Properties

Label 324.4.b.a.323.4
Level 324324
Weight 44
Character 324.323
Analytic conductor 19.11719.117
Analytic rank 00
Dimension 44
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,4,Mod(323,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.323");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 324=2234 324 = 2^{2} \cdot 3^{4}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 324.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.116618841919.1166188419
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+4x2+1 x^{4} + 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 34 3^{4}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 323.4
Root 0.517638i0.517638i of defining polynomial
Character χ\chi == 324.323
Dual form 324.4.b.a.323.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.82843iq28.00000q4+1.83032iq522.6274iq85.17691q1030.4115q13+64.0000q16117.714iq1714.6425iq20+121.650q2586.0168iq26199.075iq29+181.019iq32+332.946q34+449.946q37+41.4153q40+171.120iq41+343.000q49+344.078iq50+243.292q52770.746iq53+563.069q58820.300q61512.000q6455.6627iq65+941.714iq68+1246.90q73+1272.64iq74+117.140iq80484.000q82+215.454q85262.225iq891816.00q97+970.151iq98+O(q100)q+2.82843i q^{2} -8.00000 q^{4} +1.83032i q^{5} -22.6274i q^{8} -5.17691 q^{10} -30.4115 q^{13} +64.0000 q^{16} -117.714i q^{17} -14.6425i q^{20} +121.650 q^{25} -86.0168i q^{26} -199.075i q^{29} +181.019i q^{32} +332.946 q^{34} +449.946 q^{37} +41.4153 q^{40} +171.120i q^{41} +343.000 q^{49} +344.078i q^{50} +243.292 q^{52} -770.746i q^{53} +563.069 q^{58} -820.300 q^{61} -512.000 q^{64} -55.6627i q^{65} +941.714i q^{68} +1246.90 q^{73} +1272.64i q^{74} +117.140i q^{80} -484.000 q^{82} +215.454 q^{85} -262.225i q^{89} -1816.00 q^{97} +970.151i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q32q4+104q10184q13+256q16324q2540q34+428q37832q40+1372q49+1472q52616q581660q612048q64+1184q731936q82+7264q97+O(q100) 4 q - 32 q^{4} + 104 q^{10} - 184 q^{13} + 256 q^{16} - 324 q^{25} - 40 q^{34} + 428 q^{37} - 832 q^{40} + 1372 q^{49} + 1472 q^{52} - 616 q^{58} - 1660 q^{61} - 2048 q^{64} + 1184 q^{73} - 1936 q^{82}+ \cdots - 7264 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/324Z)×\left(\mathbb{Z}/324\mathbb{Z}\right)^\times.

nn 163163 245245
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.82843i 1.00000i
33 0 0
44 −8.00000 −1.00000
55 1.83032i 0.163708i 0.996644 + 0.0818542i 0.0260842π0.0260842\pi
−0.996644 + 0.0818542i 0.973916π0.973916\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 − 22.6274i − 1.00000i
99 0 0
1010 −5.17691 −0.163708
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 −30.4115 −0.648819 −0.324409 0.945917i 0.605166π-0.605166\pi
−0.324409 + 0.945917i 0.605166π0.605166\pi
1414 0 0
1515 0 0
1616 64.0000 1.00000
1717 − 117.714i − 1.67941i −0.543047 0.839703i 0.682729π-0.682729\pi
0.543047 0.839703i 0.317271π-0.317271\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 − 14.6425i − 0.163708i
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 121.650 0.973200
2626 − 86.0168i − 0.648819i
2727 0 0
2828 0 0
2929 − 199.075i − 1.27473i −0.770560 0.637367i 0.780023π-0.780023\pi
0.770560 0.637367i 0.219977π-0.219977\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 181.019i 1.00000i
3333 0 0
3434 332.946 1.67941
3535 0 0
3636 0 0
3737 449.946 1.99921 0.999604 0.0281490i 0.00896130π-0.00896130\pi
0.999604 + 0.0281490i 0.00896130π0.00896130\pi
