Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3200,2,Mod(2049,3200)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3200, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3200.2049");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3200 = 2^{7} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3200.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(25.5521286468\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 640) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 2049.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3200.2049 |
Dual form | 3200.2.c.q.2049.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3200\mathbb{Z}\right)^\times\).
\(n\) | \(901\) | \(1151\) | \(2177\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.00000i | 0.755929i | 0.925820 | + | 0.377964i | \(0.123376\pi\) | ||||
−0.925820 | + | 0.377964i | \(0.876624\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 3.00000 | 1.00000 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −6.00000 | −1.80907 | −0.904534 | − | 0.426401i | \(-0.859781\pi\) | ||||
−0.904534 | + | 0.426401i | \(0.859781\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 2.00000i | 0.554700i | 0.960769 | + | 0.277350i | \(0.0894562\pi\) | ||||
−0.960769 | + | 0.277350i | \(0.910544\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000i | 1.45521i | 0.685994 | + | 0.727607i | \(0.259367\pi\) | ||||
−0.685994 | + | 0.727607i | \(0.740633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −2.00000 | −0.458831 | −0.229416 | − | 0.973329i | \(-0.573682\pi\) | ||||
−0.229416 | + | 0.973329i | \(0.573682\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 6.00000i | − 1.25109i | −0.780189 | − | 0.625543i | \(-0.784877\pi\) | ||||
0.780189 | − | 0.625543i | \(-0.215123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
−0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 6.00000i | − 0.986394i | −0.869918 | − | 0.493197i | \(-0.835828\pi\) | ||||
0.869918 | − | 0.493197i | \(-0.164172\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −2.00000 | −0.312348 | −0.156174 | − | 0.987730i | \(-0.549916\pi\) | ||||
−0.156174 | + | 0.987730i | \(0.549916\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 4.00000i | − 0.609994i | −0.952353 | − | 0.304997i | \(-0.901344\pi\) | ||||
0.952353 | − | 0.304997i | \(-0.0986555\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 10.0000i | − 1.45865i | −0.684167 | − | 0.729325i | \(-0.739834\pi\) | ||||
0.684167 | − | 0.729325i | \(-0.260166\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 3.00000 | 0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 2.00000i | 0.274721i | 0.990521 | + | 0.137361i | \(0.0438619\pi\) | ||||
−0.990521 | + | 0.137361i | \(0.956138\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 10.0000 | 1.30189 | 0.650945 | − | 0.759125i | \(-0.274373\pi\) | ||||
0.650945 | + | 0.759125i | \(0.274373\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 6.00000i | 0.755929i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 4.00000i | − 0.488678i | −0.969690 | − | 0.244339i | \(-0.921429\pi\) | ||||
0.969690 | − | 0.244339i | \(-0.0785709\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −16.0000 | −1.89885 | −0.949425 | − | 0.313993i | \(-0.898333\pi\) | ||||
−0.949425 | + | 0.313993i | \(0.898333\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 6.00000i | − 0.702247i | −0.936329 | − | 0.351123i | \(-0.885800\pi\) | ||||
0.936329 | − | 0.351123i | \(-0.114200\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 12.0000i | − 1.36753i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 9.00000 | 1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 8.00000i | 0.878114i | 0.898459 | + | 0.439057i | \(0.144687\pi\) | ||||
−0.898459 | + | 0.439057i | \(0.855313\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −6.00000 | −0.635999 | −0.317999 | − | 0.948091i | \(-0.603011\pi\) | ||||
−0.317999 | + | 0.948091i | \(0.603011\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −4.00000 | −0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 2.00000i | − 0.203069i | −0.994832 | − | 0.101535i | \(-0.967625\pi\) | ||||
0.994832 | − | 0.101535i | \(-0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | −18.0000 | −1.80907 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −10.0000 | −0.995037 | −0.497519 | − | 0.867453i | \(-0.665755\pi\) | ||||
−0.497519 | + | 0.867453i | \(0.665755\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 18.0000i | 1.77359i | 0.462160 | + | 0.886796i | \(0.347074\pi\) | ||||
−0.462160 | + | 0.886796i | \(0.652926\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 16.0000i | − 1.54678i | −0.633932 | − | 0.773389i | \(-0.718560\pi\) | ||||
0.633932 | − | 0.773389i | \(-0.281440\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 10.0000 | 0.957826 | 0.478913 | − | 0.877862i | \(-0.341031\pi\) | ||||
