8,Mod(1,320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("320.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.9632081549\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+48.0000 q^{3} -125.000 q^{5} -1644.00 q^{7} +117.000 q^{9} -172.000 q^{11} -3862.00 q^{13} -6000.00 q^{15} -12254.0 q^{17} +25940.0 q^{19} -78912.0 q^{21} +12972.0 q^{23} +15625.0 q^{25} -99360.0 q^{27} +81610.0 q^{29} -156888. q^{31} -8256.00 q^{33} +205500. q^{35} -110126. q^{37} -185376. q^{39} +467882. q^{41} +499208. q^{43} -14625.0 q^{45} -396884. q^{47} +1.87919e6 q^{49} -588192. q^{51} +1.28050e6 q^{53} +21500.0 q^{55} +1.24512e6 q^{57} +1.33742e6 q^{59} +923978. q^{61} -192348. q^{63} +482750. q^{65} +797304. q^{67} +622656. q^{69} +5.10339e6 q^{71} -4.26748e6 q^{73} +750000. q^{75} +282768. q^{77} -960.000 q^{79} -5.02516e6 q^{81} -6.14083e6 q^{83} +1.53175e6 q^{85} +3.91728e6 q^{87} +2.01057e6 q^{89} +6.34913e6 q^{91} -7.53062e6 q^{93} -3.24250e6 q^{95} -4.88193e6 q^{97} -20124.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 48.0000 1.02640 0.513200 0.858269i \(-0.328460\pi\)
0.513200 + 0.858269i \(0.328460\pi\)
\(4\) 0 0
\(5\) −125.000 −0.447214
\(6\) 0 0
\(7\) −1644.00 −1.81158 −0.905792 0.423722i \(-0.860723\pi\)
−0.905792 + 0.423722i \(0.860723\pi\)
\(8\) 0 0
\(9\) 117.000 0.0534979
\(10\) 0 0
\(11\) −172.000 −0.0389631 −0.0194816 0.999810i \(-0.506202\pi\)
−0.0194816 + 0.999810i \(0.506202\pi\)
\(12\) 0 0
\(13\) −3862.00 −0.487540 −0.243770 0.969833i \(-0.578384\pi\)
−0.243770 + 0.969833i \(0.578384\pi\)
\(14\) 0 0
\(15\) −6000.00 −0.459020
\(16\) 0 0
\(17\) −12254.0 −0.604932 −0.302466 0.953160i \(-0.597810\pi\)
−0.302466 + 0.953160i \(0.597810\pi\)
\(18\) 0 0
\(19\) 25940.0 0.867626 0.433813 0.901003i \(-0.357168\pi\)
0.433813 + 0.901003i \(0.357168\pi\)
\(20\) 0 0
\(21\) −78912.0 −1.85941
\(22\) 0 0
\(23\) 12972.0 0.222310 0.111155 0.993803i \(-0.464545\pi\)
0.111155 + 0.993803i \(0.464545\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 0 0
\(27\) −99360.0 −0.971490
\(28\) 0 0
\(29\) 81610.0 0.621370 0.310685 0.950513i \(-0.399442\pi\)
0.310685 + 0.950513i \(0.399442\pi\)
\(30\) 0 0
\(31\) −156888. −0.945853 −0.472927 0.881102i \(-0.656802\pi\)
−0.472927 + 0.881102i \(0.656802\pi\)
\(32\) 0 0
\(33\) −8256.00 −0.0399918
\(34\) 0 0
\(35\) 205500. 0.810165
\(36\) 0 0
\(37\) −110126. −0.357424 −0.178712 0.983901i \(-0.557193\pi\)
−0.178712 + 0.983901i \(0.557193\pi\)
\(38\) 0 0
\(39\) −185376. −0.500412
\(40\) 0 0
\(41\) 467882. 1.06021 0.530106 0.847931i \(-0.322152\pi\)
0.530106 + 0.847931i \(0.322152\pi\)
\(42\) 0 0
\(43\) 499208. 0.957507 0.478753 0.877949i \(-0.341089\pi\)
0.478753 + 0.877949i \(0.341089\pi\)
\(44\) 0 0
\(45\) −14625.0 −0.0239250
\(46\) 0 0
\(47\) −396884. −0.557598 −0.278799 0.960349i \(-0.589936\pi\)
−0.278799 + 0.960349i \(0.589936\pi\)
\(48\) 0 0
\(49\) 1.87919e6 2.28184
\(50\) 0 0
\(51\) −588192. −0.620903
\(52\) 0 0
\(53\) 1.28050e6 1.18144 0.590722 0.806875i \(-0.298843\pi\)
0.590722 + 0.806875i \(0.298843\pi\)
\(54\) 0 0
\(55\) 21500.0 0.0174248
\(56\) 0 0
\(57\) 1.24512e6 0.890531
\(58\) 0 0
\(59\) 1.33742e6 0.847785 0.423893 0.905712i \(-0.360663\pi\)
0.423893 + 0.905712i \(0.360663\pi\)
\(60\) 0 0
\(61\) 923978. 0.521203 0.260602 0.965446i \(-0.416079\pi\)
0.260602 + 0.965446i \(0.416079\pi\)
\(62\) 0 0
\(63\) −192348. −0.0969161
\(64\) 0 0
\(65\) 482750. 0.218035
\(66\) 0 0
\(67\) 797304. 0.323864 0.161932 0.986802i \(-0.448228\pi\)
0.161932 + 0.986802i \(0.448228\pi\)
\(68\) 0 0
\(69\) 622656. 0.228179
\(70\) 0 0
\(71\) 5.10339e6 1.69221 0.846106 0.533015i \(-0.178941\pi\)
0.846106 + 0.533015i \(0.178941\pi\)
\(72\) 0 0
\(73\) −4.26748e6 −1.28393 −0.641965 0.766734i \(-0.721881\pi\)
−0.641965 + 0.766734i \(0.721881\pi\)
\(74\) 0 0
\(75\) 750000. 0.205280
\(76\) 0 0
\(77\) 282768. 0.0705850
\(78\) 0 0
\(79\) −960.000 −0.000219067 0 −0.000109533 1.00000i \(-0.500035\pi\)
−0.000109533 1.00000i \(0.500035\pi\)
\(80\) 0 0
\(81\) −5.02516e6 −1.05064
\(82\) 0 0
\(83\) −6.14083e6 −1.17884 −0.589419 0.807828i \(-0.700643\pi\)
−0.589419 + 0.807828i \(0.700643\pi\)
\(84\) 0 0
\(85\) 1.53175e6 0.270534
\(86\) 0 0
\(87\) 3.91728e6 0.637775
\(88\) 0 0
\(89\) 2.01057e6 0.302311 0.151156 0.988510i \(-0.451701\pi\)
0.151156 + 0.988510i \(0.451701\pi\)
\(90\) 0 0