3838 0 0
3939 0 0
4040 41.4153 0.163708
4141 171.120i 0.651815i 0.945402 + 0.325908i 0.105670π0.105670\pi
−0.945402 + 0.325908i 0.894330π0.894330\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 343.000 1.00000
5050 344.078i 0.973200i
5151 0 0
5252 243.292 0.648819
5353 − 770.746i − 1.99755i −0.0494806 0.998775i 0.515757π-0.515757\pi
0.0494806 0.998775i 0.484243π-0.484243\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 563.069 1.27473
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 −820.300 −1.72178 −0.860890 0.508790i 0.830093π-0.830093\pi
−0.860890 + 0.508790i 0.830093π0.830093\pi
6262 0 0
6363 0 0
6464 −512.000 −1.00000
6565 − 55.6627i − 0.106217i
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 941.714i 1.67941i
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 1246.90 1.99915 0.999576 0.0291103i 0.00926742π-0.00926742\pi
0.999576 + 0.0291103i 0.00926742π0.00926742\pi
7474 1272.64i 1.99921i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 117.140i 0.163708i
8181 0 0
8282 −484.000 −0.651815
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 215.454 0.274933
8686 0 0
8787 0 0
8888 0 0
8989 − 262.225i − 0.312312i −0.987732 0.156156i 0.950090π-0.950090\pi
0.987732 0.156156i 0.0499103π-0.0499103\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −1816.00 −1.90090 −0.950448 0.310884i 0.899375π-0.899375\pi
−0.950448 + 0.310884i 0.899375π0.899375\pi
9898 970.151i 1.00000i
9999 0 0
100100 −973.200 −0.973200
101101 − 948.937i − 0.934879i −0.884025 0.467440i 0.845177π-0.845177\pi
0.884025 0.467440i 0.154823π-0.154823\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 688.135i 0.648819i
105105 0 0
106106 2180.00 1.99755
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 782.080 0.687245 0.343623 0.939108i 0.388346π-0.388346\pi
0.343623 + 0.939108i 0.388346π0.388346\pi
110110 0 0
111111 0 0
112112 0 0
113113 − 2277.50i − 1.89601i −0.318261 0.948003i 0.603099π-0.603099\pi
0.318261 0.948003i 0.396901π-0.396901\pi
114114 0 0
115115 0 0
116116 1592.60i 1.27473i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −1331.00 −1.00000
122122 − 2320.16i − 1.72178i
123123 0 0
124124 0 0
125125 451.447i 0.323029i
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 − 1448.15i − 1.00000i
129129 0 0
130130 157.438 0.106217
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −2663.57 −1.67941
137137 − 2265.75i − 1.41296i −0.707732 0.706481i 0.750282π-0.750282\pi
0.707732 0.706481i 0.249718π-0.249718\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 364.370 0.208685
146146 3526.75i 1.99915i
147147 0 0
148148 −3599.57 −1.99921
149149 − 3150.97i − 1.73247i −0.499638 0.866234i 0.666534π-0.666534\pi
0.499638 0.866234i 0.333466π-0.333466\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −3255.28 −1.65478 −0.827388 0.561630i 0.810174π-0.810174\pi
−0.827388 + 0.561630i 0.810174π0.810174\pi
158158 0 0
159159 0 0
160160 −331.323 −0.163708
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 − 1368.96i − 0.651815i
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 −1272.14 −0.579034
170170 609.396i 0.274933i
171171 0 0
172172 0 0
173173 3422.17i 1.50394i 0.659195 + 0.751972i 0.270897π0.270897\pi
−0.659195 + 0.751972i 0.729103π0.729103\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 741.684 0.312312
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −2860.00 −1.17449 −0.587243 0.809410i 0.699787π-0.699787\pi
