Properties

Label 3200.2.c.w.2049.3
Level $3200$
Weight $2$
Character 3200.2049
Analytic conductor $25.552$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3200,2,Mod(2049,3200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3200.2049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3200 = 2^{7} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.5521286468\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2049.3
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 3200.2049
Dual form 3200.2.c.w.2049.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.23607i q^{3} +3.23607i q^{7} +1.47214 q^{9} +2.00000 q^{11} +4.47214i q^{13} +4.47214i q^{17} -4.47214 q^{19} -4.00000 q^{21} -4.76393i q^{23} +5.52786i q^{27} +2.00000 q^{29} -6.47214 q^{31} +2.47214i q^{33} +6.94427i q^{37} -5.52786 q^{39} +12.4721 q^{41} -7.70820i q^{43} +7.23607i q^{47} -3.47214 q^{49} -5.52786 q^{51} -0.472136i q^{53} -5.52786i q^{57} -8.47214 q^{59} -6.00000 q^{61} +4.76393i q^{63} -7.70820i q^{67} +5.88854 q^{69} +2.47214 q^{71} -4.47214i q^{73} +6.47214i q^{77} +12.9443 q^{79} -2.41641 q^{81} -3.70820i q^{83} +2.47214i q^{87} +14.9443 q^{89} -14.4721 q^{91} -8.00000i q^{93} -16.4721i q^{97} +2.94427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9} + 8 q^{11} - 16 q^{21} + 8 q^{29} - 8 q^{31} - 40 q^{39} + 32 q^{41} + 4 q^{49} - 40 q^{51} - 16 q^{59} - 24 q^{61} - 48 q^{69} - 8 q^{71} + 16 q^{79} + 44 q^{81} + 24 q^{89} - 40 q^{91}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3200\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1151\) \(2177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.23607i 0.713644i 0.934172 + 0.356822i \(0.116140\pi\)
−0.934172 + 0.356822i \(0.883860\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.23607i 1.22312i 0.791199 + 0.611559i \(0.209457\pi\)
−0.791199 + 0.611559i \(0.790543\pi\)
\(8\) 0 0
\(9\) 1.47214 0.490712
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 4.47214i 1.24035i 0.784465 + 0.620174i \(0.212938\pi\)
−0.784465 + 0.620174i \(0.787062\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.47214i 1.08465i 0.840168 + 0.542326i \(0.182456\pi\)
−0.840168 + 0.542326i \(0.817544\pi\)
\(18\) 0 0
\(19\) −4.47214 −1.02598 −0.512989 0.858395i \(-0.671462\pi\)
−0.512989 + 0.858395i \(0.671462\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) − 4.76393i − 0.993348i −0.867937 0.496674i \(-0.834554\pi\)
0.867937 0.496674i \(-0.165446\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.52786i 1.06384i
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −6.47214 −1.16243 −0.581215 0.813750i \(-0.697422\pi\)
−0.581215 + 0.813750i \(0.697422\pi\)
\(32\) 0 0
\(33\) 2.47214i 0.430344i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.94427i 1.14163i 0.821078 + 0.570816i \(0.193373\pi\)
−0.821078 + 0.570816i \(0.806627\pi\)
\(38\) 0 0
\(39\) −5.52786 −0.885167
\(40\) 0 0
\(41\) 12.4721 1.94782 0.973910 0.226934i \(-0.0728701\pi\)
0.973910 + 0.226934i \(0.0728701\pi\)
\(42\) 0 0
\(43\) − 7.70820i − 1.17549i −0.809046 0.587745i \(-0.800016\pi\)
0.809046 0.587745i \(-0.199984\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.23607i 1.05549i 0.849403 + 0.527744i \(0.176962\pi\)
−0.849403 + 0.527744i \(0.823038\pi\)
\(48\) 0 0
\(49\) −3.47214 −0.496019
\(50\) 0 0
\(51\) −5.52786 −0.774056
\(52\) 0 0
\(53\) − 0.472136i − 0.0648529i −0.999474 0.0324264i \(-0.989677\pi\)
0.999474 0.0324264i \(-0.0103235\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 5.52786i − 0.732183i
\(58\) 0 0
\(59\) −8.47214 −1.10298 −0.551489 0.834182i \(-0.685940\pi\)
−0.551489 + 0.834182i \(0.685940\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) 4.76393i 0.600199i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 7.70820i − 0.941707i −0.882211 0.470853i \(-0.843946\pi\)
0.882211 0.470853i \(-0.156054\pi\)
\(68\) 0 0
\(69\) 5.88854 0.708897
\(70\) 0 0
\(71\) 2.47214 0.293389 0.146694 0.989182i \(-0.453137\pi\)
0.146694 + 0.989182i \(0.453137\pi\)
\(72\) 0 0
\(73\) − 4.47214i − 0.523424i −0.965146 0.261712i \(-0.915713\pi\)
0.965146 0.261712i \(-0.0842870\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.47214i 0.737568i
\(78\) 0 0