0.478913 | + | 0.877862i | \(0.341031\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 6.00000i | − 0.564433i | −0.959351 | − | 0.282216i | \(-0.908930\pi\) | ||||
0.959351 | − | 0.282216i | \(-0.0910696\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 6.00000i | 0.554700i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −12.0000 | −1.10004 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 25.0000 | 2.27273 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 18.0000i | − 1.59724i | −0.601834 | − | 0.798621i | \(-0.705563\pi\) | ||||
0.601834 | − | 0.798621i | \(-0.294437\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −10.0000 | −0.873704 | −0.436852 | − | 0.899533i | \(-0.643907\pi\) | ||||
−0.436852 | + | 0.899533i | \(0.643907\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 4.00000i | − 0.346844i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 22.0000i | 1.87959i | 0.341743 | + | 0.939793i | \(0.388983\pi\) | ||||
−0.341743 | + | 0.939793i | \(0.611017\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −6.00000 | −0.508913 | −0.254457 | − | 0.967084i | \(-0.581897\pi\) | ||||
−0.254457 | + | 0.967084i | \(0.581897\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 12.0000i | − 1.00349i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −14.0000 | −1.14692 | −0.573462 | − | 0.819232i | \(-0.694400\pi\) | ||||
−0.573462 | + | 0.819232i | \(0.694400\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.00000 | 0.651031 | 0.325515 | − | 0.945537i | \(-0.394462\pi\) | ||||
0.325515 | + | 0.945537i | \(0.394462\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 18.0000i | 1.45521i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 2.00000i | 0.159617i | 0.996810 | + | 0.0798087i | \(0.0254309\pi\) | ||||
−0.996810 | + | 0.0798087i | \(0.974569\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 12.0000 | 0.945732 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 8.00000i | 0.626608i | 0.949653 | + | 0.313304i | \(0.101436\pi\) | ||||
−0.949653 | + | 0.313304i | \(0.898564\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 10.0000i | 0.773823i | 0.922117 | + | 0.386912i | \(0.126458\pi\) | ||||
−0.922117 | + | 0.386912i | \(0.873542\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 9.00000 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −6.00000 | −0.458831 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 18.0000i | − 1.36851i | −0.729241 | − | 0.684257i | \(-0.760127\pi\) | ||||
0.729241 | − | 0.684257i | \(-0.239873\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −10.0000 | −0.747435 | −0.373718 | − | 0.927543i | \(-0.621917\pi\) | ||||
−0.373718 | + | 0.927543i | \(0.621917\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 36.0000i | − 2.63258i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −12.0000 | −0.868290 | −0.434145 | − | 0.900843i | \(-0.642949\pi\) | ||||
−0.434145 | + | 0.900843i | \(0.642949\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 10.0000i | 0.719816i | 0.932988 | + | 0.359908i | \(0.117192\pi\) | ||||
−0.932988 | + | 0.359908i | \(0.882808\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 10.0000i | − 0.712470i | −0.934396 | − | 0.356235i | \(-0.884060\pi\) | ||||
0.934396 | − | 0.356235i | \(-0.115940\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −20.0000 | −1.41776 | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||||
−0.708881 | + | 0.705328i | \(0.750800\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 12.0000i | − 0.842235i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | − 18.0000i | − 1.25109i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 12.0000 | 0.830057 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −10.0000 | −0.688428 | −0.344214 | − | 0.938891i | \(-0.611855\pi\) | ||||
−0.344214 | + | 0.938891i | \(0.611855\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 8.00000i | − 0.543075i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −12.0000 | −0.807207 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 10.0000i | − 0.669650i | −0.942280 | − | 0.334825i | \(-0.891323\pi\) | ||||
0.942280 | − | 0.334825i | \(-0.108677\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 28.0000i | 1.85843i | 0.369546 | + | 0.929213i | \(0.379513\pi\) | ||||
−0.369546 | + | 0.929213i | \(0.620487\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 10.0000 | 0.660819 | 0.330409 | − | 0.943838i | \(-0.392813\pi\) | ||||
0.330409 | + | 0.943838i | \(0.392813\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 14.0000i | − 0.917170i | −0.888650 | − | 0.458585i | \(-0.848356\pi\) | ||||
0.888650 | − | 0.458585i | \(-0.151644\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 16.0000 | 1.03495 | 0.517477 | − | 0.855697i | \(-0.326871\pi\) | ||||