−0.587243 + 0.809410i 0.699787π0.699787\pi
182182 0 0
183183 0 0
184184 0 0
185185 823.543i 0.327287i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 2743.35 1.02317 0.511583 0.859234i 0.329059π-0.329059\pi
0.511583 + 0.859234i 0.329059π0.329059\pi
194194 − 5136.42i − 1.90090i
195195 0 0
196196 −2744.00 −1.00000
197197 264.661i 0.0957174i 0.998854 + 0.0478587i 0.0152397π0.0152397\pi
−0.998854 + 0.0478587i 0.984760π0.984760\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 − 2752.62i − 0.973200i
201201 0 0
202202 2684.00 0.934879
203203 0 0
204204 0 0
205205 −313.203 −0.106708
206206 0 0
207207 0 0
208208 −1946.34 −0.648819
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 6165.97i 1.99755i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 2212.06i 0.687245i
219219 0 0
220220 0 0
221221 3579.87i 1.08963i
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 0 0
226226 6441.73 1.89601
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 4191.90 1.20964 0.604822 0.796360i 0.293244π-0.293244\pi
0.604822 + 0.796360i 0.293244π0.293244\pi
230230 0 0
231231 0 0
232232 −4504.55 −1.27473
233233 7001.26i 1.96853i 0.176698 + 0.984265i 0.443458π0.443458\pi
−0.176698 + 0.984265i 0.556542π0.556542\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 7234.59 1.93370 0.966849 0.255349i 0.0821903π-0.0821903\pi
0.966849 + 0.255349i 0.0821903π0.0821903\pi
242242 − 3764.64i − 1.00000i
243243 0 0
244244 6562.40 1.72178
245245 627.798i 0.163708i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 −1276.89 −0.323029
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 4096.00 1.00000
257257 8217.16i 1.99445i 0.0744739 + 0.997223i 0.476272π0.476272\pi
−0.0744739 + 0.997223i 0.523728π0.523728\pi
258258 0 0
259259 0 0
260260 445.302i 0.106217i
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 1410.71 0.327016
266266 0 0
267267 0 0
268268 0 0
269269 − 6981.10i − 1.58232i −0.611607 0.791162i 0.709477π-0.709477\pi
0.611607 0.791162i 0.290523π-0.290523\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 − 7533.71i − 1.67941i
273273 0 0
274274 6408.50 1.41296
275275 0 0
276276 0 0
277277 1316.00 0.285454 0.142727 0.989762i 0.454413π-0.454413\pi
0.142727 + 0.989762i 0.454413π0.454413\pi
278278 0 0
279279 0 0
280280 0 0
281281 5677.75i 1.20536i 0.797983 + 0.602680i 0.205900π0.205900\pi
−0.797983 + 0.602680i 0.794100π0.794100\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −8943.63 −1.82040
290290 1030.59i 0.208685i
291291 0 0
292292 −9975.17 −1.99915
293293 5771.93i 1.15085i 0.817853 + 0.575427i 0.195164π0.195164\pi
−0.817853 + 0.575427i 0.804836π0.804836\pi
294294 0 0
295295 0 0
296296 − 10181.1i − 1.99921i
297297 0 0
298298 8912.30 1.73247
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 − 1501.41i − 0.281870i
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 10963.8 1.97991 0.989954 0.141388i 0.0451565π-0.0451565\pi
0.989954 + 0.141388i 0.0451565π0.0451565\pi
314314 − 9207.33i − 1.65478i
315315 0 0
316316 0 0
317317 1857.56i 0.329120i 0.986367 + 0.164560i 0.0526204π0.0526204\pi
−0.986367 + 0.164560i 0.947380π0.947380\pi
318318 0 0
319319 0 0
320320 − 937.122i − 0.163708i
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 −3699.56 −0.631430
326326 0 0
327327 0 0
328328 3872.00 0.651815
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 416.000 0.0672432 0.0336216 0.999435i 0.489296π-0.489296\pi
0.0336216 + 0.999435i 0.489296π0.489296\pi