\(79\) 12.9443 1.45634 0.728172 0.685394i \(-0.240370\pi\)
0.728172 + 0.685394i \(0.240370\pi\)
\(80\) 0 0
\(81\) −2.41641 −0.268490
\(82\) 0 0
\(83\) − 3.70820i − 0.407028i −0.979072 0.203514i \(-0.934764\pi\)
0.979072 0.203514i \(-0.0652363\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.47214i 0.265041i
\(88\) 0 0
\(89\) 14.9443 1.58409 0.792045 0.610463i \(-0.209017\pi\)
0.792045 + 0.610463i \(0.209017\pi\)
\(90\) 0 0
\(91\) −14.4721 −1.51709
\(92\) 0 0
\(93\) − 8.00000i − 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 16.4721i − 1.67249i −0.548354 0.836246i \(-0.684746\pi\)
0.548354 0.836246i \(-0.315254\pi\)
\(98\) 0 0
\(99\) 2.94427 0.295910
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 3.23607i 0.318859i 0.987209 + 0.159430i \(0.0509655\pi\)
−0.987209 + 0.159430i \(0.949034\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.2361i 1.66627i 0.553067 + 0.833137i \(0.313457\pi\)
−0.553067 + 0.833137i \(0.686543\pi\)
\(108\) 0 0
\(109\) −14.9443 −1.43140 −0.715701 0.698407i \(-0.753893\pi\)
−0.715701 + 0.698407i \(0.753893\pi\)
\(110\) 0 0
\(111\) −8.58359 −0.814719
\(112\) 0 0
\(113\) 2.94427i 0.276974i 0.990364 + 0.138487i \(0.0442239\pi\)
−0.990364 + 0.138487i \(0.955776\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.58359i 0.608653i
\(118\) 0 0
\(119\) −14.4721 −1.32666
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 15.4164i 1.39005i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 20.1803i 1.79072i 0.445348 + 0.895358i \(0.353080\pi\)
−0.445348 + 0.895358i \(0.646920\pi\)
\(128\) 0 0
\(129\) 9.52786 0.838882
\(130\) 0 0
\(131\) −14.9443 −1.30569 −0.652844 0.757493i \(-0.726424\pi\)
−0.652844 + 0.757493i \(0.726424\pi\)
\(132\) 0 0
\(133\) − 14.4721i − 1.25489i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000i 0.170872i 0.996344 + 0.0854358i \(0.0272282\pi\)
−0.996344 + 0.0854358i \(0.972772\pi\)
\(138\) 0 0
\(139\) 20.4721 1.73642 0.868212 0.496194i \(-0.165269\pi\)
0.868212 + 0.496194i \(0.165269\pi\)
\(140\) 0 0
\(141\) −8.94427 −0.753244
\(142\) 0 0
\(143\) 8.94427i 0.747958i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 4.29180i − 0.353981i
\(148\) 0 0
\(149\) −6.94427 −0.568897 −0.284448 0.958691i \(-0.591810\pi\)
−0.284448 + 0.958691i \(0.591810\pi\)
\(150\) 0 0
\(151\) −23.4164 −1.90560 −0.952800 0.303598i \(-0.901812\pi\)
−0.952800 + 0.303598i \(0.901812\pi\)
\(152\) 0 0
\(153\) 6.58359i 0.532252i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.05573i 0.403491i 0.979438 + 0.201746i \(0.0646614\pi\)
−0.979438 + 0.201746i \(0.935339\pi\)
\(158\) 0 0
\(159\) 0.583592 0.0462819
\(160\) 0 0
\(161\) 15.4164 1.21498
\(162\) 0 0
\(163\) − 11.7082i − 0.917057i −0.888680 0.458529i \(-0.848377\pi\)
0.888680 0.458529i \(-0.151623\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 14.6525i − 1.13384i −0.823772 0.566921i \(-0.808134\pi\)
0.823772 0.566921i \(-0.191866\pi\)
\(168\) 0 0
\(169\) −7.00000 −0.538462
\(170\) 0 0
\(171\) −6.58359 −0.503460
\(172\) 0 0
\(173\) 10.9443i 0.832078i 0.909347 + 0.416039i \(0.136582\pi\)
−0.909347 + 0.416039i \(0.863418\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 10.4721i − 0.787134i
\(178\) 0 0
\(179\) −20.4721 −1.53016 −0.765080 0.643936i \(-0.777300\pi\)
−0.765080 + 0.643936i \(0.777300\pi\)
\(180\) 0 0
\(181\) 10.9443 0.813481 0.406741 0.913544i \(-0.366665\pi\)
0.406741 + 0.913544i \(0.366665\pi\)
\(182\) 0 0
\(183\) − 7.41641i − 0.548237i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.94427i 0.654070i
\(188\) 0 0
\(189\) −17.8885 −1.30120
\(190\) 0 0
\(191\) −11.4164 −0.826062 −0.413031 0.910717i \(-0.635530\pi\)
−0.413031 + 0.910717i \(0.635530\pi\)
\(192\) 0 0
\(193\) 11.5279i 0.829794i 0.909868 + 0.414897i \(0.136182\pi\)
−0.909868 + 0.414897i \(0.863818\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.472136i 0.0336383i 0.999859 + 0.0168191i \(0.00535395\pi\)
−0.999859 + 0.0168191i \(0.994646\pi\)
\(198\) 0 0
\(199\) −0.944272 −0.0669377 −0.0334688 0.999440i \(-0.510655\pi\)
−0.0334688 + 0.999440i \(0.510655\pi\)
\(200\) 0 0
\(201\) 9.52786 0.672044
\(202\) 0 0
\(203\) 6.47214i 0.454255i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 7.01316i − 0.487448i
\(208\) 0 0
\(209\) −8.94427 −0.618688