0.517477 | + | 0.855697i | \(0.326871\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −14.0000 | −0.901819 | −0.450910 | − | 0.892570i | \(-0.648900\pi\) | ||||
−0.450910 | + | 0.892570i | \(0.648900\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 4.00000i | − 0.254514i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −6.00000 | −0.378717 | −0.189358 | − | 0.981908i | \(-0.560641\pi\) | ||||
−0.189358 | + | 0.981908i | \(0.560641\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 36.0000i | 2.26330i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 6.00000i | 0.374270i | 0.982334 | + | 0.187135i | \(0.0599201\pi\) | ||||
−0.982334 | + | 0.187135i | \(0.940080\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 12.0000 | 0.745644 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −18.0000 | −1.11417 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 2.00000i | 0.123325i | 0.998097 | + | 0.0616626i | \(0.0196403\pi\) | ||||
−0.998097 | + | 0.0616626i | \(0.980360\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −30.0000 | −1.82913 | −0.914566 | − | 0.404436i | \(-0.867468\pi\) | ||||
−0.914566 | + | 0.404436i | \(0.867468\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −20.0000 | −1.21491 | −0.607457 | − | 0.794353i | \(-0.707810\pi\) | ||||
−0.607457 | + | 0.794353i | \(0.707810\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 22.0000i | − 1.32185i | −0.750451 | − | 0.660926i | \(-0.770164\pi\) | ||||
0.750451 | − | 0.660926i | \(-0.229836\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | −12.0000 | −0.718421 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −6.00000 | −0.357930 | −0.178965 | − | 0.983855i | \(-0.557275\pi\) | ||||
−0.178965 | + | 0.983855i | \(0.557275\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 20.0000i | 1.18888i | 0.804141 | + | 0.594438i | \(0.202626\pi\) | ||||
−0.804141 | + | 0.594438i | \(0.797374\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 4.00000i | − 0.236113i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −19.0000 | −1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 22.0000i | 1.28525i | 0.766179 | + | 0.642627i | \(0.222155\pi\) | ||||
−0.766179 | + | 0.642627i | \(0.777845\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 12.0000 | 0.693978 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 8.00000 | 0.461112 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 20.0000i | 1.14146i | 0.821138 | + | 0.570730i | \(0.193340\pi\) | ||||
−0.821138 | + | 0.570730i | \(0.806660\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −16.0000 | −0.907277 | −0.453638 | − | 0.891186i | \(-0.649874\pi\) | ||||
−0.453638 | + | 0.891186i | \(0.649874\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 14.0000i | − 0.791327i | −0.918396 | − | 0.395663i | \(-0.870515\pi\) | ||||
0.918396 | − | 0.395663i | \(-0.129485\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 6.00000i | 0.336994i | 0.985702 | + | 0.168497i | \(0.0538913\pi\) | ||||
−0.985702 | + | 0.168497i | \(0.946109\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 36.0000 | 2.01561 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 12.0000i | − 0.667698i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 20.0000 | 1.10264 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 10.0000 | 0.549650 | 0.274825 | − | 0.961494i | \(-0.411380\pi\) | ||||
0.274825 | + | 0.961494i | \(0.411380\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | − 18.0000i | − 0.986394i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 22.0000i | 1.19842i | 0.800593 | + | 0.599208i | \(0.204518\pi\) | ||||
−0.800593 | + | 0.599208i | \(0.795482\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 24.0000 | 1.29967 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 20.0000i | 1.07990i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 8.00000i | 0.429463i | 0.976673 | + | 0.214731i | \(0.0688876\pi\) | ||||
−0.976673 | + | 0.214731i | \(0.931112\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 18.0000 | 0.963518 | 0.481759 | − | 0.876304i | \(-0.339998\pi\) | ||||
0.481759 | + | 0.876304i | \(0.339998\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 6.00000i | − 0.319348i | −0.987170 | − | 0.159674i | \(-0.948956\pi\) | ||||
0.987170 | − | 0.159674i | \(-0.0510443\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −4.00000 | −0.211112 | −0.105556 | − | 0.994413i | \(-0.533662\pi\) | ||||
−0.105556 | + | 0.994413i | \(0.533662\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 22.0000i | 1.14839i | 0.818718 | + | 0.574195i | \(0.194685\pi\) | ||||
−0.818718 | + | 0.574195i | \(0.805315\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −6.00000 | −0.312348 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −4.00000 | −0.207670 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 26.0000i | − 1.34623i | −0.739538 | − | 0.673114i | \(-0.764956\pi\) | ||||