\(91\) 6.34913e6 0.883221
\(92\) 0 0
\(93\) −7.53062e6 −0.970824
\(94\) 0 0
\(95\) −3.24250e6 −0.388014
\(96\) 0 0
\(97\) −4.88193e6 −0.543114 −0.271557 0.962422i \(-0.587539\pi\)
−0.271557 + 0.962422i \(0.587539\pi\)
\(98\) 0 0
\(99\) −20124.0 −0.00208445
\(100\) 0 0
\(101\) −9.72670e6 −0.939379 −0.469689 0.882832i \(-0.655634\pi\)
−0.469689 + 0.882832i \(0.655634\pi\)
\(102\) 0 0
\(103\) 1.63151e7 1.47115 0.735577 0.677441i \(-0.236911\pi\)
0.735577 + 0.677441i \(0.236911\pi\)
\(104\) 0 0
\(105\) 9.86400e6 0.831554
\(106\) 0 0
\(107\) 4.08974e6 0.322740 0.161370 0.986894i \(-0.448409\pi\)
0.161370 + 0.986894i \(0.448409\pi\)
\(108\) 0 0
\(109\) 2.68318e7 1.98453 0.992263 0.124158i \(-0.0396228\pi\)
0.992263 + 0.124158i \(0.0396228\pi\)
\(110\) 0 0
\(111\) −5.28605e6 −0.366860
\(112\) 0 0
\(113\) −1.74810e7 −1.13971 −0.569853 0.821747i \(-0.693000\pi\)
−0.569853 + 0.821747i \(0.693000\pi\)
\(114\) 0 0
\(115\) −1.62150e6 −0.0994202
\(116\) 0 0
\(117\) −451854. −0.0260824
\(118\) 0 0
\(119\) 2.01456e7 1.09589
\(120\) 0 0
\(121\) −1.94576e7 −0.998482
\(122\) 0 0
\(123\) 2.24583e7 1.08820
\(124\) 0 0
\(125\) −1.95312e6 −0.0894427
\(126\) 0 0
\(127\) −1.25018e7 −0.541575 −0.270787 0.962639i \(-0.587284\pi\)
−0.270787 + 0.962639i \(0.587284\pi\)
\(128\) 0 0
\(129\) 2.39620e7 0.982786
\(130\) 0 0
\(131\) 7.75619e6 0.301439 0.150719 0.988577i \(-0.451841\pi\)
0.150719 + 0.988577i \(0.451841\pi\)
\(132\) 0 0
\(133\) −4.26454e7 −1.57178
\(134\) 0 0
\(135\) 1.24200e7 0.434464
\(136\) 0 0
\(137\) 3.61720e7 1.20185 0.600926 0.799305i \(-0.294799\pi\)
0.600926 + 0.799305i \(0.294799\pi\)
\(138\) 0 0
\(139\) −1.09092e7 −0.344542 −0.172271 0.985050i \(-0.555110\pi\)
−0.172271 + 0.985050i \(0.555110\pi\)
\(140\) 0 0
\(141\) −1.90504e7 −0.572319
\(142\) 0 0
\(143\) 664264. 0.0189961
\(144\) 0 0
\(145\) −1.02012e7 −0.277885
\(146\) 0 0
\(147\) 9.02013e7 2.34208
\(148\) 0 0
\(149\) 3.64580e7 0.902904 0.451452 0.892295i \(-0.350906\pi\)
0.451452 + 0.892295i \(0.350906\pi\)
\(150\) 0 0
\(151\) 7.18955e6 0.169935 0.0849674 0.996384i \(-0.472921\pi\)
0.0849674 + 0.996384i \(0.472921\pi\)
\(152\) 0 0
\(153\) −1.43372e6 −0.0323626
\(154\) 0 0
\(155\) 1.96110e7 0.422998
\(156\) 0 0
\(157\) −8.79932e7 −1.81468 −0.907341 0.420396i \(-0.861891\pi\)
−0.907341 + 0.420396i \(0.861891\pi\)
\(158\) 0 0
\(159\) 6.14639e7 1.21264
\(160\) 0 0
\(161\) −2.13260e7 −0.402734
\(162\) 0 0
\(163\) 5.48875e7 0.992697 0.496349 0.868123i \(-0.334674\pi\)
0.496349 + 0.868123i \(0.334674\pi\)
\(164\) 0 0
\(165\) 1.03200e6 0.0178849
\(166\) 0 0
\(167\) 8.61460e6 0.143129 0.0715644 0.997436i \(-0.477201\pi\)
0.0715644 + 0.997436i \(0.477201\pi\)
\(168\) 0 0
\(169\) −4.78335e7 −0.762304
\(170\) 0 0
\(171\) 3.03498e6 0.0464162
\(172\) 0 0
\(173\) 5.12524e7 0.752580 0.376290 0.926502i \(-0.377200\pi\)
0.376290 + 0.926502i \(0.377200\pi\)
\(174\) 0 0
\(175\) −2.56875e7 −0.362317
\(176\) 0 0
\(177\) 6.41962e7 0.870167
\(178\) 0 0
\(179\) 5.01627e7 0.653725 0.326862 0.945072i \(-0.394009\pi\)
0.326862 + 0.945072i \(0.394009\pi\)
\(180\) 0 0
\(181\) −6.90817e7 −0.865940 −0.432970 0.901408i \(-0.642534\pi\)
−0.432970 + 0.901408i \(0.642534\pi\)
\(182\) 0 0
\(183\) 4.43509e7 0.534963
\(184\) 0 0
\(185\) 1.37658e7 0.159845
\(186\) 0 0
\(187\) 2.10769e6 0.0235701
\(188\) 0 0
\(189\) 1.63348e8 1.75994
\(190\) 0 0
\(191\) 1.54745e8 1.60695 0.803473 0.595342i \(-0.202983\pi\)
0.803473 + 0.595342i \(0.202983\pi\)
\(192\) 0 0
\(193\) −1.59406e7 −0.159607 −0.0798037 0.996811i \(-0.525429\pi\)
−0.0798037 + 0.996811i \(0.525429\pi\)
\(194\) 0 0
\(195\) 2.31720e7 0.223791
\(196\) 0 0
\(197\) 1.68188e8 1.56734 0.783670 0.621177i \(-0.213345\pi\)
0.783670 + 0.621177i \(0.213345\pi\)
\(198\) 0 0
\(199\) 1.77773e8 1.59911 0.799556 0.600591i \(-0.205068\pi\)
0.799556 + 0.600591i \(0.205068\pi\)
\(200\) 0 0
\(201\) 3.82706e7 0.332414
\(202\) 0 0
\(203\) −1.34167e8 −1.12566
\(204\) 0 0
\(205\) −5.84852e7 −0.474141
\(206\) 0 0
\(207\) 1.51772e6 0.0118931
\(208\) 0 0
\(209\) −4.46168e6 −0.0338054
\(210\) 0 0
\(211\) 1.61996e8 1.18718 0.593590 0.804767i \(-0.297710\pi\)
0.593590 + 0.804767i \(0.297710\pi\)
\(212\) 0 0
\(213\) 2.44963e8 1.73689
\(214\) 0 0
\(215\) −6.24010e7 −0.428210
\(216\) 0 0
\(217\) 2.57924e8 1.71349
\(218\) 0 0
\(219\) −2.04839e8 −1.31783
\(220\) 0 0
