Properties

Label 3200.2.c.q.2049.2
Level $3200$
Weight $2$
Character 3200.2049
Analytic conductor $25.552$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3200,2,Mod(2049,3200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3200.2049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3200 = 2^{7} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.5521286468\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2049.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3200.2049
Dual form 3200.2.c.q.2049.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{7} +3.00000 q^{9} -6.00000 q^{11} +2.00000i q^{13} +6.00000i q^{17} -2.00000 q^{19} -6.00000i q^{23} -6.00000 q^{29} -4.00000 q^{31} -6.00000i q^{37} -2.00000 q^{41} -4.00000i q^{43} -10.0000i q^{47} +3.00000 q^{49} +2.00000i q^{53} +10.0000 q^{59} -10.0000 q^{61} +6.00000i q^{63} -4.00000i q^{67} -16.0000 q^{71} -6.00000i q^{73} -12.0000i q^{77} +9.00000 q^{81} +8.00000i q^{83} -6.00000 q^{89} -4.00000 q^{91} -2.00000i q^{97} -18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{9} - 12 q^{11} - 4 q^{19} - 12 q^{29} - 8 q^{31} - 4 q^{41} + 6 q^{49} + 20 q^{59} - 20 q^{61} - 32 q^{71} + 18 q^{81} - 12 q^{89} - 8 q^{91} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3200\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1151\) \(2177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 6.00000i − 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.00000i − 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 10.0000i − 1.45865i −0.684167 0.729325i \(-0.739834\pi\)
0.684167 0.729325i \(-0.260166\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 6.00000i 0.755929i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) − 6.00000i − 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 12.0000i − 1.36753i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 8.00000i 0.878114i 0.898459 + 0.439057i \(0.144687\pi\)
−0.898459 + 0.439057i \(0.855313\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 2.00000i − 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) 0 0
\(99\) −18.0000 −1.80907
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 18.0000i 1.77359i 0.462160 + 0.886796i \(0.347074\pi\)
−0.462160 + 0.886796i \(0.652926\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 16.0000i − 1.54678i −0.633932 0.773389i \(-0.718560\pi\)
0.633932 0.773389i \(-0.281440\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00000i 0.554700i
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 18.0000i − 1.59724i −0.601834 0.798621i \(-0.705563\pi\)
0.601834 0.798621i \(-0.294437\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.0000 −0.873704 −0.436852 0.899533i \(-0.643907\pi\)
−0.436852 + 0.899533i \(0.643907\pi\)
\(132\) 0 0
\(133\) − 4.00000i − 0.346844i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.0000i 1.87959i 0.341743 + 0.939793i \(0.388983\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) −6.00000 −0.508913 −0.254457 0.967084i \(-0.581897\pi\)
−0.254457 + 0.967084i \(0.581897\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 12.0000i − 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 18.0000i 1.45521i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) 8.00000i 0.626608i 0.949653 + 0.313304i \(0.101436\pi\)
−0.949653 + 0.313304i \(0.898564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.0000i 0.773823i 0.922117 + 0.386912i \(0.126458\pi\)
−0.922117 + 0.386912i \(0.873542\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) − 18.0000i − 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 36.0000i − 2.63258i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 10.0000i 0.719816i 0.932988 + 0.359908i \(0.117192\pi\)
−0.932988 + 0.359908i \(0.882808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 10.0000i − 0.712470i −0.934396 0.356235i \(-0.884060\pi\)
0.934396 0.356235i \(-0.115940\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 12.0000i − 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 18.0000i − 1.25109i
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 8.00000i − 0.543075i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) − 10.0000i − 0.669650i −0.942280 0.334825i \(-0.891323\pi\)