0.739538 | − | 0.673114i | \(-0.235044\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 12.0000i | − 0.618031i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 26.0000 | 1.33553 | 0.667765 | − | 0.744372i | \(-0.267251\pi\) | ||||
0.667765 | + | 0.744372i | \(0.267251\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 18.0000i | − 0.919757i | −0.887982 | − | 0.459879i | \(-0.847893\pi\) | ||||
0.887982 | − | 0.459879i | \(-0.152107\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | − 12.0000i | − 0.609994i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 2.00000 | 0.101404 | 0.0507020 | − | 0.998714i | \(-0.483854\pi\) | ||||
0.0507020 | + | 0.998714i | \(0.483854\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 36.0000 | 1.82060 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 10.0000i | − 0.501886i | −0.968002 | − | 0.250943i | \(-0.919259\pi\) | ||||
0.968002 | − | 0.250943i | \(-0.0807406\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −2.00000 | −0.0998752 | −0.0499376 | − | 0.998752i | \(-0.515902\pi\) | ||||
−0.0499376 | + | 0.998752i | \(0.515902\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 8.00000i | − 0.398508i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 36.0000i | 1.78445i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −22.0000 | −1.08783 | −0.543915 | − | 0.839140i | \(-0.683059\pi\) | ||||
−0.543915 | + | 0.839140i | \(0.683059\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 20.0000i | 0.984136i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −26.0000 | −1.27018 | −0.635092 | − | 0.772437i | \(-0.719038\pi\) | ||||
−0.635092 | + | 0.772437i | \(0.719038\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 30.0000 | 1.46211 | 0.731055 | − | 0.682318i | \(-0.239028\pi\) | ||||
0.731055 | + | 0.682318i | \(0.239028\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 30.0000i | − 1.45865i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 20.0000i | − 0.967868i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 12.0000 | 0.578020 | 0.289010 | − | 0.957326i | \(-0.406674\pi\) | ||||
0.289010 | + | 0.957326i | \(0.406674\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 14.0000i | − 0.672797i | −0.941720 | − | 0.336399i | \(-0.890791\pi\) | ||||
0.941720 | − | 0.336399i | \(-0.109209\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 12.0000i | 0.574038i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 4.00000 | 0.190910 | 0.0954548 | − | 0.995434i | \(-0.469569\pi\) | ||||
0.0954548 | + | 0.995434i | \(0.469569\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 9.00000 | 0.428571 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 36.0000i | − 1.71041i | −0.518289 | − | 0.855206i | \(-0.673431\pi\) | ||||
0.518289 | − | 0.855206i | \(-0.326569\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 30.0000 | 1.41579 | 0.707894 | − | 0.706319i | \(-0.249646\pi\) | ||||
0.707894 | + | 0.706319i | \(0.249646\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 12.0000 | 0.565058 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 6.00000i | 0.280668i | 0.990104 | + | 0.140334i | \(0.0448177\pi\) | ||||
−0.990104 | + | 0.140334i | \(0.955182\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 38.0000 | 1.76984 | 0.884918 | − | 0.465746i | \(-0.154214\pi\) | ||||
0.884918 | + | 0.465746i | \(0.154214\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 22.0000i | 1.02243i | 0.859454 | + | 0.511213i | \(0.170804\pi\) | ||||
−0.859454 | + | 0.511213i | \(0.829196\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 12.0000i | 0.555294i | 0.960683 | + | 0.277647i | \(0.0895545\pi\) | ||||
−0.960683 | + | 0.277647i | \(0.910445\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 8.00000 | 0.369406 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 24.0000i | 1.10352i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 6.00000i | 0.274721i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −8.00000 | −0.365529 | −0.182765 | − | 0.983157i | \(-0.558505\pi\) | ||||
−0.182765 | + | 0.983157i | \(0.558505\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 12.0000 | 0.547153 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 2.00000i | 0.0906287i | 0.998973 | + | 0.0453143i | \(0.0144289\pi\) | ||||
−0.998973 | + | 0.0453143i | \(0.985571\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −6.00000 | −0.270776 | −0.135388 | − | 0.990793i | \(-0.543228\pi\) | ||||
−0.135388 | + | 0.990793i | \(0.543228\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 36.0000i | − 1.62136i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 32.0000i | − 1.43540i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −2.00000 | −0.0895323 | −0.0447661 | − | 0.998997i | \(-0.514254\pi\) | ||||
−0.0447661 | + | 0.998997i | \(0.514254\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 26.0000i | 1.15928i | 0.814872 | + | 0.579641i | \(0.196807\pi\) | ||||