\(221\) 4.73249e7 0.294929
\(222\) 0 0
\(223\) 1.75932e7 0.106237 0.0531187 0.998588i \(-0.483084\pi\)
0.0531187 + 0.998588i \(0.483084\pi\)
\(224\) 0 0
\(225\) 1.82812e6 0.0106996
\(226\) 0 0
\(227\) 2.03036e8 1.15208 0.576039 0.817422i \(-0.304597\pi\)
0.576039 + 0.817422i \(0.304597\pi\)
\(228\) 0 0
\(229\) −1.59559e8 −0.878005 −0.439003 0.898486i \(-0.644668\pi\)
−0.439003 + 0.898486i \(0.644668\pi\)
\(230\) 0 0
\(231\) 1.35729e7 0.0724485
\(232\) 0 0
\(233\) −1.94985e7 −0.100985 −0.0504924 0.998724i \(-0.516079\pi\)
−0.0504924 + 0.998724i \(0.516079\pi\)
\(234\) 0 0
\(235\) 4.96105e7 0.249365
\(236\) 0 0
\(237\) −46080.0 −0.000224850 0
\(238\) 0 0
\(239\) −1.60220e8 −0.759146 −0.379573 0.925162i \(-0.623929\pi\)
−0.379573 + 0.925162i \(0.623929\pi\)
\(240\) 0 0
\(241\) −3.78779e8 −1.74311 −0.871557 0.490294i \(-0.836890\pi\)
−0.871557 + 0.490294i \(0.836890\pi\)
\(242\) 0 0
\(243\) −2.39073e7 −0.106883
\(244\) 0 0
\(245\) −2.34899e8 −1.02047
\(246\) 0 0
\(247\) −1.00180e8 −0.423002
\(248\) 0 0
\(249\) −2.94760e8 −1.20996
\(250\) 0 0
\(251\) −1.61304e8 −0.643855 −0.321927 0.946764i \(-0.604331\pi\)
−0.321927 + 0.946764i \(0.604331\pi\)
\(252\) 0 0
\(253\) −2.23118e6 −0.00866191
\(254\) 0 0
\(255\) 7.35240e7 0.277676
\(256\) 0 0
\(257\) 2.27387e8 0.835603 0.417801 0.908538i \(-0.362801\pi\)
0.417801 + 0.908538i \(0.362801\pi\)
\(258\) 0 0
\(259\) 1.81047e8 0.647504
\(260\) 0 0
\(261\) 9.54837e6 0.0332420
\(262\) 0 0
\(263\) 4.57728e8 1.55154 0.775768 0.631018i \(-0.217363\pi\)
0.775768 + 0.631018i \(0.217363\pi\)
\(264\) 0 0
\(265\) −1.60062e8 −0.528358
\(266\) 0 0
\(267\) 9.65074e7 0.310292
\(268\) 0 0
\(269\) −4.67286e8 −1.46369 −0.731847 0.681469i \(-0.761341\pi\)
−0.731847 + 0.681469i \(0.761341\pi\)
\(270\) 0 0
\(271\) −4.45932e7 −0.136106 −0.0680528 0.997682i \(-0.521679\pi\)
−0.0680528 + 0.997682i \(0.521679\pi\)
\(272\) 0 0
\(273\) 3.04758e8 0.906538
\(274\) 0 0
\(275\) −2.68750e6 −0.00779263
\(276\) 0 0
\(277\) −3.16657e8 −0.895179 −0.447590 0.894239i \(-0.647717\pi\)
−0.447590 + 0.894239i \(0.647717\pi\)
\(278\) 0 0
\(279\) −1.83559e7 −0.0506012
\(280\) 0 0
\(281\) −2.25818e8 −0.607136 −0.303568 0.952810i \(-0.598178\pi\)
−0.303568 + 0.952810i \(0.598178\pi\)
\(282\) 0 0
\(283\) −2.08210e7 −0.0546072 −0.0273036 0.999627i \(-0.508692\pi\)
−0.0273036 + 0.999627i \(0.508692\pi\)
\(284\) 0 0
\(285\) −1.55640e8 −0.398258
\(286\) 0 0
\(287\) −7.69198e8 −1.92066
\(288\) 0 0
\(289\) −2.60178e8 −0.634057
\(290\) 0 0
\(291\) −2.34333e8 −0.557452
\(292\) 0 0
\(293\) 1.78825e8 0.415329 0.207665 0.978200i \(-0.433414\pi\)
0.207665 + 0.978200i \(0.433414\pi\)
\(294\) 0 0
\(295\) −1.67178e8 −0.379141
\(296\) 0 0
\(297\) 1.70899e7 0.0378523
\(298\) 0 0
\(299\) −5.00979e7 −0.108385
\(300\) 0 0
\(301\) −8.20698e8 −1.73461
\(302\) 0 0
\(303\) −4.66882e8 −0.964179
\(304\) 0 0
\(305\) −1.15497e8 −0.233089
\(306\) 0 0
\(307\) 8.55159e7 0.168680 0.0843398 0.996437i \(-0.473122\pi\)
0.0843398 + 0.996437i \(0.473122\pi\)
\(308\) 0 0
\(309\) 7.83122e8 1.50999
\(310\) 0 0
\(311\) −4.84706e8 −0.913728 −0.456864 0.889537i \(-0.651027\pi\)
−0.456864 + 0.889537i \(0.651027\pi\)
\(312\) 0 0
\(313\) 5.70821e8 1.05219 0.526096 0.850425i \(-0.323655\pi\)
0.526096 + 0.850425i \(0.323655\pi\)
\(314\) 0 0
\(315\) 2.40435e7 0.0433422
\(316\) 0 0
\(317\) 5.50191e8 0.970076 0.485038 0.874493i \(-0.338806\pi\)
0.485038 + 0.874493i \(0.338806\pi\)
\(318\) 0 0
\(319\) −1.40369e7 −0.0242105
\(320\) 0 0
\(321\) 1.96308e8 0.331261
\(322\) 0 0
\(323\) −3.17869e8 −0.524855
\(324\) 0 0
\(325\) −6.03438e7 −0.0975081
\(326\) 0 0
\(327\) 1.28792e9 2.03692
\(328\) 0 0
\(329\) 6.52477e8 1.01014
\(330\) 0 0
\(331\) 9.39839e8 1.42448 0.712238 0.701938i \(-0.247681\pi\)
0.712238 + 0.701938i \(0.247681\pi\)
\(332\) 0 0
\(333\) −1.28847e7 −0.0191215
\(334\) 0 0
\(335\) −9.96630e7 −0.144836
\(336\) 0 0
\(337\) 5.33632e8 0.759516 0.379758 0.925086i \(-0.376007\pi\)
0.379758 + 0.925086i \(0.376007\pi\)
\(338\) 0 0
\(339\) −8.39090e8 −1.16979
\(340\) 0 0
\(341\) 2.69847e7 0.0368534
\(342\) 0 0
\(343\) −1.73549e9 −2.32216
\(344\) 0 0
\(345\) −7.78320e7 −0.102045
\(346\) 0 0
\(347\) −1.07934e9 −1.38677 −0.693385 0.720567i \(-0.743882\pi\)
−0.693385 + 0.720567i \(0.743882\pi\)
\(348\) 0 0
\(349\) 4.27217e8 0.537972 0.268986 0.963144i \(-0.413311\pi\)