338338 − 3598.15i − 0.579034i
339339 0 0
340340 −1723.63 −0.274933
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −9679.35 −1.50394
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 9470.00 1.45249 0.726243 0.687438i 0.241265π-0.241265\pi
0.726243 + 0.687438i 0.241265π0.241265\pi
350350 0 0
351351 0 0
352352 0 0
353353 − 6752.87i − 1.01818i −0.860712 0.509092i 0.829981π-0.829981\pi
0.860712 0.509092i 0.170019π-0.170019\pi
354354 0 0
355355 0 0
356356 2097.80i 0.312312i
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 6859.00 1.00000
362362 − 8089.30i − 1.17449i
363363 0 0
364364 0 0
365365 2282.21i 0.327278i
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 −2329.33 −0.327287
371371 0 0
372372 0 0
373373 −12922.0 −1.79377 −0.896884 0.442265i 0.854175π-0.854175\pi
−0.896884 + 0.442265i 0.854175π0.854175\pi
374374 0 0
375375 0 0
376376 0 0
377377 6054.18i 0.827072i
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 7759.38i 1.02317i
387387 0 0
388388 14528.0 1.90090
389389 10582.6i 1.37932i 0.724131 + 0.689662i 0.242241π0.242241\pi
−0.724131 + 0.689662i 0.757759π0.757759\pi
390390 0 0
391391 0 0
392392 − 7761.20i − 1.00000i
393393 0 0
394394 −748.575 −0.0957174
395395 0 0
396396 0 0
397397 −15687.7 −1.98324 −0.991619 0.129199i 0.958759π-0.958759\pi
−0.991619 + 0.129199i 0.958759π0.958759\pi
398398 0 0
399399 0 0
400400 7785.60 0.973200
401401 − 14718.3i − 1.83290i −0.400145 0.916452i 0.631040π-0.631040\pi
0.400145 0.916452i 0.368960π-0.368960\pi
402402 0 0
403403 0 0
404404 7591.50i 0.934879i
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 13648.6 1.65008 0.825038 0.565078i 0.191154π-0.191154\pi
0.825038 + 0.565078i 0.191154π0.191154\pi
410410 − 885.873i − 0.106708i
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 − 5505.08i − 0.648819i
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −16137.0 −1.86810 −0.934050 0.357142i 0.883751π-0.883751\pi
−0.934050 + 0.357142i 0.883751π0.883751\pi
422422 0 0
423423 0 0
424424 −17440.0 −1.99755
425425 − 14319.9i − 1.63440i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 12596.3 1.39801 0.699005 0.715117i 0.253627π-0.253627\pi
0.699005 + 0.715117i 0.253627π0.253627\pi
434434 0 0
435435 0 0
436436 −6256.64 −0.687245
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 −10125.4 −1.08963
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 479.954 0.0511281
446446 0 0
447447 0 0
448448 0 0
449449 18550.2i 1.94975i 0.222742 + 0.974877i 0.428499π0.428499\pi
−0.222742 + 0.974877i 0.571501π0.571501\pi
450450 0 0
451451 0 0
452452 18220.0i 1.89601i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −9066.62 −0.928049 −0.464024 0.885822i 0.653595π-0.653595\pi
−0.464024 + 0.885822i 0.653595π0.653595\pi
458458 11856.5i 1.20964i
459459 0 0
460460 0 0
461461 12262.6i 1.23889i 0.785040 + 0.619445i 0.212642π0.212642\pi
−0.785040 + 0.619445i 0.787358π0.787358\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 − 12740.8i − 1.27473i
465465 0 0
466466 −19802.5 −1.96853
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 −13683.6 −1.29712
482482 20462.5i 1.93370i
483483 0 0
484484 10648.0 1.00000
485485 − 3323.85i − 0.311193i
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 18561.3i 1.72178i
489489 0 0
490490 −1775.68 −0.163708
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 −23434.0 −2.14080
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 − 3611.58i − 0.323029i