\(210\) 0 0
\(211\) 1.05573 0.0726793 0.0363397 0.999339i \(-0.488430\pi\)
0.0363397 + 0.999339i \(0.488430\pi\)
\(212\) 0 0
\(213\) 3.05573i 0.209375i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 20.9443i − 1.42179i
\(218\) 0 0
\(219\) 5.52786 0.373538
\(220\) 0 0
\(221\) −20.0000 −1.34535
\(222\) 0 0
\(223\) − 8.76393i − 0.586876i −0.955978 0.293438i \(-0.905201\pi\)
0.955978 0.293438i \(-0.0947995\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.1803i 0.675693i 0.941201 + 0.337846i \(0.109698\pi\)
−0.941201 + 0.337846i \(0.890302\pi\)
\(228\) 0 0
\(229\) −2.94427 −0.194563 −0.0972815 0.995257i \(-0.531015\pi\)
−0.0972815 + 0.995257i \(0.531015\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 0 0
\(233\) − 15.5279i − 1.01726i −0.860984 0.508632i \(-0.830151\pi\)
0.860984 0.508632i \(-0.169849\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 16.0000i 1.03931i
\(238\) 0 0
\(239\) −12.9443 −0.837295 −0.418648 0.908149i \(-0.637496\pi\)
−0.418648 + 0.908149i \(0.637496\pi\)
\(240\) 0 0
\(241\) 26.3607 1.69804 0.849020 0.528360i \(-0.177193\pi\)
0.849020 + 0.528360i \(0.177193\pi\)
\(242\) 0 0
\(243\) 13.5967i 0.872232i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 20.0000i − 1.27257i
\(248\) 0 0
\(249\) 4.58359 0.290473
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) − 9.52786i − 0.599012i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 2.94427i − 0.183659i −0.995775 0.0918293i \(-0.970729\pi\)
0.995775 0.0918293i \(-0.0292714\pi\)
\(258\) 0 0
\(259\) −22.4721 −1.39635
\(260\) 0 0
\(261\) 2.94427 0.182246
\(262\) 0 0
\(263\) − 17.7082i − 1.09193i −0.837806 0.545967i \(-0.816162\pi\)
0.837806 0.545967i \(-0.183838\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 18.4721i 1.13048i
\(268\) 0 0
\(269\) 23.8885 1.45651 0.728255 0.685306i \(-0.240332\pi\)
0.728255 + 0.685306i \(0.240332\pi\)
\(270\) 0 0
\(271\) 24.3607 1.47981 0.739903 0.672714i \(-0.234871\pi\)
0.739903 + 0.672714i \(0.234871\pi\)
\(272\) 0 0
\(273\) − 17.8885i − 1.08266i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 10.9443i − 0.657578i −0.944403 0.328789i \(-0.893360\pi\)
0.944403 0.328789i \(-0.106640\pi\)
\(278\) 0 0
\(279\) −9.52786 −0.570418
\(280\) 0 0
\(281\) 3.52786 0.210455 0.105227 0.994448i \(-0.466443\pi\)
0.105227 + 0.994448i \(0.466443\pi\)
\(282\) 0 0
\(283\) 8.29180i 0.492896i 0.969156 + 0.246448i \(0.0792635\pi\)
−0.969156 + 0.246448i \(0.920737\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 40.3607i 2.38242i
\(288\) 0 0
\(289\) −3.00000 −0.176471
\(290\) 0 0
\(291\) 20.3607 1.19356
\(292\) 0 0
\(293\) 23.8885i 1.39558i 0.716301 + 0.697792i \(0.245834\pi\)
−0.716301 + 0.697792i \(0.754166\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 11.0557i 0.641518i
\(298\) 0 0
\(299\) 21.3050 1.23210
\(300\) 0 0
\(301\) 24.9443 1.43776
\(302\) 0 0
\(303\) − 12.3607i − 0.710102i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0.291796i 0.0166537i 0.999965 + 0.00832684i \(0.00265055\pi\)
−0.999965 + 0.00832684i \(0.997349\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) 15.4164 0.874184 0.437092 0.899417i \(-0.356008\pi\)
0.437092 + 0.899417i \(0.356008\pi\)
\(312\) 0 0
\(313\) 28.8328i 1.62973i 0.579653 + 0.814864i \(0.303188\pi\)
−0.579653 + 0.814864i \(0.696812\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 20.4721i − 1.14983i −0.818213 0.574915i \(-0.805035\pi\)
0.818213 0.574915i \(-0.194965\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) 0 0
\(321\) −21.3050 −1.18913
\(322\) 0 0
\(323\) − 20.0000i − 1.11283i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 18.4721i − 1.02151i
\(328\) 0 0
\(329\) −23.4164 −1.29099
\(330\) 0 0
\(331\) −15.8885 −0.873313 −0.436657 0.899628i \(-0.643838\pi\)
−0.436657 + 0.899628i \(0.643838\pi\)
\(332\) 0 0
\(333\) 10.2229i 0.560212i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 5.05573i 0.275403i 0.990474 + 0.137702i \(0.0439715\pi\)
−0.990474 + 0.137702i \(0.956029\pi\)
\(338\) 0 0
\(339\) −3.63932 −0.197661
\(340\) 0 0
\(341\) −12.9443 −0.700972
\(342\) 0 0
\(343\) 11.4164i 0.616428i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.2361i 0.925281i 0.886546 + 0.462640i \(0.153098\pi\)