0.268986 + 0.963144i \(0.413311\pi\)
\(350\) 0 0
\(351\) 3.83728e8 0.473641
\(352\) 0 0
\(353\) −1.48966e9 −1.80250 −0.901250 0.433299i \(-0.857350\pi\)
−0.901250 + 0.433299i \(0.857350\pi\)
\(354\) 0 0
\(355\) −6.37924e8 −0.756780
\(356\) 0 0
\(357\) 9.66988e8 1.12482
\(358\) 0 0
\(359\) 8.41275e8 0.959638 0.479819 0.877367i \(-0.340702\pi\)
0.479819 + 0.877367i \(0.340702\pi\)
\(360\) 0 0
\(361\) −2.20988e8 −0.247226
\(362\) 0 0
\(363\) −9.33964e8 −1.02484
\(364\) 0 0
\(365\) 5.33435e8 0.574191
\(366\) 0 0
\(367\) −7.50462e8 −0.792496 −0.396248 0.918143i \(-0.629688\pi\)
−0.396248 + 0.918143i \(0.629688\pi\)
\(368\) 0 0
\(369\) 5.47422e7 0.0567192
\(370\) 0 0
\(371\) −2.10514e9 −2.14029
\(372\) 0 0
\(373\) −1.71074e8 −0.170688 −0.0853439 0.996352i \(-0.527199\pi\)
−0.0853439 + 0.996352i \(0.527199\pi\)
\(374\) 0 0
\(375\) −9.37500e7 −0.0918040
\(376\) 0 0
\(377\) −3.15178e8 −0.302943
\(378\) 0 0
\(379\) −4.66239e7 −0.0439918 −0.0219959 0.999758i \(-0.507002\pi\)
−0.0219959 + 0.999758i \(0.507002\pi\)
\(380\) 0 0
\(381\) −6.00085e8 −0.555872
\(382\) 0 0
\(383\) −4.42266e8 −0.402242 −0.201121 0.979566i \(-0.564458\pi\)
−0.201121 + 0.979566i \(0.564458\pi\)
\(384\) 0 0
\(385\) −3.53460e7 −0.0315666
\(386\) 0 0
\(387\) 5.84073e7 0.0512247
\(388\) 0 0
\(389\) 4.64033e8 0.399691 0.199846 0.979827i \(-0.435956\pi\)
0.199846 + 0.979827i \(0.435956\pi\)
\(390\) 0 0
\(391\) −1.58959e8 −0.134483
\(392\) 0 0
\(393\) 3.72297e8 0.309397
\(394\) 0 0
\(395\) 120000. 9.79696e−5 0
\(396\) 0 0
\(397\) 3.17792e8 0.254904 0.127452 0.991845i \(-0.459320\pi\)
0.127452 + 0.991845i \(0.459320\pi\)
\(398\) 0 0
\(399\) −2.04698e9 −1.61327
\(400\) 0 0
\(401\) −1.19563e9 −0.925958 −0.462979 0.886369i \(-0.653219\pi\)
−0.462979 + 0.886369i \(0.653219\pi\)
\(402\) 0 0
\(403\) 6.05901e8 0.461142
\(404\) 0 0
\(405\) 6.28145e8 0.469859
\(406\) 0 0
\(407\) 1.89417e7 0.0139264
\(408\) 0 0
\(409\) 2.21305e9 1.59941 0.799704 0.600395i \(-0.204990\pi\)
0.799704 + 0.600395i \(0.204990\pi\)
\(410\) 0 0
\(411\) 1.73626e9 1.23358
\(412\) 0 0
\(413\) −2.19872e9 −1.53583
\(414\) 0 0
\(415\) 7.67604e8 0.527192
\(416\) 0 0
\(417\) −5.23643e8 −0.353638
\(418\) 0 0
\(419\) 8.02299e8 0.532828 0.266414 0.963859i \(-0.414161\pi\)
0.266414 + 0.963859i \(0.414161\pi\)
\(420\) 0 0
\(421\) −3.44713e7 −0.0225149 −0.0112575 0.999937i \(-0.503583\pi\)
−0.0112575 + 0.999937i \(0.503583\pi\)
\(422\) 0 0
\(423\) −4.64354e7 −0.0298303
\(424\) 0 0
\(425\) −1.91469e8 −0.120986
\(426\) 0 0
\(427\) −1.51902e9 −0.944204
\(428\) 0 0
\(429\) 3.18847e7 0.0194976
\(430\) 0 0
\(431\) 1.72692e9 1.03897 0.519485 0.854480i \(-0.326124\pi\)
0.519485 + 0.854480i \(0.326124\pi\)
\(432\) 0 0
\(433\) 4.88308e8 0.289059 0.144529 0.989501i \(-0.453833\pi\)
0.144529 + 0.989501i \(0.453833\pi\)
\(434\) 0 0
\(435\) −4.89660e8 −0.285221
\(436\) 0 0
\(437\) 3.36494e8 0.192882
\(438\) 0 0
\(439\) −2.88640e9 −1.62828 −0.814142 0.580665i \(-0.802793\pi\)
−0.814142 + 0.580665i \(0.802793\pi\)
\(440\) 0 0
\(441\) 2.19866e8 0.122074
\(442\) 0 0
\(443\) −9.26583e8 −0.506374 −0.253187 0.967417i \(-0.581479\pi\)
−0.253187 + 0.967417i \(0.581479\pi\)
\(444\) 0 0
\(445\) −2.51321e8 −0.135198
\(446\) 0 0
\(447\) 1.74999e9 0.926741
\(448\) 0 0
\(449\) 1.35535e9 0.706627 0.353313 0.935505i \(-0.385055\pi\)
0.353313 + 0.935505i \(0.385055\pi\)
\(450\) 0 0
\(451\) −8.04757e7 −0.0413092
\(452\) 0 0
\(453\) 3.45098e8 0.174421
\(454\) 0 0
\(455\) −7.93641e8 −0.394988
\(456\) 0 0
\(457\) 4.63429e7 0.0227131 0.0113566 0.999936i \(-0.496385\pi\)
0.0113566 + 0.999936i \(0.496385\pi\)
\(458\) 0 0
\(459\) 1.21756e9 0.587686
\(460\) 0 0
\(461\) 1.52117e8 0.0723144 0.0361572 0.999346i \(-0.488488\pi\)
0.0361572 + 0.999346i \(0.488488\pi\)
\(462\) 0 0
\(463\) 1.63450e9 0.765337 0.382668 0.923886i \(-0.375005\pi\)
0.382668 + 0.923886i \(0.375005\pi\)
\(464\) 0 0
\(465\) 9.41328e8 0.434166
\(466\) 0 0
\(467\) 1.11380e9 0.506057 0.253029 0.967459i \(-0.418573\pi\)
0.253029 + 0.967459i \(0.418573\pi\)
\(468\) 0 0
\(469\) −1.31077e9 −0.586706
\(470\) 0 0
\(471\) −4.22367e9 −1.86259
\(472\) 0 0
\(473\) −8.58638e7 −0.0373075
\(474\) 0 0
\(475\) 4.05312e8 0.173525
\(476\) 0 0
\(477\) 1.49818e8 0.0632049
\(478\) 0 0
\(479\) 1.27745e9 0.531091 0.265546 0.964098i \(-0.414448\pi\)
0.265546 + 0.964098i \(0.414448\pi\)
\(480\) 0 0
