Properties

Label 324.2.h.a
Level $324$
Weight $2$
Character orbit 324.h
Analytic conductor $2.587$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,2,Mod(107,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 324.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.58715302549\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} - 2 q^{4} + 2 \beta_1 q^{5} + ( - \beta_{2} + 2) q^{7} + 2 \beta_{3} q^{8} + ( - 4 \beta_{2} + 4) q^{10} + (2 \beta_{3} + 2 \beta_1) q^{11} + ( - \beta_{2} + 1) q^{13} + ( - \beta_{3} - \beta_1) q^{14}+ \cdots + 4 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 6 q^{7} + 8 q^{10} + 2 q^{13} + 16 q^{16} + 24 q^{22} + 6 q^{25} - 12 q^{28} - 12 q^{31} - 16 q^{34} - 4 q^{37} - 16 q^{40} - 12 q^{43} + 24 q^{46} - 8 q^{49} - 4 q^{52} - 16 q^{58} - 22 q^{61}+ \cdots + 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
107.1
−1.22474 + 0.707107i
1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i
1.41421i 0 −2.00000 −2.44949 + 1.41421i 0 1.50000 + 0.866025i 2.82843i 0 2.00000 + 3.46410i
107.2 1.41421i 0 −2.00000 2.44949 1.41421i 0 1.50000 + 0.866025i 2.82843i 0 2.00000 + 3.46410i
215.1 1.41421i 0 −2.00000 2.44949 + 1.41421i 0 1.50000 0.866025i 2.82843i 0 2.00000 3.46410i
215.2 1.41421i 0 −2.00000 −2.44949 1.41421i 0 1.50000 0.866025i 2.82843i 0 2.00000 3.46410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
36.f odd 6 1 inner
36.h even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 324.2.h.a 4
3.b odd 2 1 inner 324.2.h.a 4
4.b odd 2 1 324.2.h.b 4
9.c even 3 1 108.2.b.b 4
9.c even 3 1 324.2.h.b 4
9.d odd 6 1 108.2.b.b 4
9.d odd 6 1 324.2.h.b 4
12.b even 2 1 324.2.h.b 4
36.f odd 6 1 108.2.b.b 4
36.f odd 6 1 inner 324.2.h.a 4
36.h even 6 1 108.2.b.b 4
36.h even 6 1 inner 324.2.h.a 4
72.j odd 6 1 1728.2.c.d 4
72.l even 6 1 1728.2.c.d 4
72.n even 6 1 1728.2.c.d 4
72.p odd 6 1 1728.2.c.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
108.2.b.b 4 9.c even 3 1
108.2.b.b 4 9.d odd 6 1
108.2.b.b 4 36.f odd 6 1
108.2.b.b 4 36.h even 6 1
324.2.h.a 4 1.a even 1 1 trivial
324.2.h.a 4 3.b odd 2 1 inner
324.2.h.a 4 36.f odd 6 1 inner
324.2.h.a 4 36.h even 6 1 inner
324.2.h.b 4 4.b odd 2 1
324.2.h.b 4 9.c even 3 1
324.2.h.b 4 9.d odd 6 1
324.2.h.b 4 12.b even 2 1
1728.2.c.d 4 72.j odd 6 1
1728.2.c.d 4 72.l even 6 1
1728.2.c.d 4 72.n even 6 1
1728.2.c.d 4 72.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(324, [\chi])\):

\( T_{5}^{4} - 8T_{5}^{2} + 64 \) Copy content Toggle raw display
\( T_{7}^{2} - 3T_{7} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 8T^{2} + 64 \) Copy content Toggle raw display
$7$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 24T^{2} + 576 \) Copy content Toggle raw display
$13$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 24T^{2} + 576 \) Copy content Toggle raw display
$29$ \( T^{4} - 32T^{2} + 1024 \) Copy content Toggle raw display
$31$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$37$ \( (T + 1)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} - 32T^{2} + 1024 \) Copy content Toggle raw display
$43$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 24T^{2} + 576 \) Copy content Toggle raw display
$53$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 24T^{2} + 576 \) Copy content Toggle raw display
$61$ \( (T^{2} + 11 T + 121)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 21 T + 147)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T + 1)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 96T^{2} + 9216 \) Copy content Toggle raw display
$89$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 13 T + 169)^{2} \) Copy content Toggle raw display
show more
show less