−0.886546 + 0.462640i \(0.846902\pi\)
\(348\) 0 0
\(349\) 14.9443 0.799949 0.399974 0.916526i \(-0.369019\pi\)
0.399974 + 0.916526i \(0.369019\pi\)
\(350\) 0 0
\(351\) −24.7214 −1.31953
\(352\) 0 0
\(353\) − 5.05573i − 0.269089i −0.990908 0.134545i \(-0.957043\pi\)
0.990908 0.134545i \(-0.0429572\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 17.8885i − 0.946762i
\(358\) 0 0
\(359\) −15.0557 −0.794611 −0.397305 0.917686i \(-0.630055\pi\)
−0.397305 + 0.917686i \(0.630055\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) − 8.65248i − 0.454137i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 18.2918i 0.954824i 0.878680 + 0.477412i \(0.158425\pi\)
−0.878680 + 0.477412i \(0.841575\pi\)
\(368\) 0 0
\(369\) 18.3607 0.955819
\(370\) 0 0
\(371\) 1.52786 0.0793227
\(372\) 0 0
\(373\) − 5.05573i − 0.261776i −0.991397 0.130888i \(-0.958217\pi\)
0.991397 0.130888i \(-0.0417828\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.94427i 0.460653i
\(378\) 0 0
\(379\) 15.5279 0.797613 0.398806 0.917035i \(-0.369425\pi\)
0.398806 + 0.917035i \(0.369425\pi\)
\(380\) 0 0
\(381\) −24.9443 −1.27793
\(382\) 0 0
\(383\) 10.2918i 0.525886i 0.964811 + 0.262943i \(0.0846932\pi\)
−0.964811 + 0.262943i \(0.915307\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 11.3475i − 0.576827i
\(388\) 0 0
\(389\) −11.8885 −0.602773 −0.301387 0.953502i \(-0.597449\pi\)
−0.301387 + 0.953502i \(0.597449\pi\)
\(390\) 0 0
\(391\) 21.3050 1.07744
\(392\) 0 0
\(393\) − 18.4721i − 0.931796i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 12.4721i − 0.625959i −0.949760 0.312979i \(-0.898673\pi\)
0.949760 0.312979i \(-0.101327\pi\)
\(398\) 0 0
\(399\) 17.8885 0.895547
\(400\) 0 0
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) − 28.9443i − 1.44182i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.8885i 0.688430i
\(408\) 0 0
\(409\) −17.4164 −0.861186 −0.430593 0.902546i \(-0.641696\pi\)
−0.430593 + 0.902546i \(0.641696\pi\)
\(410\) 0 0
\(411\) −2.47214 −0.121941
\(412\) 0 0
\(413\) − 27.4164i − 1.34907i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 25.3050i 1.23919i
\(418\) 0 0
\(419\) −4.47214 −0.218478 −0.109239 0.994016i \(-0.534841\pi\)
−0.109239 + 0.994016i \(0.534841\pi\)
\(420\) 0 0
\(421\) −28.8328 −1.40523 −0.702613 0.711572i \(-0.747983\pi\)
−0.702613 + 0.711572i \(0.747983\pi\)
\(422\) 0 0
\(423\) 10.6525i 0.517941i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 19.4164i − 0.939626i
\(428\) 0 0
\(429\) −11.0557 −0.533776
\(430\) 0 0
\(431\) 24.3607 1.17341 0.586706 0.809800i \(-0.300424\pi\)
0.586706 + 0.809800i \(0.300424\pi\)
\(432\) 0 0
\(433\) 0.472136i 0.0226894i 0.999936 + 0.0113447i \(0.00361121\pi\)
−0.999936 + 0.0113447i \(0.996389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21.3050i 1.01915i
\(438\) 0 0
\(439\) 15.0557 0.718571 0.359285 0.933228i \(-0.383020\pi\)
0.359285 + 0.933228i \(0.383020\pi\)
\(440\) 0 0
\(441\) −5.11146 −0.243403
\(442\) 0 0
\(443\) − 4.65248i − 0.221046i −0.993874 0.110523i \(-0.964747\pi\)
0.993874 0.110523i \(-0.0352526\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 8.58359i − 0.405990i
\(448\) 0 0
\(449\) 1.41641 0.0668444 0.0334222 0.999441i \(-0.489359\pi\)
0.0334222 + 0.999441i \(0.489359\pi\)
\(450\) 0 0
\(451\) 24.9443 1.17458
\(452\) 0 0
\(453\) − 28.9443i − 1.35992i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.88854i 0.181898i 0.995856 + 0.0909492i \(0.0289901\pi\)
−0.995856 + 0.0909492i \(0.971010\pi\)
\(458\) 0 0
\(459\) −24.7214 −1.15389
\(460\) 0 0
\(461\) 41.7771 1.94575 0.972876 0.231325i \(-0.0743061\pi\)
0.972876 + 0.231325i \(0.0743061\pi\)
\(462\) 0 0
\(463\) 1.12461i 0.0522651i 0.999658 + 0.0261326i \(0.00831920\pi\)
−0.999658 + 0.0261326i \(0.991681\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 41.5967i − 1.92487i −0.271516 0.962434i \(-0.587525\pi\)
0.271516 0.962434i \(-0.412475\pi\)
\(468\) 0 0
\(469\) 24.9443 1.15182
\(470\) 0 0
\(471\) −6.24922 −0.287949
\(472\) 0 0
\(473\) − 15.4164i − 0.708847i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 0.695048i − 0.0318241i
\(478\) 0 0
\(479\) 12.9443 0.591439 0.295719 0.955275i \(-0.404441\pi\)
0.295719 + 0.955275i \(0.404441\pi\)
\(480\) 0 0
\(481\) −31.0557 −1.41602