\(481\) 4.25307e8 0.174259
\(482\) 0 0
\(483\) −1.02365e9 −0.413366
\(484\) 0 0
\(485\) 6.10242e8 0.242888
\(486\) 0 0
\(487\) 9.79673e8 0.384352 0.192176 0.981360i \(-0.438445\pi\)
0.192176 + 0.981360i \(0.438445\pi\)
\(488\) 0 0
\(489\) 2.63460e9 1.01890
\(490\) 0 0
\(491\) 4.92125e9 1.87625 0.938124 0.346298i \(-0.112562\pi\)
0.938124 + 0.346298i \(0.112562\pi\)
\(492\) 0 0
\(493\) −1.00005e9 −0.375887
\(494\) 0 0
\(495\) 2.51550e6 0.000932194 0
\(496\) 0 0
\(497\) −8.38998e9 −3.06559
\(498\) 0 0
\(499\) 3.65786e9 1.31788 0.658940 0.752196i \(-0.271005\pi\)
0.658940 + 0.752196i \(0.271005\pi\)
\(500\) 0 0
\(501\) 4.13501e8 0.146908
\(502\) 0 0
\(503\) −3.88358e9 −1.36064 −0.680322 0.732914i \(-0.738160\pi\)
−0.680322 + 0.732914i \(0.738160\pi\)
\(504\) 0 0
\(505\) 1.21584e9 0.420103
\(506\) 0 0
\(507\) −2.29601e9 −0.782430
\(508\) 0 0
\(509\) −3.90072e9 −1.31109 −0.655545 0.755156i \(-0.727561\pi\)
−0.655545 + 0.755156i \(0.727561\pi\)
\(510\) 0 0
\(511\) 7.01573e9 2.32595
\(512\) 0 0
\(513\) −2.57740e9 −0.842890
\(514\) 0 0
\(515\) −2.03938e9 −0.657920
\(516\) 0 0
\(517\) 6.82640e7 0.0217258
\(518\) 0 0
\(519\) 2.46011e9 0.772448
\(520\) 0 0
\(521\) 2.88399e9 0.893431 0.446716 0.894676i \(-0.352594\pi\)
0.446716 + 0.894676i \(0.352594\pi\)
\(522\) 0 0
\(523\) −8.77188e8 −0.268125 −0.134062 0.990973i \(-0.542802\pi\)
−0.134062 + 0.990973i \(0.542802\pi\)
\(524\) 0 0
\(525\) −1.23300e9 −0.371882
\(526\) 0 0
\(527\) 1.92251e9 0.572177
\(528\) 0 0
\(529\) −3.23655e9 −0.950578
\(530\) 0 0
\(531\) 1.56478e8 0.0453548
\(532\) 0 0
\(533\) −1.80696e9 −0.516896
\(534\) 0 0
\(535\) −5.11218e8 −0.144334
\(536\) 0 0
\(537\) 2.40781e9 0.670983
\(538\) 0 0
\(539\) −3.23221e8 −0.0889077
\(540\) 0 0
\(541\) 6.53485e8 0.177437 0.0887187 0.996057i \(-0.471723\pi\)
0.0887187 + 0.996057i \(0.471723\pi\)
\(542\) 0 0
\(543\) −3.31592e9 −0.888801
\(544\) 0 0
\(545\) −3.35397e9 −0.887507
\(546\) 0 0
\(547\) 4.59299e9 1.19988 0.599942 0.800043i \(-0.295190\pi\)
0.599942 + 0.800043i \(0.295190\pi\)
\(548\) 0 0
\(549\) 1.08105e8 0.0278833
\(550\) 0 0
\(551\) 2.11696e9 0.539117
\(552\) 0 0
\(553\) 1.57824e6 0.000396858 0
\(554\) 0 0
\(555\) 6.60756e8 0.164065
\(556\) 0 0
\(557\) −6.83164e9 −1.67507 −0.837533 0.546387i \(-0.816003\pi\)
−0.837533 + 0.546387i \(0.816003\pi\)
\(558\) 0 0
\(559\) −1.92794e9 −0.466823
\(560\) 0 0
\(561\) 1.01169e8 0.0241923
\(562\) 0 0
\(563\) −3.42509e9 −0.808897 −0.404449 0.914561i \(-0.632537\pi\)
−0.404449 + 0.914561i \(0.632537\pi\)
\(564\) 0 0
\(565\) 2.18513e9 0.509692
\(566\) 0 0
\(567\) 8.26136e9 1.90332
\(568\) 0 0
\(569\) −7.50930e9 −1.70886 −0.854430 0.519566i \(-0.826094\pi\)
−0.854430 + 0.519566i \(0.826094\pi\)
\(570\) 0 0
\(571\) 1.35841e8 0.0305355 0.0152677 0.999883i \(-0.495140\pi\)
0.0152677 + 0.999883i \(0.495140\pi\)
\(572\) 0 0
\(573\) 7.42778e9 1.64937
\(574\) 0 0
\(575\) 2.02688e8 0.0444621
\(576\) 0 0
\(577\) 1.63775e9 0.354922 0.177461 0.984128i \(-0.443212\pi\)
0.177461 + 0.984128i \(0.443212\pi\)
\(578\) 0 0
\(579\) −7.65147e8 −0.163821
\(580\) 0 0
\(581\) 1.00955e10 2.13556
\(582\) 0 0
\(583\) −2.20246e8 −0.0460328
\(584\) 0 0
\(585\) 5.64818e7 0.0116644
\(586\) 0 0
\(587\) 5.97205e9 1.21868 0.609341 0.792909i \(-0.291434\pi\)
0.609341 + 0.792909i \(0.291434\pi\)
\(588\) 0 0
\(589\) −4.06967e9 −0.820647
\(590\) 0 0
\(591\) 8.07303e9 1.60872
\(592\) 0 0
\(593\) 8.31347e9 1.63716 0.818579 0.574394i \(-0.194762\pi\)
0.818579 + 0.574394i \(0.194762\pi\)
\(594\) 0 0
\(595\) −2.51820e9 −0.490095
\(596\) 0 0
\(597\) 8.53308e9 1.64133
\(598\) 0 0
\(599\) 9.78368e9 1.85998 0.929990 0.367585i \(-0.119815\pi\)
0.929990 + 0.367585i \(0.119815\pi\)
\(600\) 0 0
\(601\) 5.40159e9 1.01499 0.507494 0.861655i \(-0.330572\pi\)
0.507494 + 0.861655i \(0.330572\pi\)
\(602\) 0 0
\(603\) 9.32846e7 0.0173260
\(604\) 0 0
\(605\) 2.43220e9 0.446535
\(606\) 0 0
\(607\) −2.84439e9 −0.516214 −0.258107 0.966116i \(-0.583099\pi\)
−0.258107 + 0.966116i \(0.583099\pi\)
\(608\) 0 0
\(609\) −6.44001e9 −1.15538
\(610\) 0 0
\(611\) 1.53277e9 0.271851
\(612\) 0 0
\(613\) 7.02106e9 1.23109 0.615547 0.788101i \(-0.288935\pi\)
0.615547 + 0.788101i \(0.288935\pi\)
\(614\) 0 0
\(615\) −2.80729e9 −0.486659
\(616\) 0 0
\(617\) 3.35166e9 0.574462 0.287231 0.957861i \(-0.407265\pi\)
0.287231 + 0.957861i \(0.407265\pi\)
