Properties

Label 3234.2.a.p.1.1
Level $3234$
Weight $2$
Character 3234.1
Self dual yes
Analytic conductor $25.824$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3234,2,Mod(1,3234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3234.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.8236200137\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 462)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3234.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} -2.00000 q^{10} +1.00000 q^{11} -1.00000 q^{12} +2.00000 q^{13} +2.00000 q^{15} +1.00000 q^{16} +2.00000 q^{17} +1.00000 q^{18} -2.00000 q^{20} +1.00000 q^{22} -1.00000 q^{24} -1.00000 q^{25} +2.00000 q^{26} -1.00000 q^{27} -2.00000 q^{29} +2.00000 q^{30} -4.00000 q^{31} +1.00000 q^{32} -1.00000 q^{33} +2.00000 q^{34} +1.00000 q^{36} -2.00000 q^{37} -2.00000 q^{39} -2.00000 q^{40} +10.0000 q^{41} +4.00000 q^{43} +1.00000 q^{44} -2.00000 q^{45} -4.00000 q^{47} -1.00000 q^{48} -1.00000 q^{50} -2.00000 q^{51} +2.00000 q^{52} -2.00000 q^{53} -1.00000 q^{54} -2.00000 q^{55} -2.00000 q^{58} +12.0000 q^{59} +2.00000 q^{60} +2.00000 q^{61} -4.00000 q^{62} +1.00000 q^{64} -4.00000 q^{65} -1.00000 q^{66} +12.0000 q^{67} +2.00000 q^{68} +8.00000 q^{71} +1.00000 q^{72} -6.00000 q^{73} -2.00000 q^{74} +1.00000 q^{75} -2.00000 q^{78} -8.00000 q^{79} -2.00000 q^{80} +1.00000 q^{81} +10.0000 q^{82} +8.00000 q^{83} -4.00000 q^{85} +4.00000 q^{86} +2.00000 q^{87} +1.00000 q^{88} +14.0000 q^{89} -2.00000 q^{90} +4.00000 q^{93} -4.00000 q^{94} -1.00000 q^{96} +14.0000 q^{97} +1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) −1.00000 −0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −2.00000 −0.632456
\(11\) 1.00000 0.301511
\(12\) −1.00000 −0.288675
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 1.00000 0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.00000 −0.204124
\(25\) −1.00000 −0.200000
\(26\) 2.00000 0.392232
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 2.00000 0.365148
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.00000 −0.174078
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) −2.00000 −0.316228
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 1.00000 0.150756
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) −1.00000 −0.141421
\(51\) −2.00000 −0.280056
\(52\) 2.00000 0.277350
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) −1.00000 −0.136083
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 2.00000 0.258199
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) −1.00000 −0.123091
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 1.00000 0.117851
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) −2.00000 −0.232495
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) −2.00000 −0.226455
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) −2.00000 −0.223607
\(81\) 1.00000 0.111111
\(82\) 10.0000 1.10432
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 4.00000 0.431331
\(87\) 2.00000 0.214423
\(88\) 1.00000 0.106600
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) −2.00000 −0.210819
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000 0.414781
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) −1.00000 −0.100000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) −2.00000 −0.198030
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) −2.00000 −0.190693
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) 2.00000 0.184900
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) 2.00000 0.182574
\(121\) 1.00000 0.0909091
\(122\) 2.00000 0.181071
\(123\) −10.0000 −0.901670
\(124\) −4.00000 −0.359211
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.00000 −0.352180
\(130\) −4.00000 −0.350823
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) 2.00000 0.172133
\(136\) 2.00000 0.171499
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 4.00000 0.336861
\(142\) 8.00000 0.671345
\(143\) 2.00000 0.167248
\(144\) 1.00000 0.0833333
\(145\) 4.00000 0.332182
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 1.00000 0.0816497
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) −2.00000 −0.160128
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) −8.00000 −0.636446