\(482\) 0 0
\(483\) 19.0557i 0.867066i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 12.7639i − 0.578389i −0.957270 0.289194i \(-0.906613\pi\)
0.957270 0.289194i \(-0.0933874\pi\)
\(488\) 0 0
\(489\) 14.4721 0.654453
\(490\) 0 0
\(491\) 21.0557 0.950232 0.475116 0.879923i \(-0.342406\pi\)
0.475116 + 0.879923i \(0.342406\pi\)
\(492\) 0 0
\(493\) 8.94427i 0.402830i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) 14.5836 0.652851 0.326426 0.945223i \(-0.394156\pi\)
0.326426 + 0.945223i \(0.394156\pi\)
\(500\) 0 0
\(501\) 18.1115 0.809160
\(502\) 0 0
\(503\) 5.12461i 0.228495i 0.993452 + 0.114248i \(0.0364457\pi\)
−0.993452 + 0.114248i \(0.963554\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 8.65248i − 0.384270i
\(508\) 0 0
\(509\) 16.8328 0.746101 0.373051 0.927811i \(-0.378312\pi\)
0.373051 + 0.927811i \(0.378312\pi\)
\(510\) 0 0
\(511\) 14.4721 0.640210
\(512\) 0 0
\(513\) − 24.7214i − 1.09147i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 14.4721i 0.636484i
\(518\) 0 0
\(519\) −13.5279 −0.593807
\(520\) 0 0
\(521\) −15.8885 −0.696090 −0.348045 0.937478i \(-0.613154\pi\)
−0.348045 + 0.937478i \(0.613154\pi\)
\(522\) 0 0
\(523\) 20.0689i 0.877551i 0.898597 + 0.438776i \(0.144588\pi\)
−0.898597 + 0.438776i \(0.855412\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 28.9443i − 1.26083i
\(528\) 0 0
\(529\) 0.304952 0.0132588
\(530\) 0 0
\(531\) −12.4721 −0.541245
\(532\) 0 0
\(533\) 55.7771i 2.41597i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 25.3050i − 1.09199i
\(538\) 0 0
\(539\) −6.94427 −0.299111
\(540\) 0 0
\(541\) 23.8885 1.02705 0.513524 0.858075i \(-0.328340\pi\)
0.513524 + 0.858075i \(0.328340\pi\)
\(542\) 0 0
\(543\) 13.5279i 0.580536i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 20.6525i − 0.883036i −0.897252 0.441518i \(-0.854440\pi\)
0.897252 0.441518i \(-0.145560\pi\)
\(548\) 0 0
\(549\) −8.83282 −0.376975
\(550\) 0 0
\(551\) −8.94427 −0.381039
\(552\) 0 0
\(553\) 41.8885i 1.78128i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.0557i 0.553189i 0.960987 + 0.276594i \(0.0892059\pi\)
−0.960987 + 0.276594i \(0.910794\pi\)
\(558\) 0 0
\(559\) 34.4721 1.45802
\(560\) 0 0
\(561\) −11.0557 −0.466773
\(562\) 0 0
\(563\) 4.29180i 0.180878i 0.995902 + 0.0904388i \(0.0288270\pi\)
−0.995902 + 0.0904388i \(0.971173\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 7.81966i − 0.328395i
\(568\) 0 0
\(569\) 34.3607 1.44047 0.720237 0.693728i \(-0.244033\pi\)
0.720237 + 0.693728i \(0.244033\pi\)
\(570\) 0 0
\(571\) 16.8328 0.704431 0.352216 0.935919i \(-0.385428\pi\)
0.352216 + 0.935919i \(0.385428\pi\)
\(572\) 0 0
\(573\) − 14.1115i − 0.589515i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 19.8885i 0.827971i 0.910283 + 0.413985i \(0.135864\pi\)
−0.910283 + 0.413985i \(0.864136\pi\)
\(578\) 0 0
\(579\) −14.2492 −0.592178
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) − 0.944272i − 0.0391077i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 8.65248i − 0.357126i −0.983928 0.178563i \(-0.942855\pi\)
0.983928 0.178563i \(-0.0571448\pi\)
\(588\) 0 0
\(589\) 28.9443 1.19263
\(590\) 0 0
\(591\) −0.583592 −0.0240058
\(592\) 0 0
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 1.16718i − 0.0477697i
\(598\) 0 0
\(599\) −21.8885 −0.894342 −0.447171 0.894449i \(-0.647568\pi\)
−0.447171 + 0.894449i \(0.647568\pi\)
\(600\) 0 0
\(601\) −22.3607 −0.912111 −0.456056 0.889951i \(-0.650738\pi\)
−0.456056 + 0.889951i \(0.650738\pi\)
\(602\) 0 0
\(603\) − 11.3475i − 0.462107i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 6.87539i − 0.279063i −0.990218 0.139532i \(-0.955440\pi\)
0.990218 0.139532i \(-0.0445597\pi\)
\(608\) 0 0
\(609\) −8.00000 −0.324176
\(610\) 0 0
\(611\) −32.3607 −1.30917
\(612\) 0 0
\(613\) − 19.5279i − 0.788723i −0.918955 0.394362i \(-0.870966\pi\)
0.918955 0.394362i \(-0.129034\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25.4164i 1.02323i 0.859216 + 0.511613i \(0.170952\pi\)
−0.859216 + 0.511613i \(0.829048\pi\)
\(618\) 0 0
\(619\) 20.4721 0.822845 0.411422 0.911445i \(-0.365032\pi\)
0.411422 + 0.911445i \(0.365032\pi\)
\(620\) 0 0
\(621\) 26.3344 1.05676
\(622\) 0 0
