Properties

Label 324.3.d.h
Level $324$
Weight $3$
Character orbit 324.d
Analytic conductor $8.828$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,3,Mod(163,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.163");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.389136420864.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 24x^{4} + 80x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + ( - \beta_{6} - 1) q^{4} + ( - \beta_{3} + \beta_{2} - 2 \beta_1) q^{5} + (\beta_{6} + \beta_{5} + \beta_{4} - 1) q^{7} + (\beta_{7} - \beta_{3} + \beta_{2} + \beta_1) q^{8} + (2 \beta_{6} + \beta_{4} - 7) q^{10}+ \cdots + ( - 20 \beta_{7} - 19 \beta_{3} + \cdots - 60 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 10 q^{4} - 50 q^{10} - 32 q^{13} - 46 q^{16} - 36 q^{22} + 48 q^{25} + 180 q^{28} - 122 q^{34} - 224 q^{37} + 154 q^{40} - 204 q^{46} - 232 q^{49} + 154 q^{52} - 86 q^{58} - 32 q^{61} - 10 q^{64}+ \cdots + 928 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 5x^{6} + 24x^{4} + 80x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + \nu^{3} + 4\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} - \nu^{5} - 20\nu^{3} + 64\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 5\nu^{5} + 24\nu^{3} + 80\nu ) / 64 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + \nu^{2} + 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} - \nu^{4} + 12\nu^{2} + 16 ) / 16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 5\nu^{4} + 24\nu^{2} + 64 ) / 16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -3\nu^{7} - 7\nu^{5} - 16\nu ) / 64 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + \beta_{5} - \beta_{4} - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{7} + 3\beta_{3} - 3\beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{6} - \beta_{5} + 9\beta_{4} - 13 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -2\beta_{7} - 7\beta_{3} - \beta_{2} + 37\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 13\beta_{6} - 19\beta_{5} - 21\beta_{4} + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -38\beta_{7} + 11\beta_{3} - 3\beta_{2} - 81\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
1.52274 1.29664i
1.52274 + 1.29664i
0.656712 1.88911i
0.656712 + 1.88911i
−0.656712 1.88911i
−0.656712 + 1.88911i
−1.52274 1.29664i
−1.52274 + 1.29664i
−1.52274 1.29664i 0 0.637459 + 3.94888i 7.82300 0 12.3894i 4.14959 6.83966i 0 −11.9124 10.1436i
163.2 −1.52274 + 1.29664i 0 0.637459 3.94888i 7.82300 0 12.3894i 4.14959 + 6.83966i 0 −11.9124 + 10.1436i
163.3 −0.656712 1.88911i 0 −3.13746 + 2.48120i 0.894797 0 1.58166i 6.74766 + 4.29756i 0 −0.587624 1.69037i
163.4 −0.656712 + 1.88911i 0 −3.13746 2.48120i 0.894797 0 1.58166i 6.74766 4.29756i 0 −0.587624 + 1.69037i
163.5 0.656712 1.88911i 0 −3.13746 2.48120i −0.894797 0 1.58166i −6.74766 + 4.29756i 0 −0.587624 + 1.69037i
163.6 0.656712 + 1.88911i 0 −3.13746 + 2.48120i −0.894797 0 1.58166i −6.74766 4.29756i 0 −0.587624 1.69037i
163.7 1.52274 1.29664i 0 0.637459 3.94888i −7.82300 0 12.3894i −4.14959 6.83966i 0 −11.9124 + 10.1436i
163.8 1.52274 + 1.29664i 0 0.637459 + 3.94888i −7.82300 0 12.3894i −4.14959 + 6.83966i 0 −11.9124 10.1436i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 163.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 324.3.d.h 8
3.b odd 2 1 inner 324.3.d.h 8
4.b odd 2 1 inner 324.3.d.h 8
9.c even 3 2 324.3.f.s 16
9.d odd 6 2 324.3.f.s 16
12.b even 2 1 inner 324.3.d.h 8
36.f odd 6 2 324.3.f.s 16
36.h even 6 2 324.3.f.s 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
324.3.d.h 8 1.a even 1 1 trivial
324.3.d.h 8 3.b odd 2 1 inner
324.3.d.h 8 4.b odd 2 1 inner
324.3.d.h 8 12.b even 2 1 inner
324.3.f.s 16 9.c even 3 2
324.3.f.s 16 9.d odd 6 2
324.3.f.s 16 36.f odd 6 2
324.3.f.s 16 36.h even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 62T_{5}^{2} + 49 \) acting on \(S_{3}^{\mathrm{new}}(324, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 5 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 62 T^{2} + 49)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 156 T^{2} + 384)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 276 T^{2} + 18816)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 8 T - 41)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 758 T^{2} + 52441)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 828 T^{2} + 169344)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 756 T^{2} + 384)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 422 T^{2} + 29929)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 2544 T^{2} + 301056)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 56 T + 727)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 176 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 10812 T^{2} + 28201344)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 5376 T^{2} + 6291456)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 5744 T^{2} + 861184)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 1344 T^{2} + 393216)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 8 T - 2777)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 5052 T^{2} + 322944)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 12852 T^{2} + 39567744)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 94 T + 1981)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + 9468 T^{2} + 921984)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 1104 T^{2} + 301056)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 15926 T^{2} + 52374169)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 232 T + 13228)^{4} \) Copy content Toggle raw display
show more
show less