0.942280 0.334825i \(-0.108677\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 28.0000i 1.85843i 0.369546 + 0.929213i \(0.379513\pi\)
−0.369546 + 0.929213i \(0.620487\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 14.0000i − 0.917170i −0.888650 0.458585i \(-0.848356\pi\)
0.888650 0.458585i \(-0.151644\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 4.00000i − 0.254514i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.00000 −0.378717 −0.189358 0.981908i \(-0.560641\pi\)
−0.189358 + 0.981908i \(0.560641\pi\)
\(252\) 0 0
\(253\) 36.0000i 2.26330i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000i 0.374270i 0.982334 + 0.187135i \(0.0599201\pi\)
−0.982334 + 0.187135i \(0.940080\pi\)
\(258\) 0 0
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) −18.0000 −1.11417
\(262\) 0 0
\(263\) 2.00000i 0.123325i 0.998097 + 0.0616626i \(0.0196403\pi\)
−0.998097 + 0.0616626i \(0.980360\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −30.0000 −1.82913 −0.914566 0.404436i \(-0.867468\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 22.0000i − 1.32185i −0.750451 0.660926i \(-0.770164\pi\)
0.750451 0.660926i \(-0.229836\pi\)
\(278\) 0 0
\(279\) −12.0000 −0.718421
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i 0.804141 + 0.594438i \(0.202626\pi\)
−0.804141 + 0.594438i \(0.797374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 4.00000i − 0.236113i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 22.0000i 1.28525i 0.766179 + 0.642627i \(0.222155\pi\)
−0.766179 + 0.642627i \(0.777845\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 0 0
\(313\) − 14.0000i − 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 0 0
\(319\) 36.0000 2.01561
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 12.0000i − 0.667698i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 20.0000 1.10264
\(330\) 0 0
\(331\) 10.0000 0.549650 0.274825 0.961494i \(-0.411380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(332\) 0 0
\(333\) − 18.0000i − 0.986394i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 22.0000i 1.19842i 0.800593 + 0.599208i \(0.204518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.00000i 0.429463i 0.976673 + 0.214731i \(0.0688876\pi\)
−0.976673 + 0.214731i \(0.931112\pi\)
\(348\) 0 0
\(349\) 18.0000 0.963518 0.481759 0.876304i \(-0.339998\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 6.00000i − 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 22.0000i 1.14839i 0.818718 + 0.574195i \(0.194685\pi\)
−0.818718 + 0.574195i \(0.805315\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −4.00000 −0.207670
\(372\) 0 0
\(373\) − 26.0000i − 1.34623i −0.739538 0.673114i \(-0.764956\pi\)
0.739538 0.673114i \(-0.235044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 12.0000i − 0.618031i
\(378\) 0 0
\(379\) 26.0000 1.33553 0.667765 0.744372i \(-0.267251\pi\)
0.667765 + 0.744372i \(0.267251\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 18.0000i − 0.919757i −0.887982 0.459879i \(-0.847893\pi\)
0.887982 0.459879i \(-0.152107\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 12.0000i − 0.609994i
\(388\) 0 0
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 0 0
\(391\) 36.0000 1.82060
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 10.0000i − 0.501886i −0.968002 0.250943i \(-0.919259\pi\)
0.968002 0.250943i \(-0.0807406\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) − 8.00000i − 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 36.0000i 1.78445i
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 20.0000i 0.984136i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −26.0000 −1.27018 −0.635092 0.772437i \(-0.719038\pi\)
−0.635092 + 0.772437i \(0.719038\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) − 30.0000i − 1.45865i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 20.0000i − 0.967868i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) − 14.0000i − 0.672797i −0.941720 0.336399i \(-0.890791\pi\)
0.941720 0.336399i \(-0.109209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0000i 0.574038i
\(438\) 0 0
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) − 36.0000i − 1.71041i −0.518289 0.855206i \(-0.673431\pi\)
0.518289 0.855206i \(-0.326569\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.00000i 0.280668i 0.990104 + 0.140334i \(0.0448177\pi\)