\(623\) 48.3607i 1.93753i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 11.0557i − 0.441523i
\(628\) 0 0
\(629\) −31.0557 −1.23827
\(630\) 0 0
\(631\) 34.4721 1.37231 0.686157 0.727453i \(-0.259296\pi\)
0.686157 + 0.727453i \(0.259296\pi\)
\(632\) 0 0
\(633\) 1.30495i 0.0518672i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 15.5279i − 0.615236i
\(638\) 0 0
\(639\) 3.63932 0.143969
\(640\) 0 0
\(641\) 0.472136 0.0186482 0.00932412 0.999957i \(-0.497032\pi\)
0.00932412 + 0.999957i \(0.497032\pi\)
\(642\) 0 0
\(643\) 22.1803i 0.874707i 0.899290 + 0.437354i \(0.144084\pi\)
−0.899290 + 0.437354i \(0.855916\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 12.7639i − 0.501802i −0.968013 0.250901i \(-0.919273\pi\)
0.968013 0.250901i \(-0.0807269\pi\)
\(648\) 0 0
\(649\) −16.9443 −0.665121
\(650\) 0 0
\(651\) 25.8885 1.01465
\(652\) 0 0
\(653\) 49.4164i 1.93381i 0.255130 + 0.966907i \(0.417882\pi\)
−0.255130 + 0.966907i \(0.582118\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 6.58359i − 0.256850i
\(658\) 0 0
\(659\) 21.4164 0.834265 0.417132 0.908846i \(-0.363035\pi\)
0.417132 + 0.908846i \(0.363035\pi\)
\(660\) 0 0
\(661\) 35.8885 1.39590 0.697951 0.716145i \(-0.254095\pi\)
0.697951 + 0.716145i \(0.254095\pi\)
\(662\) 0 0
\(663\) − 24.7214i − 0.960098i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 9.52786i − 0.368920i
\(668\) 0 0
\(669\) 10.8328 0.418821
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) 23.3050i 0.898340i 0.893446 + 0.449170i \(0.148280\pi\)
−0.893446 + 0.449170i \(0.851720\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 30.3607i − 1.16686i −0.812165 0.583428i \(-0.801711\pi\)
0.812165 0.583428i \(-0.198289\pi\)
\(678\) 0 0
\(679\) 53.3050 2.04566
\(680\) 0 0
\(681\) −12.5836 −0.482204
\(682\) 0 0
\(683\) 24.2918i 0.929500i 0.885442 + 0.464750i \(0.153856\pi\)
−0.885442 + 0.464750i \(0.846144\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 3.63932i − 0.138849i
\(688\) 0 0
\(689\) 2.11146 0.0804401
\(690\) 0 0
\(691\) 30.0000 1.14125 0.570627 0.821209i \(-0.306700\pi\)
0.570627 + 0.821209i \(0.306700\pi\)
\(692\) 0 0
\(693\) 9.52786i 0.361934i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 55.7771i 2.11271i
\(698\) 0 0
\(699\) 19.1935 0.725965
\(700\) 0 0
\(701\) −9.05573 −0.342030 −0.171015 0.985268i \(-0.554705\pi\)
−0.171015 + 0.985268i \(0.554705\pi\)
\(702\) 0 0
\(703\) − 31.0557i − 1.17129i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 32.3607i − 1.21705i
\(708\) 0 0
\(709\) 18.0000 0.676004 0.338002 0.941145i \(-0.390249\pi\)
0.338002 + 0.941145i \(0.390249\pi\)
\(710\) 0 0
\(711\) 19.0557 0.714646
\(712\) 0 0
\(713\) 30.8328i 1.15470i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 16.0000i − 0.597531i
\(718\) 0 0
\(719\) 22.8328 0.851520 0.425760 0.904836i \(-0.360007\pi\)
0.425760 + 0.904836i \(0.360007\pi\)
\(720\) 0 0
\(721\) −10.4721 −0.390003
\(722\) 0 0
\(723\) 32.5836i 1.21180i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 1.70820i − 0.0633538i −0.999498 0.0316769i \(-0.989915\pi\)
0.999498 0.0316769i \(-0.0100848\pi\)
\(728\) 0 0
\(729\) −24.0557 −0.890953
\(730\) 0 0
\(731\) 34.4721 1.27500
\(732\) 0 0
\(733\) − 51.8885i − 1.91655i −0.285853 0.958274i \(-0.592277\pi\)
0.285853 0.958274i \(-0.407723\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 15.4164i − 0.567871i
\(738\) 0 0
\(739\) 49.1935 1.80961 0.904806 0.425824i \(-0.140016\pi\)
0.904806 + 0.425824i \(0.140016\pi\)
\(740\) 0 0
\(741\) 24.7214 0.908162
\(742\) 0 0
\(743\) − 30.6525i − 1.12453i −0.826957 0.562265i \(-0.809930\pi\)
0.826957 0.562265i \(-0.190070\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 5.45898i − 0.199734i
\(748\) 0 0
\(749\) −55.7771 −2.03805
\(750\) 0 0
\(751\) −16.3607 −0.597010 −0.298505 0.954408i \(-0.596488\pi\)
−0.298505 + 0.954408i \(0.596488\pi\)
\(752\) 0 0
\(753\) 2.47214i 0.0900896i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 19.8885i 0.722861i 0.932399 + 0.361431i \(0.117712\pi\)
−0.932399 + 0.361431i \(0.882288\pi\)
\(758\) 0 0
\(759\) 11.7771 0.427481
\(760\) 0 0
\(761\) 3.88854 0.140960 0.0704798 0.997513i \(-0.477547\pi\)
0.0704798 + 0.997513i \(0.477547\pi\)
\(762\) 0 0