−0.814872 | + | 0.579641i | \(0.803193\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 10.0000 | 0.443242 | 0.221621 | − | 0.975133i | \(-0.428865\pi\) | ||||
0.221621 | + | 0.975133i | \(0.428865\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 12.0000 | 0.530849 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 60.0000i | 2.63880i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −6.00000 | −0.262865 | −0.131432 | − | 0.991325i | \(-0.541958\pi\) | ||||
−0.131432 | + | 0.991325i | \(0.541958\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 28.0000i | 1.22435i | 0.790721 | + | 0.612177i | \(0.209706\pi\) | ||||
−0.790721 | + | 0.612177i | \(0.790294\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 24.0000i | − 1.04546i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −13.0000 | −0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 30.0000 | 1.30189 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 4.00000i | − 0.173259i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −18.0000 | −0.775315 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −34.0000 | −1.46177 | −0.730887 | − | 0.682498i | \(-0.760893\pi\) | ||||
−0.730887 | + | 0.682498i | \(0.760893\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 28.0000i | 1.19719i | 0.801050 | + | 0.598597i | \(0.204275\pi\) | ||||
−0.801050 | + | 0.598597i | \(0.795725\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −30.0000 | −1.28037 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 12.0000 | 0.511217 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 2.00000i | 0.0847427i | 0.999102 | + | 0.0423714i | \(0.0134913\pi\) | ||||
−0.999102 | + | 0.0423714i | \(0.986509\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 8.00000 | 0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 24.0000i | 1.01148i | 0.862686 | + | 0.505740i | \(0.168780\pi\) | ||||
−0.862686 | + | 0.505740i | \(0.831220\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 18.0000i | 0.755929i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −6.00000 | −0.251533 | −0.125767 | − | 0.992060i | \(-0.540139\pi\) | ||||
−0.125767 | + | 0.992060i | \(0.540139\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 26.0000 | 1.08807 | 0.544033 | − | 0.839064i | \(-0.316897\pi\) | ||||
0.544033 | + | 0.839064i | \(0.316897\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 34.0000i | − 1.41544i | −0.706494 | − | 0.707719i | \(-0.749724\pi\) | ||||
0.706494 | − | 0.707719i | \(-0.250276\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −16.0000 | −0.663792 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 12.0000i | − 0.496989i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 8.00000i | 0.330195i | 0.986277 | + | 0.165098i | \(0.0527939\pi\) | ||||
−0.986277 | + | 0.165098i | \(0.947206\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 8.00000 | 0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 34.0000i | 1.39621i | 0.715994 | + | 0.698106i | \(0.245974\pi\) | ||||
−0.715994 | + | 0.698106i | \(0.754026\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 12.0000 | 0.490307 | 0.245153 | − | 0.969484i | \(-0.421162\pi\) | ||||
0.245153 | + | 0.969484i | \(0.421162\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −38.0000 | −1.55005 | −0.775026 | − | 0.631929i | \(-0.782263\pi\) | ||||
−0.775026 | + | 0.631929i | \(0.782263\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | − 12.0000i | − 0.488678i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 18.0000i | − 0.730597i | −0.930890 | − | 0.365299i | \(-0.880967\pi\) | ||||
0.930890 | − | 0.365299i | \(-0.119033\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 20.0000 | 0.809113 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 34.0000i | 1.37325i | 0.727013 | + | 0.686624i | \(0.240908\pi\) | ||||
−0.727013 | + | 0.686624i | \(0.759092\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 34.0000i | − 1.36879i | −0.729112 | − | 0.684394i | \(-0.760067\pi\) | ||||
0.729112 | − | 0.684394i | \(-0.239933\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 34.0000 | 1.36658 | 0.683288 | − | 0.730149i | \(-0.260549\pi\) | ||||
0.683288 | + | 0.730149i | \(0.260549\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 12.0000i | − 0.480770i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 36.0000 | 1.43541 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −8.00000 | −0.318475 | −0.159237 | − | 0.987240i | \(-0.550904\pi\) | ||||
−0.159237 | + | 0.987240i | \(0.550904\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 6.00000i | 0.237729i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | −48.0000 | −1.89885 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −30.0000 | −1.18493 | −0.592464 | − | 0.805597i | \(-0.701845\pi\) | ||||