−0.990104 + 0.140334i \(0.955182\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 38.0000 1.76984 0.884918 0.465746i \(-0.154214\pi\)
0.884918 + 0.465746i \(0.154214\pi\)
\(462\) 0 0
\(463\) 22.0000i 1.02243i 0.859454 + 0.511213i \(0.170804\pi\)
−0.859454 + 0.511213i \(0.829196\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 0 0
\(479\) −8.00000 −0.365529 −0.182765 0.983157i \(-0.558505\pi\)
−0.182765 + 0.983157i \(0.558505\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.00000 −0.270776 −0.135388 0.990793i \(-0.543228\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(492\) 0 0
\(493\) − 36.0000i − 1.62136i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 32.0000i − 1.43540i
\(498\) 0 0
\(499\) −2.00000 −0.0895323 −0.0447661 0.998997i \(-0.514254\pi\)
−0.0447661 + 0.998997i \(0.514254\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 26.0000i 1.15928i 0.814872 + 0.579641i \(0.196807\pi\)
−0.814872 + 0.579641i \(0.803193\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) 12.0000 0.530849
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 60.0000i 2.63880i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 28.0000i 1.22435i 0.790721 + 0.612177i \(0.209706\pi\)
−0.790721 + 0.612177i \(0.790294\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 24.0000i − 1.04546i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 30.0000 1.30189
\(532\) 0 0
\(533\) − 4.00000i − 0.173259i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000i 1.19719i 0.801050 + 0.598597i \(0.204275\pi\)
−0.801050 + 0.598597i \(0.795725\pi\)
\(548\) 0 0
\(549\) −30.0000 −1.28037
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.00000i 0.0847427i 0.999102 + 0.0423714i \(0.0134913\pi\)
−0.999102 + 0.0423714i \(0.986509\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 18.0000i 0.755929i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 26.0000 1.08807 0.544033 0.839064i \(-0.316897\pi\)
0.544033 + 0.839064i \(0.316897\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 34.0000i − 1.41544i −0.706494 0.707719i \(-0.749724\pi\)
0.706494 0.707719i \(-0.250276\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.0000 −0.663792
\(582\) 0 0
\(583\) − 12.0000i − 0.496989i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.00000i 0.330195i 0.986277 + 0.165098i \(0.0527939\pi\)
−0.986277 + 0.165098i \(0.947206\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.0000i 1.39621i 0.715994 + 0.698106i \(0.245974\pi\)
−0.715994 + 0.698106i \(0.754026\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) − 12.0000i − 0.488678i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 18.0000i − 0.730597i −0.930890 0.365299i \(-0.880967\pi\)
0.930890 0.365299i \(-0.119033\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.0000 0.809113
\(612\) 0 0
\(613\) 34.0000i 1.37325i 0.727013 + 0.686624i \(0.240908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 34.0000i − 1.36879i −0.729112 0.684394i \(-0.760067\pi\)
0.729112 0.684394i \(-0.239933\pi\)
\(618\) 0 0
\(619\) 34.0000 1.36658 0.683288 0.730149i \(-0.260549\pi\)
0.683288 + 0.730149i \(0.260549\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 12.0000i − 0.480770i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.00000i 0.237729i
\(638\) 0 0
\(639\) −48.0000 −1.89885
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) 24.0000i 0.946468i 0.880937 + 0.473234i \(0.156913\pi\)
−0.880937 + 0.473234i \(0.843087\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18.0000i 0.707653i 0.935311 + 0.353827i \(0.115120\pi\)
−0.935311 + 0.353827i \(0.884880\pi\)
\(648\) 0 0
\(649\) −60.0000 −2.35521
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 14.0000i − 0.547862i −0.961749 0.273931i \(-0.911676\pi\)
0.961749 0.273931i \(-0.0883240\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 18.0000i − 0.702247i
\(658\) 0 0
\(659\) −10.0000 −0.389545 −0.194772 0.980848i \(-0.562397\pi\)
−0.194772 + 0.980848i \(0.562397\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 60.0000 2.31627
\(672\) 0 0
\(673\) − 6.00000i − 0.231283i −0.993291 0.115642i \(-0.963108\pi\)
0.993291 0.115642i \(-0.0368924\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000i 0.230599i 0.993331 + 0.115299i \(0.0367827\pi\)