\(763\) − 48.3607i − 1.75077i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 37.8885i − 1.36808i
\(768\) 0 0
\(769\) 14.9443 0.538904 0.269452 0.963014i \(-0.413157\pi\)
0.269452 + 0.963014i \(0.413157\pi\)
\(770\) 0 0
\(771\) 3.63932 0.131067
\(772\) 0 0
\(773\) − 18.3607i − 0.660388i −0.943913 0.330194i \(-0.892886\pi\)
0.943913 0.330194i \(-0.107114\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 27.7771i − 0.996497i
\(778\) 0 0
\(779\) −55.7771 −1.99842
\(780\) 0 0
\(781\) 4.94427 0.176920
\(782\) 0 0
\(783\) 11.0557i 0.395099i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 44.0689i 1.57089i 0.618934 + 0.785443i \(0.287565\pi\)
−0.618934 + 0.785443i \(0.712435\pi\)
\(788\) 0 0
\(789\) 21.8885 0.779253
\(790\) 0 0
\(791\) −9.52786 −0.338772
\(792\) 0 0
\(793\) − 26.8328i − 0.952861i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 25.4164i − 0.900295i −0.892954 0.450148i \(-0.851371\pi\)
0.892954 0.450148i \(-0.148629\pi\)
\(798\) 0 0
\(799\) −32.3607 −1.14484
\(800\) 0 0
\(801\) 22.0000 0.777332
\(802\) 0 0
\(803\) − 8.94427i − 0.315637i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 29.5279i 1.03943i
\(808\) 0 0
\(809\) 12.1115 0.425816 0.212908 0.977072i \(-0.431707\pi\)
0.212908 + 0.977072i \(0.431707\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 0 0
\(813\) 30.1115i 1.05605i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 34.4721i 1.20603i
\(818\) 0 0
\(819\) −21.3050 −0.744455
\(820\) 0 0
\(821\) 21.0557 0.734850 0.367425 0.930053i \(-0.380239\pi\)
0.367425 + 0.930053i \(0.380239\pi\)
\(822\) 0 0
\(823\) − 1.70820i − 0.0595442i −0.999557 0.0297721i \(-0.990522\pi\)
0.999557 0.0297721i \(-0.00947816\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.18034i 0.214911i 0.994210 + 0.107456i \(0.0342704\pi\)
−0.994210 + 0.107456i \(0.965730\pi\)
\(828\) 0 0
\(829\) 38.0000 1.31979 0.659897 0.751356i \(-0.270600\pi\)
0.659897 + 0.751356i \(0.270600\pi\)
\(830\) 0 0
\(831\) 13.5279 0.469276
\(832\) 0 0
\(833\) − 15.5279i − 0.538009i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 35.7771i − 1.23664i
\(838\) 0 0
\(839\) 4.00000 0.138095 0.0690477 0.997613i \(-0.478004\pi\)
0.0690477 + 0.997613i \(0.478004\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 4.36068i 0.150190i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 22.6525i − 0.778348i
\(848\) 0 0
\(849\) −10.2492 −0.351752
\(850\) 0 0
\(851\) 33.0820 1.13404
\(852\) 0 0
\(853\) 7.52786i 0.257749i 0.991661 + 0.128875i \(0.0411365\pi\)
−0.991661 + 0.128875i \(0.958864\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.8328i 0.848273i 0.905598 + 0.424136i \(0.139422\pi\)
−0.905598 + 0.424136i \(0.860578\pi\)
\(858\) 0 0
\(859\) 49.4164 1.68607 0.843033 0.537862i \(-0.180768\pi\)
0.843033 + 0.537862i \(0.180768\pi\)
\(860\) 0 0
\(861\) −49.8885 −1.70020
\(862\) 0 0
\(863\) 18.2918i 0.622660i 0.950302 + 0.311330i \(0.100774\pi\)
−0.950302 + 0.311330i \(0.899226\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 3.70820i − 0.125937i
\(868\) 0 0
\(869\) 25.8885 0.878209
\(870\) 0 0
\(871\) 34.4721 1.16804
\(872\) 0 0
\(873\) − 24.2492i − 0.820712i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 51.8885i 1.75215i 0.482173 + 0.876076i \(0.339848\pi\)
−0.482173 + 0.876076i \(0.660152\pi\)
\(878\) 0 0
\(879\) −29.5279 −0.995950
\(880\) 0 0
\(881\) −24.4721 −0.824487 −0.412244 0.911074i \(-0.635255\pi\)
−0.412244 + 0.911074i \(0.635255\pi\)
\(882\) 0 0
\(883\) − 27.7082i − 0.932455i −0.884665 0.466228i \(-0.845613\pi\)
0.884665 0.466228i \(-0.154387\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 11.5967i − 0.389381i −0.980865 0.194690i \(-0.937630\pi\)
0.980865 0.194690i \(-0.0623702\pi\)
\(888\) 0 0
\(889\) −65.3050 −2.19026
\(890\) 0 0
\(891\) −4.83282 −0.161905
\(892\) 0 0
\(893\) − 32.3607i − 1.08291i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 26.3344i 0.879279i
\(898\) 0 0
\(899\) −12.9443 −0.431716
\(900\) 0 0
\(901\) 2.11146 0.0703428
\(902\) 0 0
\(903\) 30.8328i 1.02605i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 9.23607i 0.306679i 0.988174 + 0.153339i \(0.0490027\pi\)
−0.988174 + 0.153339i \(0.950997\pi\)
\(908\) 0 0
\(909\) −14.7214 −0.488277
\(910\) 0 0
\(911\) 53.3050 1.76607 0.883036 0.469305i \(-0.155496\pi\)