\(159\) 2.00000 0.158610
\(160\) −2.00000 −0.158114
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 10.0000 0.780869
\(165\) 2.00000 0.155700
\(166\) 8.00000 0.620920
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 2.00000 0.151620
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) −12.0000 −0.901975
\(178\) 14.0000 1.04934
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) −2.00000 −0.149071
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 4.00000 0.294086
\(186\) 4.00000 0.293294
\(187\) 2.00000 0.146254
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 14.0000 1.00514
\(195\) 4.00000 0.286446
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 1.00000 0.0710669
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −12.0000 −0.846415
\(202\) 10.0000 0.703598
\(203\) 0 0
\(204\) −2.00000 −0.140028
\(205\) −20.0000 −1.39686
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −2.00000 −0.137361
\(213\) −8.00000 −0.548151
\(214\) −12.0000 −0.820303
\(215\) −8.00000 −0.545595
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) 14.0000 0.948200
\(219\) 6.00000 0.405442
\(220\) −2.00000 −0.134840
\(221\) 4.00000 0.269069
\(222\) 2.00000 0.134231
\(223\) −20.0000 −1.33930 −0.669650 0.742677i \(-0.733556\pi\)
−0.669650 + 0.742677i \(0.733556\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 18.0000 1.19734
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 2.00000 0.130744
\(235\) 8.00000 0.521862
\(236\) 12.0000 0.781133
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 2.00000 0.129099
\(241\) −30.0000 −1.93247 −0.966235 0.257663i \(-0.917048\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) 1.00000 0.0642824
\(243\) −1.00000 −0.0641500
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) 0 0
\(248\) −4.00000 −0.254000
\(249\) −8.00000 −0.506979
\(250\) 12.0000 0.758947
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 4.00000 0.250490
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) −4.00000 −0.249029
\(259\) 0 0
\(260\) −4.00000 −0.248069
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) 32.0000 1.97320 0.986602 0.163144i \(-0.0521635\pi\)
0.986602 + 0.163144i \(0.0521635\pi\)
\(264\) −1.00000 −0.0615457
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) −14.0000 −0.856786
\(268\) 12.0000 0.733017
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 2.00000 0.121716
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 4.00000 0.238197
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) −13.0000 −0.764706
\(290\) 4.00000 0.234888
\(291\) −14.0000 −0.820695
\(292\) −6.00000 −0.351123
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) −2.00000 −0.116248
\(297\) −1.00000 −0.0580259
\(298\) −10.0000 −0.579284
\(299\) 0 0
\(300\) 1.00000 0.0577350
\(301\) 0 0
\(302\) 8.00000 0.460348
\(303\) −10.0000 −0.574485
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 2.00000 0.114332
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 8.00000 0.454369
\(311\) −20.0000 −1.13410 −0.567048 0.823685i \(-0.691915\pi\)
−0.567048 + 0.823685i \(0.691915\pi\)
\(312\) −2.00000 −0.113228
\(313\) 30.0000 1.69570 0.847850 0.530236i \(-0.177897\pi\)
0.847850 + 0.530236i \(0.177897\pi\)
\(314\) −18.0000 −1.01580
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 2.00000 0.112154
\(319\) −2.00000 −0.111979
\(320\) −2.00000 −0.111803
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −2.00000 −0.110940
\(326\) 4.00000 0.221540
\(327\) −14.0000 −0.774202
\(328\) 10.0000 0.552158
\(329\) 0 0
\(330\) 2.00000 0.110096
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 8.00000 0.439057
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) −24.0000 −1.31126
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) −9.00000 −0.489535
\(339\) −18.0000 −0.977626
\(340\) −4.00000 −0.216930
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 2.00000 0.107211
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 1.00000 0.0533002
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) −12.0000 −0.637793
\(355\) −16.0000 −0.849192
\(356\) 14.0000 0.741999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −32.0000 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(360\) −2.00000 −0.105409