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 1736.85 0.153048
506506 0 0
507507 0 0
508508 0 0
509509 − 22815.5i − 1.98680i −0.114715 0.993398i 0.536596π-0.536596\pi
0.114715 0.993398i 0.463404π-0.463404\pi
510510 0 0
511511 0 0
512512 11585.2i 1.00000i
513513 0 0
514514 −23241.6 −1.99445
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 −1259.50 −0.106217
521521 − 15738.8i − 1.32347i −0.749737 0.661736i 0.769820π-0.769820\pi
0.749737 0.661736i 0.230180π-0.230180\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −12167.0 −1.00000
530530 3990.09i 0.327016i
531531 0 0
532532 0 0
533533 − 5204.02i − 0.422910i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 19745.5 1.58232
539539 0 0
540540 0 0
541541 7101.40 0.564349 0.282175 0.959363i 0.408944π-0.408944\pi
0.282175 + 0.959363i 0.408944π0.408944\pi
542542 0 0
543543 0 0
544544 21308.5 1.67941
545545 1431.45i 0.112508i
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 18126.0i 1.41296i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 3722.21i 0.285454i
555555 0 0
556556 0 0
557557 − 14760.1i − 1.12281i −0.827541 0.561406i 0.810261π-0.810261\pi
0.827541 0.561406i 0.189739π-0.189739\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −16059.1 −1.20536
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 4168.54 0.310392
566566 0 0
567567 0 0
568568 0 0
569569 − 27000.4i − 1.98930i −0.103286 0.994652i 0.532936π-0.532936\pi
0.103286 0.994652i 0.467064π-0.467064\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 25546.2 1.84316 0.921578 0.388194i 0.126901π-0.126901\pi
0.921578 + 0.388194i 0.126901π0.126901\pi
578578 − 25296.4i − 1.82040i
579579 0 0
580580 −2914.96 −0.208685
581581 0 0
582582 0 0
583583 0 0
584584 − 28214.0i − 1.99915i
585585 0 0
586586 −16325.5 −1.15085
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 28796.5 1.99921
593593 27549.9i 1.90782i 0.300089 + 0.953911i 0.402983π0.402983\pi
−0.300089 + 0.953911i 0.597017π0.597017\pi
594594 0 0
595595 0 0
596596 25207.8i 1.73247i
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 12311.2 0.835580 0.417790 0.908544i 0.362805π-0.362805\pi
0.417790 + 0.908544i 0.362805π0.362805\pi
602602 0 0
603603 0 0
604604 0 0
605605 − 2436.15i − 0.163708i
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 4246.62 0.281870
611611 0 0
612612 0 0
613613 23222.0 1.53006 0.765031 0.643994i 0.222724π-0.222724\pi
0.765031 + 0.643994i 0.222724π0.222724\pi
614614 0 0
615615 0 0
616616 0 0
617617 − 21559.4i − 1.40672i −0.710833 0.703361i 0.751682π-0.751682\pi
0.710833 0.703361i 0.248318π-0.248318\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 14380.0 0.920317
626626 31010.3i 1.97991i
627627 0 0
628628 26042.3 1.65478
629629 − 52965.0i − 3.35748i
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 −5253.98 −0.329120
635635 0 0
636636 0 0
637637 −10431.2 −0.648819
638638 0 0
639639 0 0
640640 2650.58 0.163708
641641 − 21832.2i − 1.34527i −0.739974 0.672636i 0.765162π-0.765162\pi
0.739974 0.672636i 0.234838π-0.234838\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 − 10463.9i − 0.631430i
651651 0 0
652652 0 0
653653 24303.3i 1.45645i 0.685340 + 0.728224i 0.259654π0.259654\pi
−0.685340 + 0.728224i 0.740346π0.740346\pi
654654 0 0
655655 0 0
656656 10951.7i 0.651815i
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 −32036.4 −1.88513 −0.942567 0.334017i 0.891596π-0.891596\pi