\(618\) 0 0
\(619\) 3.92362e9 0.664921 0.332461 0.943117i \(-0.392121\pi\)
0.332461 + 0.943117i \(0.392121\pi\)
\(620\) 0 0
\(621\) −1.28890e9 −0.215972
\(622\) 0 0
\(623\) −3.30538e9 −0.547662
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) −2.14161e8 −0.0346979
\(628\) 0 0
\(629\) 1.34948e9 0.216217
\(630\) 0 0
\(631\) −6.81545e8 −0.107992 −0.0539960 0.998541i \(-0.517196\pi\)
−0.0539960 + 0.998541i \(0.517196\pi\)
\(632\) 0 0
\(633\) 7.77583e9 1.21852
\(634\) 0 0
\(635\) 1.56272e9 0.242200
\(636\) 0 0
\(637\) −7.25744e9 −1.11249
\(638\) 0 0
\(639\) 5.97097e8 0.0905298
\(640\) 0 0
\(641\) 9.65199e9 1.44748 0.723742 0.690071i \(-0.242421\pi\)
0.723742 + 0.690071i \(0.242421\pi\)
\(642\) 0 0
\(643\) 5.07826e9 0.753315 0.376657 0.926353i \(-0.377073\pi\)
0.376657 + 0.926353i \(0.377073\pi\)
\(644\) 0 0
\(645\) −2.99525e9 −0.439515
\(646\) 0 0
\(647\) −2.08330e9 −0.302404 −0.151202 0.988503i \(-0.548314\pi\)
−0.151202 + 0.988503i \(0.548314\pi\)
\(648\) 0 0
\(649\) −2.30036e8 −0.0330324
\(650\) 0 0
\(651\) 1.23803e10 1.75873
\(652\) 0 0
\(653\) −6.84881e9 −0.962540 −0.481270 0.876572i \(-0.659824\pi\)
−0.481270 + 0.876572i \(0.659824\pi\)
\(654\) 0 0
\(655\) −9.69524e8 −0.134807
\(656\) 0 0
\(657\) −4.99295e8 −0.0686876
\(658\) 0 0
\(659\) −6.99913e9 −0.952676 −0.476338 0.879262i \(-0.658036\pi\)
−0.476338 + 0.879262i \(0.658036\pi\)
\(660\) 0 0
\(661\) 1.99594e9 0.268809 0.134404 0.990927i \(-0.457088\pi\)
0.134404 + 0.990927i \(0.457088\pi\)
\(662\) 0 0
\(663\) 2.27160e9 0.302715
\(664\) 0 0
\(665\) 5.33067e9 0.702920
\(666\) 0 0
\(667\) 1.05864e9 0.138137
\(668\) 0 0
\(669\) 8.44472e8 0.109042
\(670\) 0 0
\(671\) −1.58924e8 −0.0203077
\(672\) 0 0
\(673\) −1.17939e10 −1.49144 −0.745718 0.666261i \(-0.767894\pi\)
−0.745718 + 0.666261i \(0.767894\pi\)
\(674\) 0 0
\(675\) −1.55250e9 −0.194298
\(676\) 0 0
\(677\) −7.80222e9 −0.966402 −0.483201 0.875509i \(-0.660526\pi\)
−0.483201 + 0.875509i \(0.660526\pi\)
\(678\) 0 0
\(679\) 8.02590e9 0.983897
\(680\) 0 0
\(681\) 9.74572e9 1.18249
\(682\) 0 0
\(683\) −4.51153e9 −0.541815 −0.270908 0.962605i \(-0.587324\pi\)
−0.270908 + 0.962605i \(0.587324\pi\)
\(684\) 0 0
\(685\) −4.52150e9 −0.537484
\(686\) 0 0
\(687\) −7.65883e9 −0.901185
\(688\) 0 0
\(689\) −4.94528e9 −0.576002
\(690\) 0 0
\(691\) 1.06331e10 1.22599 0.612997 0.790086i \(-0.289964\pi\)
0.612997 + 0.790086i \(0.289964\pi\)
\(692\) 0 0
\(693\) 3.30839e7 0.00377615
\(694\) 0 0
\(695\) 1.36365e9 0.154084
\(696\) 0 0
\(697\) −5.73343e9 −0.641356
\(698\) 0 0
\(699\) −9.35929e8 −0.103651
\(700\) 0 0
\(701\) 4.38514e9 0.480807 0.240403 0.970673i \(-0.422720\pi\)
0.240403 + 0.970673i \(0.422720\pi\)
\(702\) 0 0
\(703\) −2.85667e9 −0.310110
\(704\) 0 0
\(705\) 2.38130e9 0.255949
\(706\) 0 0
\(707\) 1.59907e10 1.70176
\(708\) 0 0
\(709\) 5.98805e9 0.630992 0.315496 0.948927i \(-0.397829\pi\)
0.315496 + 0.948927i \(0.397829\pi\)
\(710\) 0 0
\(711\) −112320. −1.17196e−5 0
\(712\) 0 0
\(713\) −2.03515e9 −0.210273
\(714\) 0 0
\(715\) −8.30330e7 −0.00849532
\(716\) 0 0
\(717\) −7.69058e9 −0.779188
\(718\) 0 0
\(719\) −1.17768e10 −1.18161 −0.590807 0.806813i \(-0.701191\pi\)
−0.590807 + 0.806813i \(0.701191\pi\)
\(720\) 0 0
\(721\) −2.68219e10 −2.66512
\(722\) 0 0
\(723\) −1.81814e10 −1.78913
\(724\) 0 0
\(725\) 1.27516e9 0.124274
\(726\) 0 0
\(727\) 8.41051e9 0.811805 0.405902 0.913916i \(-0.366957\pi\)
0.405902 + 0.913916i \(0.366957\pi\)
\(728\) 0 0
\(729\) 9.84247e9 0.940931
\(730\) 0 0
\(731\) −6.11729e9 −0.579227
\(732\) 0 0
\(733\) −1.44084e10 −1.35130 −0.675650 0.737223i \(-0.736137\pi\)
−0.675650 + 0.737223i \(0.736137\pi\)
\(734\) 0 0
\(735\) −1.12752e10 −1.04741
\(736\) 0 0
\(737\) −1.37136e8 −0.0126187
\(738\) 0 0
\(739\) −8.21708e9 −0.748966 −0.374483 0.927234i \(-0.622180\pi\)
−0.374483 + 0.927234i \(0.622180\pi\)
\(740\) 0 0
\(741\) −4.80865e9 −0.434170
\(742\) 0 0
\(743\) −1.72531e10 −1.54314 −0.771570 0.636144i \(-0.780528\pi\)
−0.771570 + 0.636144i \(0.780528\pi\)
\(744\) 0 0
\(745\) −4.55726e9 −0.403791
\(746\) 0 0
\(747\) −7.18477e8 −0.0630654
\(748\) 0 0
\(749\) −6.72354e9 −0.584671
\(750\) 0 0
\(751\) 1.58498e10 1.36548 0.682739 0.730662i \(-0.260789\pi\)
0.682739 + 0.730662i \(0.260789\pi\)
\(752\) 0 0
\(753\) −7.74260e9 −0.660853
\(754\) 0 0
\(755\) −8.98694e8 −0.0759972