−0.592464 | + | 0.805597i | \(0.701845\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 24.0000i | 0.946468i | 0.880937 | + | 0.473234i | \(0.156913\pi\) | ||||
−0.880937 | + | 0.473234i | \(0.843087\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 18.0000i | 0.707653i | 0.935311 | + | 0.353827i | \(0.115120\pi\) | ||||
−0.935311 | + | 0.353827i | \(0.884880\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −60.0000 | −2.35521 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 14.0000i | − 0.547862i | −0.961749 | − | 0.273931i | \(-0.911676\pi\) | ||||
0.961749 | − | 0.273931i | \(-0.0883240\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − 18.0000i | − 0.702247i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −10.0000 | −0.389545 | −0.194772 | − | 0.980848i | \(-0.562397\pi\) | ||||
−0.194772 | + | 0.980848i | \(0.562397\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 22.0000 | 0.855701 | 0.427850 | − | 0.903850i | \(-0.359271\pi\) | ||||
0.427850 | + | 0.903850i | \(0.359271\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 36.0000i | 1.39393i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 60.0000 | 2.31627 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 6.00000i | − 0.231283i | −0.993291 | − | 0.115642i | \(-0.963108\pi\) | ||||
0.993291 | − | 0.115642i | \(-0.0368924\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 6.00000i | 0.230599i | 0.993331 | + | 0.115299i | \(0.0367827\pi\) | ||||
−0.993331 | + | 0.115299i | \(0.963217\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 4.00000 | 0.153506 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 36.0000i | − 1.37750i | −0.724998 | − | 0.688751i | \(-0.758159\pi\) | ||||
0.724998 | − | 0.688751i | \(-0.241841\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −4.00000 | −0.152388 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 30.0000 | 1.14125 | 0.570627 | − | 0.821209i | \(-0.306700\pi\) | ||||
0.570627 | + | 0.821209i | \(0.306700\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | − 36.0000i | − 1.36753i | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 12.0000i | − 0.454532i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −18.0000 | −0.679851 | −0.339925 | − | 0.940452i | \(-0.610402\pi\) | ||||
−0.339925 | + | 0.940452i | \(0.610402\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 12.0000i | 0.452589i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 20.0000i | − 0.752177i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 10.0000 | 0.375558 | 0.187779 | − | 0.982211i | \(-0.439871\pi\) | ||||
0.187779 | + | 0.982211i | \(0.439871\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 24.0000i | 0.898807i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −36.0000 | −1.34071 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 2.00000i | 0.0741759i | 0.999312 | + | 0.0370879i | \(0.0118082\pi\) | ||||
−0.999312 | + | 0.0370879i | \(0.988192\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 27.0000 | 1.00000 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 24.0000 | 0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 30.0000i | 1.10808i | 0.832492 | + | 0.554038i | \(0.186914\pi\) | ||||
−0.832492 | + | 0.554038i | \(0.813086\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 24.0000i | 0.884051i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 30.0000 | 1.10357 | 0.551784 | − | 0.833987i | \(-0.313947\pi\) | ||||
0.551784 | + | 0.833987i | \(0.313947\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 6.00000i | − 0.220119i | −0.993925 | − | 0.110059i | \(-0.964896\pi\) | ||||
0.993925 | − | 0.110059i | \(-0.0351041\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 24.0000i | 0.878114i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 32.0000 | 1.16925 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 36.0000 | 1.31366 | 0.656829 | − | 0.754039i | \(-0.271897\pi\) | ||||
0.656829 | + | 0.754039i | \(0.271897\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 22.0000i | − 0.799604i | −0.916602 | − | 0.399802i | \(-0.869079\pi\) | ||||
0.916602 | − | 0.399802i | \(-0.130921\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −6.00000 | −0.217500 | −0.108750 | − | 0.994069i | \(-0.534685\pi\) | ||||
−0.108750 | + | 0.994069i | \(0.534685\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 20.0000i | 0.724049i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 20.0000i | 0.722158i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −38.0000 | −1.37032 | −0.685158 | − | 0.728395i | \(-0.740267\pi\) | ||||
−0.685158 | + | 0.728395i | \(0.740267\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 14.0000i | − 0.503545i | −0.967786 | − | 0.251773i | \(-0.918987\pi\) | ||||
0.967786 | − | 0.251773i | \(-0.0810135\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 4.00000 | 0.143315 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 96.0000 | 3.43515 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 4.00000i | − 0.142585i | −0.997455 | − | 0.0712923i | \(-0.977288\pi\) | ||||