\(361\) −19.0000 −1.00000
\(362\) −2.00000 −0.105118
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) −2.00000 −0.104542
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) 0 0
\(369\) 10.0000 0.520579
\(370\) 4.00000 0.207950
\(371\) 0 0
\(372\) 4.00000 0.207390
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 2.00000 0.103418
\(375\) −12.0000 −0.619677
\(376\) −4.00000 −0.206284
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) −8.00000 −0.409316
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 4.00000 0.203331
\(388\) 14.0000 0.710742
\(389\) 22.0000 1.11544 0.557722 0.830028i \(-0.311675\pi\)
0.557722 + 0.830028i \(0.311675\pi\)
\(390\) 4.00000 0.202548
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) 16.0000 0.805047
\(396\) 1.00000 0.0502519
\(397\) 30.0000 1.50566 0.752828 0.658217i \(-0.228689\pi\)
0.752828 + 0.658217i \(0.228689\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) −12.0000 −0.598506
\(403\) −8.00000 −0.398508
\(404\) 10.0000 0.497519
\(405\) −2.00000 −0.0993808
\(406\) 0 0
\(407\) −2.00000 −0.0991363
\(408\) −2.00000 −0.0990148
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) −20.0000 −0.987730
\(411\) −10.0000 −0.493264
\(412\) −4.00000 −0.197066
\(413\) 0 0
\(414\) 0 0
\(415\) −16.0000 −0.785409
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 12.0000 0.584151
\(423\) −4.00000 −0.194487
\(424\) −2.00000 −0.0971286
\(425\) −2.00000 −0.0970143
\(426\) −8.00000 −0.387601
\(427\) 0 0
\(428\) −12.0000 −0.580042
\(429\) −2.00000 −0.0965609
\(430\) −8.00000 −0.385794
\(431\) −40.0000 −1.92673 −0.963366 0.268190i \(-0.913575\pi\)
−0.963366 + 0.268190i \(0.913575\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) −4.00000 −0.191785
\(436\) 14.0000 0.670478
\(437\) 0 0
\(438\) 6.00000 0.286691
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) −2.00000 −0.0953463
\(441\) 0 0
\(442\) 4.00000 0.190261
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 2.00000 0.0949158
\(445\) −28.0000 −1.32733
\(446\) −20.0000 −0.947027
\(447\) 10.0000 0.472984
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 10.0000 0.470882
\(452\) 18.0000 0.846649
\(453\) −8.00000 −0.375873
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −38.0000 −1.77757 −0.888783 0.458329i \(-0.848448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(458\) 14.0000 0.654177
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) −2.00000 −0.0928477
\(465\) −8.00000 −0.370991
\(466\) −6.00000 −0.277945
\(467\) −4.00000 −0.185098 −0.0925490 0.995708i \(-0.529501\pi\)
−0.0925490 + 0.995708i \(0.529501\pi\)
\(468\) 2.00000 0.0924500
\(469\) 0 0
\(470\) 8.00000 0.369012
\(471\) 18.0000 0.829396
\(472\) 12.0000 0.552345
\(473\) 4.00000 0.183920
\(474\) 8.00000 0.367452
\(475\) 0 0
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) 16.0000 0.731823
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) 2.00000 0.0912871
\(481\) −4.00000 −0.182384
\(482\) −30.0000 −1.36646
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −28.0000 −1.27141
\(486\) −1.00000 −0.0453609
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 2.00000 0.0905357
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) −10.0000 −0.450835
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) −8.00000 −0.358489
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) −4.00000 −0.178529
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 0 0
\(505\) −20.0000 −0.889988
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 8.00000 0.354943
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 4.00000 0.177123
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) 8.00000 0.352522
\(516\) −4.00000 −0.176090
\(517\) −4.00000 −0.175920
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) −4.00000 −0.175412
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) −2.00000 −0.0875376
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 32.0000 1.39527
\(527\) −8.00000 −0.348485
\(528\) −1.00000 −0.0435194
\(529\) −23.0000 −1.00000
\(530\) 4.00000 0.173749
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) 20.0000 0.866296
\(534\) −14.0000 −0.605839
\(535\) 24.0000 1.03761
\(536\) 12.0000 0.518321
\(537\) −12.0000 −0.517838
\(538\) −10.0000 −0.431131