\(756\) 0 0
\(757\) −7.13856e9 −0.598102 −0.299051 0.954237i \(-0.596670\pi\)
−0.299051 + 0.954237i \(0.596670\pi\)
\(758\) 0 0
\(759\) −1.07097e8 −0.00889059
\(760\) 0 0
\(761\) −2.59993e9 −0.213853 −0.106926 0.994267i \(-0.534101\pi\)
−0.106926 + 0.994267i \(0.534101\pi\)
\(762\) 0 0
\(763\) −4.41114e10 −3.59514
\(764\) 0 0
\(765\) 1.79215e8 0.0144730
\(766\) 0 0
\(767\) −5.16512e9 −0.413329
\(768\) 0 0
\(769\) −4.96477e9 −0.393692 −0.196846 0.980434i \(-0.563070\pi\)
−0.196846 + 0.980434i \(0.563070\pi\)
\(770\) 0 0
\(771\) 1.09146e10 0.857663
\(772\) 0 0
\(773\) 1.49681e10 1.16557 0.582786 0.812626i \(-0.301963\pi\)
0.582786 + 0.812626i \(0.301963\pi\)
\(774\) 0 0
\(775\) −2.45138e9 −0.189171
\(776\) 0 0
\(777\) 8.69026e9 0.664598
\(778\) 0 0
\(779\) 1.21369e10 0.919867
\(780\) 0 0
\(781\) −8.77783e8 −0.0659339
\(782\) 0 0
\(783\) −8.10877e9 −0.603655
\(784\) 0 0
\(785\) 1.09992e10 0.811550
\(786\) 0 0
\(787\) 9.79990e9 0.716655 0.358328 0.933596i \(-0.383347\pi\)
0.358328 + 0.933596i \(0.383347\pi\)
\(788\) 0 0
\(789\) 2.19709e10 1.59250
\(790\) 0 0
\(791\) 2.87388e10 2.06467
\(792\) 0 0
\(793\) −3.56840e9 −0.254108
\(794\) 0 0
\(795\) −7.68299e9 −0.542307
\(796\) 0 0
\(797\) −3.93169e9 −0.275090 −0.137545 0.990495i \(-0.543921\pi\)
−0.137545 + 0.990495i \(0.543921\pi\)
\(798\) 0 0
\(799\) 4.86342e9 0.337309
\(800\) 0 0
\(801\) 2.35237e8 0.0161730
\(802\) 0 0
\(803\) 7.34006e8 0.0500259
\(804\) 0 0
\(805\) 2.66575e9 0.180108
\(806\) 0 0
\(807\) −2.24297e10 −1.50234
\(808\) 0 0
\(809\) 1.26324e10 0.838816 0.419408 0.907798i \(-0.362238\pi\)
0.419408 + 0.907798i \(0.362238\pi\)
\(810\) 0 0
\(811\) −1.16653e10 −0.767934 −0.383967 0.923347i \(-0.625442\pi\)
−0.383967 + 0.923347i \(0.625442\pi\)
\(812\) 0 0
\(813\) −2.14047e9 −0.139699
\(814\) 0 0
\(815\) −6.86094e9 −0.443948
\(816\) 0 0
\(817\) 1.29495e10 0.830758
\(818\) 0 0
\(819\) 7.42848e8 0.0472505
\(820\) 0 0
\(821\) 8.17500e9 0.515569 0.257784 0.966202i \(-0.417008\pi\)
0.257784 + 0.966202i \(0.417008\pi\)
\(822\) 0 0
\(823\) −1.75211e10 −1.09563 −0.547813 0.836601i \(-0.684540\pi\)
−0.547813 + 0.836601i \(0.684540\pi\)
\(824\) 0 0
\(825\) −1.29000e8 −0.00799836
\(826\) 0 0
\(827\) −1.22225e10 −0.751437 −0.375718 0.926734i \(-0.622604\pi\)
−0.375718 + 0.926734i \(0.622604\pi\)
\(828\) 0 0
\(829\) 1.06634e10 0.650063 0.325032 0.945703i \(-0.394625\pi\)
0.325032 + 0.945703i \(0.394625\pi\)
\(830\) 0 0
\(831\) −1.51995e10 −0.918812
\(832\) 0 0
\(833\) −2.30276e10 −1.38036
\(834\) 0 0
\(835\) −1.07682e9 −0.0640092
\(836\) 0 0
\(837\) 1.55884e10 0.918887
\(838\) 0 0
\(839\) −2.31400e9 −0.135268 −0.0676342 0.997710i \(-0.521545\pi\)
−0.0676342 + 0.997710i \(0.521545\pi\)
\(840\) 0 0
\(841\) −1.05897e10 −0.613899
\(842\) 0 0
\(843\) −1.08392e10 −0.623164
\(844\) 0 0
\(845\) 5.97918e9 0.340913
\(846\) 0 0
\(847\) 3.19883e10 1.80883
\(848\) 0 0
\(849\) −9.99410e8 −0.0560488
\(850\) 0 0
\(851\) −1.42855e9 −0.0794590
\(852\) 0 0
\(853\) 4.22377e9 0.233012 0.116506 0.993190i \(-0.462831\pi\)
0.116506 + 0.993190i \(0.462831\pi\)
\(854\) 0 0
\(855\) −3.79372e8 −0.0207579
\(856\) 0 0
\(857\) −3.52104e9 −0.191090 −0.0955450 0.995425i \(-0.530459\pi\)
−0.0955450 + 0.995425i \(0.530459\pi\)
\(858\) 0 0
\(859\) −2.44930e10 −1.31846 −0.659229 0.751943i \(-0.729117\pi\)
−0.659229 + 0.751943i \(0.729117\pi\)
\(860\) 0 0
\(861\) −3.69215e10 −1.97137
\(862\) 0 0
\(863\) −5.40573e9 −0.286297 −0.143148 0.989701i \(-0.545723\pi\)
−0.143148 + 0.989701i \(0.545723\pi\)
\(864\) 0 0
\(865\) −6.40655e9 −0.336564
\(866\) 0 0
\(867\) −1.24886e10 −0.650797
\(868\) 0 0
\(869\) 165120. 8.53553e−6 0
\(870\) 0 0
\(871\) −3.07919e9 −0.157897
\(872\) 0 0
\(873\) −5.71186e8 −0.0290555
\(874\) 0 0
\(875\) 3.21094e9 0.162033
\(876\) 0 0
\(877\) 2.89155e10 1.44755 0.723773 0.690039i \(-0.242406\pi\)
0.723773 + 0.690039i \(0.242406\pi\)
\(878\) 0 0
\(879\) 8.58362e9 0.426294
\(880\) 0 0
\(881\) 7.80643e8 0.0384624 0.0192312 0.999815i \(-0.493878\pi\)
0.0192312 + 0.999815i \(0.493878\pi\)
\(882\) 0 0
\(883\) 1.36907e10 0.669211 0.334605 0.942358i \(-0.391397\pi\)
0.334605 + 0.942358i \(0.391397\pi\)
\(884\) 0 0
\(885\) −8.02452e9 −0.389151
\(886\) 0 0
\(887\) 3.58403e9 0.172441 0.0862203 0.996276i \(-0.472521\pi\)
0.0862203 + 0.996276i \(0.472521\pi\)
\(888\) 0 0
\(889\) 2.05529e10 0.981108