0.997455 | − | 0.0712923i | \(-0.0227123\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 12.0000 | 0.426671 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 20.0000i | − 0.710221i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 54.0000i | 1.91278i | 0.292096 | + | 0.956389i | \(0.405647\pi\) | ||||
−0.292096 | + | 0.956389i | \(0.594353\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 60.0000 | 2.12265 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −18.0000 | −0.635999 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 36.0000i | 1.27041i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 22.0000 | 0.773479 | 0.386739 | − | 0.922189i | \(-0.373601\pi\) | ||||
0.386739 | + | 0.922189i | \(0.373601\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 26.0000 | 0.912983 | 0.456492 | − | 0.889728i | \(-0.349106\pi\) | ||||
0.456492 | + | 0.889728i | \(0.349106\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 8.00000i | 0.279885i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | −12.0000 | −0.419314 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 22.0000 | 0.767805 | 0.383903 | − | 0.923374i | \(-0.374580\pi\) | ||||
0.383903 | + | 0.923374i | \(0.374580\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 14.0000i | − 0.488009i | −0.969774 | − | 0.244005i | \(-0.921539\pi\) | ||||
0.969774 | − | 0.244005i | \(-0.0784612\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 8.00000i | 0.278187i | 0.990279 | + | 0.139094i | \(0.0444189\pi\) | ||||
−0.990279 | + | 0.139094i | \(0.955581\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −6.00000 | −0.208389 | −0.104194 | − | 0.994557i | \(-0.533226\pi\) | ||||
−0.104194 | + | 0.994557i | \(0.533226\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 18.0000i | 0.623663i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 36.0000 | 1.24286 | 0.621429 | − | 0.783470i | \(-0.286552\pi\) | ||||
0.621429 | + | 0.783470i | \(0.286552\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 50.0000i | 1.71802i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −36.0000 | −1.23406 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 34.0000i | 1.16414i | 0.813139 | + | 0.582069i | \(0.197757\pi\) | ||||
−0.813139 | + | 0.582069i | \(0.802243\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 30.0000i | 1.02478i | 0.858753 | + | 0.512390i | \(0.171240\pi\) | ||||
−0.858753 | + | 0.512390i | \(0.828760\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −6.00000 | −0.204717 | −0.102359 | − | 0.994748i | \(-0.532639\pi\) | ||||
−0.102359 | + | 0.994748i | \(0.532639\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 6.00000i | 0.204242i | 0.994772 | + | 0.102121i | \(0.0325630\pi\) | ||||
−0.994772 | + | 0.102121i | \(0.967437\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 8.00000 | 0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | − 6.00000i | − 0.203069i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 34.0000i | 1.14810i | 0.818821 | + | 0.574049i | \(0.194628\pi\) | ||||
−0.818821 | + | 0.574049i | \(0.805372\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 30.0000 | 1.01073 | 0.505363 | − | 0.862907i | \(-0.331359\pi\) | ||||
0.505363 | + | 0.862907i | \(0.331359\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 40.0000i | − 1.34611i | −0.739594 | − | 0.673054i | \(-0.764982\pi\) | ||||
0.739594 | − | 0.673054i | \(-0.235018\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 14.0000i | − 0.470074i | −0.971986 | − | 0.235037i | \(-0.924479\pi\) | ||||
0.971986 | − | 0.235037i | \(-0.0755211\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 36.0000 | 1.20740 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | −54.0000 | −1.80907 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 20.0000i | 0.669274i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 24.0000 | 0.800445 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −12.0000 | −0.399778 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 24.0000i | 0.796907i | 0.917189 | + | 0.398453i | \(0.130453\pi\) | ||||
−0.917189 | + | 0.398453i | \(0.869547\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | −30.0000 | −0.995037 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 4.00000 | 0.132526 | 0.0662630 | − | 0.997802i | \(-0.478892\pi\) | ||||
0.0662630 | + | 0.997802i | \(0.478892\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | − 48.0000i | − 1.58857i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 20.0000i | − 0.660458i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 28.0000 | 0.923635 | 0.461817 | − | 0.886975i | \(-0.347198\pi\) | ||||