\(539\) 0 0
\(540\) 2.00000 0.0860663
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) 8.00000 0.343629
\(543\) 2.00000 0.0858282
\(544\) 2.00000 0.0857493
\(545\) −28.0000 −1.19939
\(546\) 0 0
\(547\) −44.0000 −1.88130 −0.940652 0.339372i \(-0.889785\pi\)
−0.940652 + 0.339372i \(0.889785\pi\)
\(548\) 10.0000 0.427179
\(549\) 2.00000 0.0853579
\(550\) −1.00000 −0.0426401
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −10.0000 −0.424859
\(555\) −4.00000 −0.169791
\(556\) 0 0
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) −4.00000 −0.169334
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) −2.00000 −0.0844401
\(562\) 10.0000 0.421825
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 4.00000 0.168430
\(565\) −36.0000 −1.51453
\(566\) −16.0000 −0.672530
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) −22.0000 −0.922288 −0.461144 0.887325i \(-0.652561\pi\)
−0.461144 + 0.887325i \(0.652561\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 2.00000 0.0836242
\(573\) 8.00000 0.334205
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) −13.0000 −0.540729
\(579\) −2.00000 −0.0831172
\(580\) 4.00000 0.166091
\(581\) 0 0
\(582\) −14.0000 −0.580319
\(583\) −2.00000 −0.0828315
\(584\) −6.00000 −0.248282
\(585\) −4.00000 −0.165380
\(586\) −14.0000 −0.578335
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −24.0000 −0.988064
\(591\) −6.00000 −0.246807
\(592\) −2.00000 −0.0821995
\(593\) 34.0000 1.39621 0.698106 0.715994i \(-0.254026\pi\)
0.698106 + 0.715994i \(0.254026\pi\)
\(594\) −1.00000 −0.0410305
\(595\) 0 0
\(596\) −10.0000 −0.409616
\(597\) 20.0000 0.818546
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 1.00000 0.0408248
\(601\) 18.0000 0.734235 0.367118 0.930175i \(-0.380345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 8.00000 0.325515
\(605\) −2.00000 −0.0813116
\(606\) −10.0000 −0.406222
\(607\) −32.0000 −1.29884 −0.649420 0.760430i \(-0.724988\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −4.00000 −0.161955
\(611\) −8.00000 −0.323645
\(612\) 2.00000 0.0808452
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) −8.00000 −0.322854
\(615\) 20.0000 0.806478
\(616\) 0 0
\(617\) 26.0000 1.04672 0.523360 0.852111i \(-0.324678\pi\)
0.523360 + 0.852111i \(0.324678\pi\)
\(618\) 4.00000 0.160904
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) −20.0000 −0.801927
\(623\) 0 0
\(624\) −2.00000 −0.0800641
\(625\) −19.0000 −0.760000
\(626\) 30.0000 1.19904
\(627\) 0 0
\(628\) −18.0000 −0.718278
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) −8.00000 −0.318223
\(633\) −12.0000 −0.476957
\(634\) 22.0000 0.873732
\(635\) −16.0000 −0.634941
\(636\) 2.00000 0.0793052
\(637\) 0 0
\(638\) −2.00000 −0.0791808
\(639\) 8.00000 0.316475
\(640\) −2.00000 −0.0790569
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 12.0000 0.473602
\(643\) −44.0000 −1.73519 −0.867595 0.497271i \(-0.834335\pi\)
−0.867595 + 0.497271i \(0.834335\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 1.00000 0.0392837
\(649\) 12.0000 0.471041
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) −14.0000 −0.547443
\(655\) 0 0
\(656\) 10.0000 0.390434
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 2.00000 0.0778499
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 20.0000 0.777322
\(663\) −4.00000 −0.155347
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 0 0
\(668\) 0 0
\(669\) 20.0000 0.773245
\(670\) −24.0000 −0.927201
\(671\) 2.00000 0.0772091
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) −22.0000 −0.847408
\(675\) 1.00000 0.0384900
\(676\) −9.00000 −0.346154
\(677\) −14.0000 −0.538064 −0.269032 0.963131i \(-0.586704\pi\)
−0.269032 + 0.963131i \(0.586704\pi\)
\(678\) −18.0000 −0.691286
\(679\) 0 0
\(680\) −4.00000 −0.153393
\(681\) 0 0
\(682\) −4.00000 −0.153168
\(683\) −28.0000 −1.07139 −0.535695 0.844411i \(-0.679950\pi\)
−0.535695 + 0.844411i \(0.679950\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) −14.0000 −0.534133
\(688\) 4.00000 0.152499
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 2.00000 0.0758098
\(697\) 20.0000 0.757554
\(698\) 26.0000 0.984115
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) −2.00000 −0.0754851
\(703\) 0 0
\(704\) 1.00000 0.0376889