\(890\) 0 0
\(891\) 8.64327e8 0.0409361
\(892\) 0 0
\(893\) −1.02952e10 −0.483786
\(894\) 0 0
\(895\) −6.27033e9 −0.292355
\(896\) 0 0
\(897\) −2.40470e9 −0.111247
\(898\) 0 0
\(899\) −1.28036e10 −0.587725
\(900\) 0 0
\(901\) −1.56912e10 −0.714694
\(902\) 0 0
\(903\) −3.93935e10 −1.78040
\(904\) 0 0
\(905\) 8.63521e9 0.387260
\(906\) 0 0
\(907\) 3.01108e10 1.33998 0.669988 0.742372i \(-0.266299\pi\)
0.669988 + 0.742372i \(0.266299\pi\)
\(908\) 0 0
\(909\) −1.13802e9 −0.0502548
\(910\) 0 0
\(911\) −2.48800e10 −1.09027 −0.545137 0.838347i \(-0.683523\pi\)
−0.545137 + 0.838347i \(0.683523\pi\)
\(912\) 0 0
\(913\) 1.05622e9 0.0459312
\(914\) 0 0
\(915\) −5.54387e9 −0.239243
\(916\) 0 0
\(917\) −1.27512e10 −0.546082
\(918\) 0 0
\(919\) 1.08420e10 0.460794 0.230397 0.973097i \(-0.425997\pi\)
0.230397 + 0.973097i \(0.425997\pi\)
\(920\) 0 0
\(921\) 4.10477e9 0.173133
\(922\) 0 0
\(923\) −1.97093e10 −0.825021
\(924\) 0 0
\(925\) −1.72072e9 −0.0714848
\(926\) 0 0
\(927\) 1.90886e9 0.0787037
\(928\) 0 0
\(929\) 1.07045e10 0.438038 0.219019 0.975721i \(-0.429714\pi\)
0.219019 + 0.975721i \(0.429714\pi\)
\(930\) 0 0
\(931\) 4.87463e10 1.97978
\(932\) 0 0
\(933\) −2.32659e10 −0.937851
\(934\) 0 0
\(935\) −2.63461e8 −0.0105409
\(936\) 0 0
\(937\) 3.42787e10 1.36124 0.680621 0.732635i \(-0.261710\pi\)
0.680621 + 0.732635i \(0.261710\pi\)
\(938\) 0 0
\(939\) 2.73994e10 1.07997
\(940\) 0 0
\(941\) 3.73695e9 0.146202 0.0731010 0.997325i \(-0.476710\pi\)
0.0731010 + 0.997325i \(0.476710\pi\)
\(942\) 0 0
\(943\) 6.06937e9 0.235696
\(944\) 0 0
\(945\) −2.04185e10 −0.787068
\(946\) 0 0
\(947\) −3.32150e10 −1.27089 −0.635447 0.772145i \(-0.719184\pi\)
−0.635447 + 0.772145i \(0.719184\pi\)
\(948\) 0 0
\(949\) 1.64810e10 0.625968
\(950\) 0 0
\(951\) 2.64091e10 0.995686
\(952\) 0 0
\(953\) 4.69895e10 1.75864 0.879318 0.476235i \(-0.157999\pi\)
0.879318 + 0.476235i \(0.157999\pi\)
\(954\) 0 0
\(955\) −1.93432e10 −0.718648
\(956\) 0 0
\(957\) −6.73772e8 −0.0248497
\(958\) 0 0
\(959\) −5.94668e10 −2.17726
\(960\) 0 0
\(961\) −2.89877e9 −0.105361
\(962\) 0 0
\(963\) 4.78500e8 0.0172659
\(964\) 0 0
\(965\) 1.99257e9 0.0713786
\(966\) 0 0
\(967\) −1.42294e10 −0.506050 −0.253025 0.967460i \(-0.581425\pi\)
−0.253025 + 0.967460i \(0.581425\pi\)
\(968\) 0 0
\(969\) −1.52577e10 −0.538711
\(970\) 0 0
\(971\) −5.45474e8 −0.0191208 −0.00956041 0.999954i \(-0.503043\pi\)
−0.00956041 + 0.999954i \(0.503043\pi\)
\(972\) 0 0
\(973\) 1.79348e10 0.624167
\(974\) 0 0
\(975\) −2.89650e9 −0.100082
\(976\) 0 0
\(977\) −1.97916e10 −0.678968 −0.339484 0.940612i \(-0.610252\pi\)
−0.339484 + 0.940612i \(0.610252\pi\)
\(978\) 0 0
\(979\) −3.45818e8 −0.0117790
\(980\) 0 0
\(981\) 3.13932e9 0.106168
\(982\) 0 0
\(983\) −4.71503e10 −1.58324 −0.791620 0.611013i \(-0.790762\pi\)
−0.791620 + 0.611013i \(0.790762\pi\)
\(984\) 0 0
\(985\) −2.10235e10 −0.700936
\(986\) 0 0
\(987\) 3.13189e10 1.03680
\(988\) 0 0
\(989\) 6.47573e9 0.212864
\(990\) 0 0
\(991\) 3.87968e10 1.26631 0.633153 0.774027i \(-0.281761\pi\)
0.633153 + 0.774027i \(0.281761\pi\)
\(992\) 0 0
\(993\) 4.51123e10 1.46208
\(994\) 0 0
\(995\) −2.22216e10 −0.715145
\(996\) 0 0
\(997\) 5.66394e10 1.81003 0.905015 0.425380i \(-0.139860\pi\)
0.905015 + 0.425380i \(0.139860\pi\)
\(998\) 0 0
\(999\) 1.09421e10 0.347234
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.8.a.h.1.1 1
4.3 odd 2 320.8.a.a.1.1 1
8.3 odd 2 80.8.a.d.1.1 1
8.5 even 2 5.8.a.a.1.1 1
24.5 odd 2 45.8.a.f.1.1 1
40.3 even 4 400.8.c.e.49.2 2
40.13 odd 4 25.8.b.a.24.2 2
40.19 odd 2 400.8.a.e.1.1 1
40.27 even 4 400.8.c.e.49.1 2
40.29 even 2 25.8.a.a.1.1 1
40.37 odd 4 25.8.b.a.24.1 2
56.13 odd 2 245.8.a.a.1.1 1
88.21 odd 2 605.8.a.c.1.1 1
120.29 odd 2 225.8.a.b.1.1 1
120.53 even 4 225.8.b.b.199.1 2
120.77 even 4 225.8.b.b.199.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.8.a.a.1.1 1 8.5 even 2
25.8.a.a.1.1 1 40.29 even 2
25.8.b.a.24.1 2 40.37 odd 4
25.8.b.a.24.2 2 40.13 odd 4
45.8.a.f.1.1 1 24.5 odd 2
80.8.a.d.1.1 1 8.3 odd 2
225.8.a.b.1.1 1 120.29 odd 2
225.8.b.b.199.1 2 120.53 even 4
225.8.b.b.199.2 2 120.77 even 4
245.8.a.a.1.1 1 56.13 odd 2
320.8.a.a.1.1 1 4.3 odd 2
320.8.a.h.1.1 1 1.1 even 1 trivial
400.8.a.e.1.1 1 40.19 odd 2
400.8.c.e.49.1 2 40.27 even 4
400.8.c.e.49.2 2 40.3 even 4
605.8.a.c.1.1 1 88.21 odd 2