−0.942567 + 0.334017i 0.891596π0.891596\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 32223.2 1.84564 0.922818 0.385237i 0.125880π-0.125880\pi
0.922818 + 0.385237i 0.125880π0.125880\pi
674674 1176.63i 0.0672432i
675675 0 0
676676 10177.1 0.579034
677677 27612.5i 1.56756i 0.621041 + 0.783778i 0.286710π0.286710\pi
−0.621041 + 0.783778i 0.713290π0.713290\pi
678678 0 0
679679 0 0
680680 − 4875.17i − 0.274933i
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 4147.03 0.231314
686686 0 0
687687 0 0
688688 0 0
689689 23439.6i 1.29605i
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 − 27377.3i − 1.50394i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 20143.2 1.09466
698698 26785.2i 1.45249i
699699 0 0
700700 0 0
701701 − 35371.3i − 1.90578i −0.303311 0.952892i 0.598092π-0.598092\pi
0.303311 0.952892i 0.401908π-0.401908\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 19100.0 1.01818
707707 0 0
708708 0 0
709709 −27676.4 −1.46602 −0.733010 0.680217i 0.761885π-0.761885\pi
−0.733010 + 0.680217i 0.761885π0.761885\pi
710710 0 0
711711 0 0
712712 −5933.47 −0.312312
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 19400.2i 1.00000i
723723 0 0
724724 22880.0 1.17449
725725 − 24217.5i − 1.24057i
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0 0
730730 −6455.07 −0.327278
731731 0 0
732732 0 0
733733 8732.00 0.440005 0.220003 0.975499i 0.429393π-0.429393\pi
0.220003 + 0.975499i 0.429393π0.429393\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 − 6588.35i − 0.327287i
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 5767.28 0.283620
746746 − 36548.9i − 1.79377i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 −17123.8 −0.827072
755755 0 0
756756 0 0
757757 −22516.0 −1.08105 −0.540527 0.841327i 0.681775π-0.681775\pi
−0.540527 + 0.841327i 0.681775π0.681775\pi
758758 0 0
759759 0 0
760760 0 0
761761 34640.8i 1.65010i 0.565059 + 0.825050i 0.308853π0.308853\pi
−0.565059 + 0.825050i 0.691147π0.691147\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 31153.2 1.46087 0.730437 0.682980i 0.239317π-0.239317\pi
0.730437 + 0.682980i 0.239317π0.239317\pi
770770 0 0
771771 0 0
772772 −21946.8 −1.02317
773773 42556.3i 1.98013i 0.140603 + 0.990066i 0.455096π0.455096\pi
−0.140603 + 0.990066i 0.544904π0.544904\pi
774774 0 0
775775 0 0
776776 41091.4i 1.90090i
777777 0 0
778778 −29932.0 −1.37932
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 21952.0 1.00000
785785 − 5958.20i − 0.270901i
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 − 2117.29i − 0.0957174i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 24946.6 1.11712
794794 − 44371.6i − 1.98324i
795795 0 0
796796 0 0
797797 44737.0i 1.98829i 0.108064 + 0.994144i 0.465535π0.465535\pi
−0.108064 + 0.994144i 0.534465π0.534465\pi
798798 0 0
799799 0 0
800800 22021.0i 0.973200i
801801 0 0
802802 41629.5 1.83290
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 −21472.0 −0.934879
809809 32328.4i 1.40495i 0.711708 + 0.702476i 0.247922π0.247922\pi
−0.711708 + 0.702476i 0.752078π0.752078\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 38604.1i 1.65008i
819819 0 0
820820 2505.63 0.106708
821821 44931.3i 1.91000i 0.296600 + 0.955002i 0.404147π0.404147\pi
−0.296600 + 0.955002i 0.595853π0.595853\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 −41740.0 −1.74872 −0.874361 0.485276i 0.838719π-0.838719\pi
−0.874361 + 0.485276i 0.838719π0.838719\pi
830830 0 0
831831 0 0
832832 15570.7 0.648819