\(705\) −8.00000 −0.301297
\(706\) 6.00000 0.225813
\(707\) 0 0
\(708\) −12.0000 −0.450988
\(709\) −2.00000 −0.0751116 −0.0375558 0.999295i \(-0.511957\pi\)
−0.0375558 + 0.999295i \(0.511957\pi\)
\(710\) −16.0000 −0.600469
\(711\) −8.00000 −0.300023
\(712\) 14.0000 0.524672
\(713\) 0 0
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 12.0000 0.448461
\(717\) −16.0000 −0.597531
\(718\) −32.0000 −1.19423
\(719\) −28.0000 −1.04422 −0.522112 0.852877i \(-0.674856\pi\)
−0.522112 + 0.852877i \(0.674856\pi\)
\(720\) −2.00000 −0.0745356
\(721\) 0 0
\(722\) −19.0000 −0.707107
\(723\) 30.0000 1.11571
\(724\) −2.00000 −0.0743294
\(725\) 2.00000 0.0742781
\(726\) −1.00000 −0.0371135
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 12.0000 0.444140
\(731\) 8.00000 0.295891
\(732\) −2.00000 −0.0739221
\(733\) −46.0000 −1.69905 −0.849524 0.527549i \(-0.823111\pi\)
−0.849524 + 0.527549i \(0.823111\pi\)
\(734\) 28.0000 1.03350
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000 0.442026
\(738\) 10.0000 0.368105
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 4.00000 0.147043
\(741\) 0 0
\(742\) 0 0
\(743\) −40.0000 −1.46746 −0.733729 0.679442i \(-0.762222\pi\)
−0.733729 + 0.679442i \(0.762222\pi\)
\(744\) 4.00000 0.146647
\(745\) 20.0000 0.732743
\(746\) 22.0000 0.805477
\(747\) 8.00000 0.292705
\(748\) 2.00000 0.0731272
\(749\) 0 0
\(750\) −12.0000 −0.438178
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) −4.00000 −0.145865
\(753\) 4.00000 0.145768
\(754\) −4.00000 −0.145671
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) −8.00000 −0.289809
\(763\) 0 0
\(764\) −8.00000 −0.289430
\(765\) −4.00000 −0.144620
\(766\) −12.0000 −0.433578
\(767\) 24.0000 0.866590
\(768\) −1.00000 −0.0360844
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 2.00000 0.0719816
\(773\) −10.0000 −0.359675 −0.179838 0.983696i \(-0.557557\pi\)
−0.179838 + 0.983696i \(0.557557\pi\)
\(774\) 4.00000 0.143777
\(775\) 4.00000 0.143684
\(776\) 14.0000 0.502571
\(777\) 0 0
\(778\) 22.0000 0.788738
\(779\) 0 0
\(780\) 4.00000 0.143223
\(781\) 8.00000 0.286263
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) 36.0000 1.28490
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 6.00000 0.213741
\(789\) −32.0000 −1.13923
\(790\) 16.0000 0.569254
\(791\) 0 0
\(792\) 1.00000 0.0355335
\(793\) 4.00000 0.142044
\(794\) 30.0000 1.06466
\(795\) −4.00000 −0.141865
\(796\) −20.0000 −0.708881
\(797\) −34.0000 −1.20434 −0.602171 0.798367i \(-0.705697\pi\)
−0.602171 + 0.798367i \(0.705697\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) −1.00000 −0.0353553
\(801\) 14.0000 0.494666
\(802\) 18.0000 0.635602
\(803\) −6.00000 −0.211735
\(804\) −12.0000 −0.423207
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) 10.0000 0.352017
\(808\) 10.0000 0.351799
\(809\) −14.0000 −0.492214 −0.246107 0.969243i \(-0.579151\pi\)
−0.246107 + 0.969243i \(0.579151\pi\)
\(810\) −2.00000 −0.0702728
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) −2.00000 −0.0701000
\(815\) −8.00000 −0.280228
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) −14.0000 −0.489499
\(819\) 0 0
\(820\) −20.0000 −0.698430
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) −10.0000 −0.348790
\(823\) −48.0000 −1.67317 −0.836587 0.547833i \(-0.815453\pi\)
−0.836587 + 0.547833i \(0.815453\pi\)
\(824\) −4.00000 −0.139347
\(825\) 1.00000 0.0348155
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 6.00000 0.208389 0.104194 0.994557i \(-0.466774\pi\)
0.104194 + 0.994557i \(0.466774\pi\)
\(830\) −16.0000 −0.555368
\(831\) 10.0000 0.346896
\(832\) 2.00000 0.0693375
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 4.00000 0.138260
\(838\) 12.0000 0.414533
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 6.00000 0.206774
\(843\) −10.0000 −0.344418
\(844\) 12.0000 0.413057
\(845\) 18.0000 0.619219
\(846\) −4.00000 −0.137523
\(847\) 0 0
\(848\) −2.00000 −0.0686803
\(849\) 16.0000 0.549119
\(850\) −2.00000 −0.0685994
\(851\) 0 0
\(852\) −8.00000 −0.274075
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 34.0000 1.16142 0.580709 0.814111i \(-0.302775\pi\)
0.580709 + 0.814111i \(0.302775\pi\)
\(858\) −2.00000 −0.0682789
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) −8.00000 −0.272798