−0.993331 + 0.115299i \(0.963217\pi\)
\(678\) 0 0
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 36.0000i − 1.37750i −0.724998 0.688751i \(-0.758159\pi\)
0.724998 0.688751i \(-0.241841\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) 30.0000 1.14125 0.570627 0.821209i \(-0.306700\pi\)
0.570627 + 0.821209i \(0.306700\pi\)
\(692\) 0 0
\(693\) − 36.0000i − 1.36753i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 12.0000i − 0.454532i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 20.0000i − 0.752177i
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 24.0000i 0.898807i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −36.0000 −1.34071
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.00000i 0.0741759i 0.999312 + 0.0370879i \(0.0118082\pi\)
−0.999312 + 0.0370879i \(0.988192\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) 30.0000i 1.10808i 0.832492 + 0.554038i \(0.186914\pi\)
−0.832492 + 0.554038i \(0.813086\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000i 0.884051i
\(738\) 0 0
\(739\) 30.0000 1.10357 0.551784 0.833987i \(-0.313947\pi\)
0.551784 + 0.833987i \(0.313947\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 6.00000i − 0.220119i −0.993925 0.110059i \(-0.964896\pi\)
0.993925 0.110059i \(-0.0351041\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 24.0000i 0.878114i
\(748\) 0 0
\(749\) 32.0000 1.16925
\(750\) 0 0
\(751\) 36.0000 1.31366 0.656829 0.754039i \(-0.271897\pi\)
0.656829 + 0.754039i \(0.271897\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 22.0000i − 0.799604i −0.916602 0.399802i \(-0.869079\pi\)
0.916602 0.399802i \(-0.130921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 20.0000i 0.724049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.0000i 0.722158i
\(768\) 0 0
\(769\) −38.0000 −1.37032 −0.685158 0.728395i \(-0.740267\pi\)
−0.685158 + 0.728395i \(0.740267\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 14.0000i − 0.503545i −0.967786 0.251773i \(-0.918987\pi\)
0.967786 0.251773i \(-0.0810135\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.00000 0.143315
\(780\) 0 0
\(781\) 96.0000 3.43515
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 4.00000i − 0.142585i −0.997455 0.0712923i \(-0.977288\pi\)
0.997455 0.0712923i \(-0.0227123\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) − 20.0000i − 0.710221i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 54.0000i 1.91278i 0.292096 + 0.956389i \(0.405647\pi\)
−0.292096 + 0.956389i \(0.594353\pi\)
\(798\) 0 0
\(799\) 60.0000 2.12265
\(800\) 0 0
\(801\) −18.0000 −0.635999
\(802\) 0 0
\(803\) 36.0000i 1.27041i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.0000 0.773479 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(810\) 0 0
\(811\) 26.0000 0.912983 0.456492 0.889728i \(-0.349106\pi\)
0.456492 + 0.889728i \(0.349106\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) 0 0
\(819\) −12.0000 −0.419314
\(820\) 0 0
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) − 14.0000i − 0.488009i −0.969774 0.244005i \(-0.921539\pi\)
0.969774 0.244005i \(-0.0784612\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.00000i 0.278187i 0.990279 + 0.139094i \(0.0444189\pi\)
−0.990279 + 0.139094i \(0.955581\pi\)
\(828\) 0 0
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 18.0000i 0.623663i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 50.0000i 1.71802i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −36.0000 −1.23406
\(852\) 0 0
\(853\) 34.0000i 1.16414i 0.813139 + 0.582069i \(0.197757\pi\)
−0.813139 + 0.582069i \(0.802243\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.0000i 1.02478i 0.858753 + 0.512390i \(0.171240\pi\)
−0.858753 + 0.512390i \(0.828760\pi\)
\(858\) 0 0
\(859\) −6.00000 −0.204717 −0.102359 0.994748i \(-0.532639\pi\)
−0.102359 + 0.994748i \(0.532639\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.00000i 0.204242i 0.994772 + 0.102121i \(0.0325630\pi\)
−0.994772 + 0.102121i \(0.967437\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) − 6.00000i − 0.203069i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 34.0000i 1.14810i 0.818821 + 0.574049i \(0.194628\pi\)