0.883036 + 0.469305i \(0.155496\pi\)
\(912\) 0 0
\(913\) − 7.41641i − 0.245447i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 48.3607i − 1.59701i
\(918\) 0 0
\(919\) −5.88854 −0.194245 −0.0971226 0.995272i \(-0.530964\pi\)
−0.0971226 + 0.995272i \(0.530964\pi\)
\(920\) 0 0
\(921\) −0.360680 −0.0118848
\(922\) 0 0
\(923\) 11.0557i 0.363904i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.76393i 0.156468i
\(928\) 0 0
\(929\) −24.4721 −0.802905 −0.401452 0.915880i \(-0.631494\pi\)
−0.401452 + 0.915880i \(0.631494\pi\)
\(930\) 0 0
\(931\) 15.5279 0.508905
\(932\) 0 0
\(933\) 19.0557i 0.623857i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 3.52786i − 0.115250i −0.998338 0.0576251i \(-0.981647\pi\)
0.998338 0.0576251i \(-0.0183528\pi\)
\(938\) 0 0
\(939\) −35.6393 −1.16305
\(940\) 0 0
\(941\) 44.8328 1.46151 0.730754 0.682641i \(-0.239169\pi\)
0.730754 + 0.682641i \(0.239169\pi\)
\(942\) 0 0
\(943\) − 59.4164i − 1.93486i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 21.8197i − 0.709044i −0.935048 0.354522i \(-0.884644\pi\)
0.935048 0.354522i \(-0.115356\pi\)
\(948\) 0 0
\(949\) 20.0000 0.649227
\(950\) 0 0
\(951\) 25.3050 0.820569
\(952\) 0 0
\(953\) − 45.7771i − 1.48287i −0.671027 0.741433i \(-0.734147\pi\)
0.671027 0.741433i \(-0.265853\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.94427i 0.159826i
\(958\) 0 0
\(959\) −6.47214 −0.208996
\(960\) 0 0
\(961\) 10.8885 0.351243
\(962\) 0 0
\(963\) 25.3738i 0.817660i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.34752i 0.0433335i 0.999765 + 0.0216667i \(0.00689727\pi\)
−0.999765 + 0.0216667i \(0.993103\pi\)
\(968\) 0 0
\(969\) 24.7214 0.794164
\(970\) 0 0
\(971\) −23.8885 −0.766620 −0.383310 0.923620i \(-0.625216\pi\)
−0.383310 + 0.923620i \(0.625216\pi\)
\(972\) 0 0
\(973\) 66.2492i 2.12385i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 39.3050i − 1.25748i −0.777617 0.628738i \(-0.783572\pi\)
0.777617 0.628738i \(-0.216428\pi\)
\(978\) 0 0
\(979\) 29.8885 0.955242
\(980\) 0 0
\(981\) −22.0000 −0.702406
\(982\) 0 0
\(983\) 39.0132i 1.24433i 0.782888 + 0.622163i \(0.213746\pi\)
−0.782888 + 0.622163i \(0.786254\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 28.9443i − 0.921306i
\(988\) 0 0
\(989\) −36.7214 −1.16767
\(990\) 0 0
\(991\) 17.5279 0.556791 0.278395 0.960467i \(-0.410197\pi\)
0.278395 + 0.960467i \(0.410197\pi\)
\(992\) 0 0
\(993\) − 19.6393i − 0.623235i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 34.5836i − 1.09527i −0.836716 0.547637i \(-0.815528\pi\)
0.836716 0.547637i \(-0.184472\pi\)
\(998\) 0 0
\(999\) −38.3870 −1.21451
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3200.2.c.w.2049.3 4
4.3 odd 2 3200.2.c.u.2049.2 4
5.2 odd 4 3200.2.a.be.1.2 2
5.3 odd 4 640.2.a.k.1.1 yes 2
5.4 even 2 inner 3200.2.c.w.2049.2 4
8.3 odd 2 3200.2.c.x.2049.3 4
8.5 even 2 3200.2.c.v.2049.2 4
15.8 even 4 5760.2.a.ci.1.2 2
20.3 even 4 640.2.a.i.1.2 2
20.7 even 4 3200.2.a.bl.1.1 2
20.19 odd 2 3200.2.c.u.2049.3 4
40.3 even 4 640.2.a.l.1.1 yes 2
40.13 odd 4 640.2.a.j.1.2 yes 2
40.19 odd 2 3200.2.c.x.2049.2 4
40.27 even 4 3200.2.a.bf.1.2 2
40.29 even 2 3200.2.c.v.2049.3 4
40.37 odd 4 3200.2.a.bk.1.1 2
60.23 odd 4 5760.2.a.ch.1.1 2
80.3 even 4 1280.2.d.m.641.3 4
80.13 odd 4 1280.2.d.k.641.2 4
80.43 even 4 1280.2.d.m.641.2 4
80.53 odd 4 1280.2.d.k.641.3 4
120.53 even 4 5760.2.a.cd.1.2 2
120.83 odd 4 5760.2.a.bw.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.2.a.i.1.2 2 20.3 even 4
640.2.a.j.1.2 yes 2 40.13 odd 4
640.2.a.k.1.1 yes 2 5.3 odd 4
640.2.a.l.1.1 yes 2 40.3 even 4
1280.2.d.k.641.2 4 80.13 odd 4
1280.2.d.k.641.3 4 80.53 odd 4
1280.2.d.m.641.2 4 80.43 even 4
1280.2.d.m.641.3 4 80.3 even 4
3200.2.a.be.1.2 2 5.2 odd 4
3200.2.a.bf.1.2 2 40.27 even 4
3200.2.a.bk.1.1 2 40.37 odd 4
3200.2.a.bl.1.1 2 20.7 even 4
3200.2.c.u.2049.2 4 4.3 odd 2
3200.2.c.u.2049.3 4 20.19 odd 2
3200.2.c.v.2049.2 4 8.5 even 2
3200.2.c.v.2049.3 4 40.29 even 2
3200.2.c.w.2049.2 4 5.4 even 2 inner
3200.2.c.w.2049.3 4 1.1 even 1 trivial
3200.2.c.x.2049.2 4 40.19 odd 2
3200.2.c.x.2049.3 4 8.3 odd 2
5760.2.a.bw.1.1 2 120.83 odd 4
5760.2.a.cd.1.2 2 120.53 even 4
5760.2.a.ch.1.1 2 60.23 odd 4
5760.2.a.ci.1.2 2 15.8 even 4