\(861\) 0 0
\(862\) −40.0000 −1.36241
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 12.0000 0.408012
\(866\) −18.0000 −0.611665
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) −4.00000 −0.135613
\(871\) 24.0000 0.813209
\(872\) 14.0000 0.474100
\(873\) 14.0000 0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 6.00000 0.202721
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) −16.0000 −0.539974
\(879\) 14.0000 0.472208
\(880\) −2.00000 −0.0674200
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) 4.00000 0.134535
\(885\) 24.0000 0.806751
\(886\) −12.0000 −0.403148
\(887\) −24.0000 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(888\) 2.00000 0.0671156
\(889\) 0 0
\(890\) −28.0000 −0.938562
\(891\) 1.00000 0.0335013
\(892\) −20.0000 −0.669650
\(893\) 0 0
\(894\) 10.0000 0.334450
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) 0 0
\(898\) −30.0000 −1.00111
\(899\) 8.00000 0.266815
\(900\) −1.00000 −0.0333333
\(901\) −4.00000 −0.133259
\(902\) 10.0000 0.332964
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) 4.00000 0.132964
\(906\) −8.00000 −0.265782
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 0 0
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) −40.0000 −1.32526 −0.662630 0.748947i \(-0.730560\pi\)
−0.662630 + 0.748947i \(0.730560\pi\)
\(912\) 0 0
\(913\) 8.00000 0.264761
\(914\) −38.0000 −1.25693
\(915\) 4.00000 0.132236
\(916\) 14.0000 0.462573
\(917\) 0 0
\(918\) −2.00000 −0.0660098
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) 8.00000 0.263609
\(922\) 18.0000 0.592798
\(923\) 16.0000 0.526646
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) 16.0000 0.525793
\(927\) −4.00000 −0.131377
\(928\) −2.00000 −0.0656532
\(929\) 54.0000 1.77168 0.885841 0.463988i \(-0.153582\pi\)
0.885841 + 0.463988i \(0.153582\pi\)
\(930\) −8.00000 −0.262330
\(931\) 0 0
\(932\) −6.00000 −0.196537
\(933\) 20.0000 0.654771
\(934\) −4.00000 −0.130884
\(935\) −4.00000 −0.130814
\(936\) 2.00000 0.0653720
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) −30.0000 −0.979013
\(940\) 8.00000 0.260931
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 18.0000 0.586472
\(943\) 0 0
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) 4.00000 0.130051
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 8.00000 0.259828
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) −22.0000 −0.713399
\(952\) 0 0
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) −2.00000 −0.0647524
\(955\) 16.0000 0.517748
\(956\) 16.0000 0.517477
\(957\) 2.00000 0.0646508
\(958\) 32.0000 1.03387
\(959\) 0 0
\(960\) 2.00000 0.0645497
\(961\) −15.0000 −0.483871
\(962\) −4.00000 −0.128965
\(963\) −12.0000 −0.386695
\(964\) −30.0000 −0.966235
\(965\) −4.00000 −0.128765
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) −28.0000 −0.899026
\(971\) 52.0000 1.66876 0.834380 0.551190i \(-0.185826\pi\)
0.834380 + 0.551190i \(0.185826\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −32.0000 −1.02535
\(975\) 2.00000 0.0640513
\(976\) 2.00000 0.0640184
\(977\) 2.00000 0.0639857 0.0319928 0.999488i \(-0.489815\pi\)
0.0319928 + 0.999488i \(0.489815\pi\)
\(978\) −4.00000 −0.127906
\(979\) 14.0000 0.447442
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) −36.0000 −1.14881
\(983\) 4.00000 0.127580 0.0637901 0.997963i \(-0.479681\pi\)
0.0637901 + 0.997963i \(0.479681\pi\)
\(984\) −10.0000 −0.318788
\(985\) −12.0000 −0.382352
\(986\) −4.00000 −0.127386
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −2.00000 −0.0635642
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) −4.00000 −0.127000
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) 40.0000 1.26809
\(996\) −8.00000 −0.253490
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) 28.0000 0.886325
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3234.2.a.p.1.1 1
3.2 odd 2 9702.2.a.r.1.1 1
7.6 odd 2 462.2.a.g.1.1 1
21.20 even 2 1386.2.a.a.1.1 1
28.27 even 2 3696.2.a.m.1.1 1
77.76 even 2 5082.2.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
462.2.a.g.1.1 1 7.6 odd 2
1386.2.a.a.1.1 1 21.20 even 2
3234.2.a.p.1.1 1 1.1 even 1 trivial
3696.2.a.m.1.1 1 28.27 even 2
5082.2.a.n.1.1 1 77.76 even 2
9702.2.a.r.1.1 1 3.2 odd 2