−0.818821 + 0.574049i \(0.805372\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) − 40.0000i − 1.34611i −0.739594 0.673054i \(-0.764982\pi\)
0.739594 0.673054i \(-0.235018\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 14.0000i − 0.470074i −0.971986 0.235037i \(-0.924479\pi\)
0.971986 0.235037i \(-0.0755211\pi\)
\(888\) 0 0
\(889\) 36.0000 1.20740
\(890\) 0 0
\(891\) −54.0000 −1.80907
\(892\) 0 0
\(893\) 20.0000i 0.669274i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 24.0000i 0.796907i 0.917189 + 0.398453i \(0.130453\pi\)
−0.917189 + 0.398453i \(0.869547\pi\)
\(908\) 0 0
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) 4.00000 0.132526 0.0662630 0.997802i \(-0.478892\pi\)
0.0662630 + 0.997802i \(0.478892\pi\)
\(912\) 0 0
\(913\) − 48.0000i − 1.58857i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 20.0000i − 0.660458i
\(918\) 0 0
\(919\) 28.0000 0.923635 0.461817 0.886975i \(-0.347198\pi\)
0.461817 + 0.886975i \(0.347198\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 32.0000i − 1.05329i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 54.0000i 1.77359i
\(928\) 0 0
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 26.0000i − 0.849383i −0.905338 0.424691i \(-0.860383\pi\)
0.905338 0.424691i \(-0.139617\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14.0000 0.456387 0.228193 0.973616i \(-0.426718\pi\)
0.228193 + 0.973616i \(0.426718\pi\)
\(942\) 0 0
\(943\) 12.0000i 0.390774i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 12.0000i − 0.389948i −0.980808 0.194974i \(-0.937538\pi\)
0.980808 0.194974i \(-0.0624622\pi\)
\(948\) 0 0
\(949\) 12.0000 0.389536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 54.0000i − 1.74923i −0.484817 0.874616i \(-0.661114\pi\)
0.484817 0.874616i \(-0.338886\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −44.0000 −1.42083
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) − 48.0000i − 1.54678i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 6.00000i − 0.192947i −0.995336 0.0964735i \(-0.969244\pi\)
0.995336 0.0964735i \(-0.0307563\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 34.0000 1.09111 0.545556 0.838074i \(-0.316319\pi\)
0.545556 + 0.838074i \(0.316319\pi\)
\(972\) 0 0
\(973\) − 12.0000i − 0.384702i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 10.0000i − 0.319928i −0.987123 0.159964i \(-0.948862\pi\)
0.987123 0.159964i \(-0.0511379\pi\)
\(978\) 0 0
\(979\) 36.0000 1.15056
\(980\) 0 0
\(981\) 30.0000 0.957826
\(982\) 0 0
\(983\) − 30.0000i − 0.956851i −0.878128 0.478426i \(-0.841208\pi\)
0.878128 0.478426i \(-0.158792\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 6.00000i 0.190022i 0.995476 + 0.0950110i \(0.0302886\pi\)
−0.995476 + 0.0950110i \(0.969711\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3200.2.c.q.2049.2 2
4.3 odd 2 3200.2.c.s.2049.1 2
5.2 odd 4 640.2.a.e.1.1 yes 1
5.3 odd 4 3200.2.a.o.1.1 1
5.4 even 2 inner 3200.2.c.q.2049.1 2
8.3 odd 2 3200.2.c.r.2049.1 2
8.5 even 2 3200.2.c.t.2049.2 2
15.2 even 4 5760.2.a.h.1.1 1
20.3 even 4 3200.2.a.n.1.1 1
20.7 even 4 640.2.a.f.1.1 yes 1
20.19 odd 2 3200.2.c.s.2049.2 2
40.3 even 4 3200.2.a.m.1.1 1
40.13 odd 4 3200.2.a.p.1.1 1
40.19 odd 2 3200.2.c.r.2049.2 2
40.27 even 4 640.2.a.d.1.1 yes 1
40.29 even 2 3200.2.c.t.2049.1 2
40.37 odd 4 640.2.a.c.1.1 1
60.47 odd 4 5760.2.a.q.1.1 1
80.27 even 4 1280.2.d.d.641.2 2
80.37 odd 4 1280.2.d.i.641.2 2
80.67 even 4 1280.2.d.d.641.1 2
80.77 odd 4 1280.2.d.i.641.1 2
120.77 even 4 5760.2.a.ba.1.1 1
120.107 odd 4 5760.2.a.bt.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.2.a.c.1.1 1 40.37 odd 4
640.2.a.d.1.1 yes 1 40.27 even 4
640.2.a.e.1.1 yes 1 5.2 odd 4
640.2.a.f.1.1 yes 1 20.7 even 4
1280.2.d.d.641.1 2 80.67 even 4
1280.2.d.d.641.2 2 80.27 even 4
1280.2.d.i.641.1 2 80.77 odd 4
1280.2.d.i.641.2 2 80.37 odd 4
3200.2.a.m.1.1 1 40.3 even 4
3200.2.a.n.1.1 1 20.3 even 4
3200.2.a.o.1.1 1 5.3 odd 4
3200.2.a.p.1.1 1 40.13 odd 4
3200.2.c.q.2049.1 2 5.4 even 2 inner
3200.2.c.q.2049.2 2 1.1 even 1 trivial
3200.2.c.r.2049.1 2 8.3 odd 2
3200.2.c.r.2049.2 2 40.19 odd 2
3200.2.c.s.2049.1 2 4.3 odd 2
3200.2.c.s.2049.2 2 20.19 odd 2
3200.2.c.t.2049.1 2 40.29 even 2
3200.2.c.t.2049.2 2 8.5 even 2
5760.2.a.h.1.1 1 15.2 even 4
5760.2.a.q.1.1 1 60.47 odd 4
5760.2.a.ba.1.1 1 120.77 even 4
5760.2.a.bt.1.1 1 120.107 odd 4