0.461817 | + | 0.886975i | \(0.347198\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 32.0000i | − 1.05329i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 54.0000i | 1.77359i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −18.0000 | −0.590561 | −0.295280 | − | 0.955411i | \(-0.595413\pi\) | ||||
−0.295280 | + | 0.955411i | \(0.595413\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −6.00000 | −0.196642 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 26.0000i | − 0.849383i | −0.905338 | − | 0.424691i | \(-0.860383\pi\) | ||||
0.905338 | − | 0.424691i | \(-0.139617\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 14.0000 | 0.456387 | 0.228193 | − | 0.973616i | \(-0.426718\pi\) | ||||
0.228193 | + | 0.973616i | \(0.426718\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 12.0000i | 0.390774i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 12.0000i | − 0.389948i | −0.980808 | − | 0.194974i | \(-0.937538\pi\) | ||||
0.980808 | − | 0.194974i | \(-0.0624622\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 12.0000 | 0.389536 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 54.0000i | − 1.74923i | −0.484817 | − | 0.874616i | \(-0.661114\pi\) | ||||
0.484817 | − | 0.874616i | \(-0.338886\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −44.0000 | −1.42083 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 48.0000i | − 1.54678i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 6.00000i | − 0.192947i | −0.995336 | − | 0.0964735i | \(-0.969244\pi\) | ||||
0.995336 | − | 0.0964735i | \(-0.0307563\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 34.0000 | 1.09111 | 0.545556 | − | 0.838074i | \(-0.316319\pi\) | ||||
0.545556 | + | 0.838074i | \(0.316319\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 12.0000i | − 0.384702i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 10.0000i | − 0.319928i | −0.987123 | − | 0.159964i | \(-0.948862\pi\) | ||||
0.987123 | − | 0.159964i | \(-0.0511379\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 36.0000 | 1.15056 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 30.0000 | 0.957826 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 30.0000i | − 0.956851i | −0.878128 | − | 0.478426i | \(-0.841208\pi\) | ||||
0.878128 | − | 0.478426i | \(-0.158792\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −24.0000 | −0.763156 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −52.0000 | −1.65183 | −0.825917 | − | 0.563791i | \(-0.809342\pi\) | ||||
−0.825917 | + | 0.563791i | \(0.809342\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 6.00000i | 0.190022i | 0.995476 | + | 0.0950110i | \(0.0302886\pi\) | ||||
−0.995476 | + | 0.0950110i | \(0.969711\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3200.2.c.q.2049.2 | 2 | ||
4.3 | odd | 2 | 3200.2.c.s.2049.1 | 2 | |||
5.2 | odd | 4 | 640.2.a.e.1.1 | yes | 1 | ||
5.3 | odd | 4 | 3200.2.a.o.1.1 | 1 | |||
5.4 | even | 2 | inner | 3200.2.c.q.2049.1 | 2 | ||
8.3 | odd | 2 | 3200.2.c.r.2049.1 | 2 | |||
8.5 | even | 2 | 3200.2.c.t.2049.2 | 2 | |||
15.2 | even | 4 | 5760.2.a.h.1.1 | 1 | |||
20.3 | even | 4 | 3200.2.a.n.1.1 | 1 | |||
20.7 | even | 4 | 640.2.a.f.1.1 | yes | 1 | ||
20.19 | odd | 2 | 3200.2.c.s.2049.2 | 2 | |||
40.3 | even | 4 | 3200.2.a.m.1.1 | 1 | |||
40.13 | odd | 4 | 3200.2.a.p.1.1 | 1 | |||
40.19 | odd | 2 | 3200.2.c.r.2049.2 | 2 | |||
40.27 | even | 4 | 640.2.a.d.1.1 | yes | 1 | ||
40.29 | even | 2 | 3200.2.c.t.2049.1 | 2 | |||
40.37 | odd | 4 | 640.2.a.c.1.1 | ✓ | 1 | ||
60.47 | odd | 4 | 5760.2.a.q.1.1 | 1 | |||
80.27 | even | 4 | 1280.2.d.d.641.2 | 2 | |||
80.37 | odd | 4 | 1280.2.d.i.641.2 | 2 | |||
80.67 | even | 4 | 1280.2.d.d.641.1 | 2 | |||
80.77 | odd | 4 | 1280.2.d.i.641.1 | 2 | |||
120.77 | even | 4 | 5760.2.a.ba.1.1 | 1 | |||
120.107 | odd | 4 | 5760.2.a.bt.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
640.2.a.c.1.1 | ✓ | 1 | 40.37 | odd | 4 | ||
640.2.a.d.1.1 | yes | 1 | 40.27 | even | 4 | ||
640.2.a.e.1.1 | yes | 1 | 5.2 | odd | 4 | ||
640.2.a.f.1.1 | yes | 1 | 20.7 | even | 4 | ||
1280.2.d.d.641.1 | 2 | 80.67 | even | 4 | |||
1280.2.d.d.641.2 | 2 | 80.27 | even | 4 | |||
1280.2.d.i.641.1 | 2 | 80.77 | odd | 4 | |||
1280.2.d.i.641.2 | 2 | 80.37 | odd | 4 | |||
3200.2.a.m.1.1 | 1 | 40.3 | even | 4 | |||
3200.2.a.n.1.1 | 1 | 20.3 | even | 4 | |||
3200.2.a.o.1.1 | 1 | 5.3 | odd | 4 | |||
3200.2.a.p.1.1 | 1 | 40.13 | odd | 4 | |||
3200.2.c.q.2049.1 | 2 | 5.4 | even | 2 | inner | ||
3200.2.c.q.2049.2 | 2 | 1.1 | even | 1 | trivial | ||
3200.2.c.r.2049.1 | 2 | 8.3 | odd | 2 | |||
3200.2.c.r.2049.2 | 2 | 40.19 | odd | 2 | |||
3200.2.c.s.2049.1 | 2 | 4.3 | odd | 2 | |||
3200.2.c.s.2049.2 | 2 | 20.19 | odd | 2 | |||
3200.2.c.t.2049.1 | 2 | 40.29 | even | 2 | |||
3200.2.c.t.2049.2 | 2 | 8.5 | even | 2 | |||
5760.2.a.h.1.1 | 1 | 15.2 | even | 4 | |||
5760.2.a.q.1.1 | 1 | 60.47 | odd | 4 | |||
5760.2.a.ba.1.1 | 1 | 120.77 | even | 4 | |||
5760.2.a.bt.1.1 | 1 | 120.107 | odd | 4 |