833833 − 40376.0i − 1.67941i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −15241.8 −0.624947
842842 − 45642.4i − 1.86810i
843843 0 0
844844 0 0
845845 − 2328.41i − 0.0947928i
846846 0 0
847847 0 0
848848 − 49327.8i − 1.99755i
849849 0 0
850850 40502.9 1.63440
851851 0 0
852852 0 0
853853 20378.0 0.817971 0.408986 0.912541i 0.365883π-0.365883\pi
0.408986 + 0.912541i 0.365883π0.365883\pi
854854 0 0
855855 0 0
856856 0 0
857857 − 7468.49i − 0.297688i −0.988861 0.148844i 0.952445π-0.952445\pi
0.988861 0.148844i 0.0475552π-0.0475552\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 −6263.64 −0.246208
866866 35627.6i 1.39801i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 − 17696.5i − 0.687245i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −4588.66 −0.176680 −0.0883399 0.996090i 0.528156π-0.528156\pi
−0.0883399 + 0.996090i 0.528156π0.528156\pi
878878 0 0
879879 0 0
880880 0 0
881881 41689.6i 1.59428i 0.603796 + 0.797139i 0.293654π0.293654\pi
−0.603796 + 0.797139i 0.706346π0.706346\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 − 28639.0i − 1.08963i
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 1357.52i 0.0511281i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −52468.0 −1.94975
899899 0 0
900900 0 0
901901 −90727.8 −3.35470
902902 0 0
903903 0 0
904904 −51533.8 −1.89601
905905 − 5234.70i − 0.192273i
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 − 25644.3i − 0.928049i
915915 0 0
916916 −33535.2 −1.20964
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 −34684.0 −1.23889
923923 0 0
924924 0 0
925925 54735.9 1.94563
926926 0 0
927927 0 0
928928 36036.4 1.27473
929929 17525.5i 0.618939i 0.950909 + 0.309469i 0.100151π0.100151\pi
−0.950909 + 0.309469i 0.899849π0.899849\pi
930930 0 0
931931 0 0
932932 − 56010.0i − 1.96853i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 4897.41 0.170748 0.0853742 0.996349i 0.472791π-0.472791\pi
0.0853742 + 0.996349i 0.472791π0.472791\pi
938938 0 0
939939 0 0
940940 0 0
941941 − 17766.4i − 0.615483i −0.951470 0.307742i 0.900427π-0.900427\pi
0.951470 0.307742i 0.0995732π-0.0995732\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 −37920.0 −1.29709
950950 0 0
951951 0 0
952952 0 0
953953 29673.5i 1.00862i 0.863522 + 0.504312i 0.168254π0.168254\pi
−0.863522 + 0.504312i 0.831746π0.831746\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 29791.0 1.00000
962962 − 38702.9i − 1.29712i
963963 0 0
964964 −57876.8 −1.93370
965965 5021.20i 0.167501i
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 30117.1i 1.00000i
969969 0 0
970970 9401.28 0.311193
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 −52499.2 −1.72178
977977 − 23808.3i − 0.779626i −0.920894 0.389813i 0.872540π-0.872540\pi
0.920894 0.389813i 0.127460π-0.127460\pi
978978 0 0
979979 0 0
980980 − 5022.39i − 0.163708i
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 −484.414 −0.0156697
986986 − 66281.2i − 2.14080i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −56029.9 −1.77982 −0.889912 0.456132i 0.849234π-0.849234\pi
−0.889912 + 0.456132i 0.849234π0.849234\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.b.a.323.4 yes 4
3.2 odd 2 inner 324.4.b.a.323.1 4
4.3 odd 2 CM 324.4.b.a.323.4 yes 4
12.11 even 2 inner 324.4.b.a.323.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.4.b.a.323.1 4 3.2 odd 2 inner
324.4.b.a.323.1 4 12.11 even 2 inner
324.4.b.a.323.4 yes 4 1.1 even 1 trivial
324.4.b.a.323.4 yes 4 4.3 odd 2 CM