Properties

Label 324.4.b.a.323.4
Level $324$
Weight $4$
Character 324.323
Analytic conductor $19.117$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,4,Mod(323,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.323");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 323.4
Root \(0.517638i\) of defining polynomial
Character \(\chi\) \(=\) 324.323
Dual form 324.4.b.a.323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843i q^{2} -8.00000 q^{4} +1.83032i q^{5} -22.6274i q^{8} -5.17691 q^{10} -30.4115 q^{13} +64.0000 q^{16} -117.714i q^{17} -14.6425i q^{20} +121.650 q^{25} -86.0168i q^{26} -199.075i q^{29} +181.019i q^{32} +332.946 q^{34} +449.946 q^{37} +41.4153 q^{40} +171.120i q^{41} +343.000 q^{49} +344.078i q^{50} +243.292 q^{52} -770.746i q^{53} +563.069 q^{58} -820.300 q^{61} -512.000 q^{64} -55.6627i q^{65} +941.714i q^{68} +1246.90 q^{73} +1272.64i q^{74} +117.140i q^{80} -484.000 q^{82} +215.454 q^{85} -262.225i q^{89} -1816.00 q^{97} +970.151i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{4} + 104 q^{10} - 184 q^{13} + 256 q^{16} - 324 q^{25} - 40 q^{34} + 428 q^{37} - 832 q^{40} + 1372 q^{49} + 1472 q^{52} - 616 q^{58} - 1660 q^{61} - 2048 q^{64} + 1184 q^{73} - 1936 q^{82}+ \cdots - 7264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82843i 1.00000i
\(3\) 0 0
\(4\) −8.00000 −1.00000
\(5\) 1.83032i 0.163708i 0.996644 + 0.0818542i \(0.0260842\pi\)
−0.996644 + 0.0818542i \(0.973916\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) − 22.6274i − 1.00000i
\(9\) 0 0
\(10\) −5.17691 −0.163708
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −30.4115 −0.648819 −0.324409 0.945917i \(-0.605166\pi\)
−0.324409 + 0.945917i \(0.605166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 1.00000
\(17\) − 117.714i − 1.67941i −0.543047 0.839703i \(-0.682729\pi\)
0.543047 0.839703i \(-0.317271\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) − 14.6425i − 0.163708i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 121.650 0.973200
\(26\) − 86.0168i − 0.648819i
\(27\) 0 0
\(28\) 0 0
\(29\) − 199.075i − 1.27473i −0.770560 0.637367i \(-0.780023\pi\)
0.770560 0.637367i \(-0.219977\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 181.019i 1.00000i
\(33\) 0 0
\(34\) 332.946 1.67941
\(35\) 0 0
\(36\) 0 0
\(37\) 449.946 1.99921 0.999604 0.0281490i \(-0.00896130\pi\)
0.999604 + 0.0281490i \(0.00896130\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 41.4153 0.163708
\(41\) 171.120i 0.651815i 0.945402 + 0.325908i \(0.105670\pi\)
−0.945402 + 0.325908i \(0.894330\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 343.000 1.00000
\(50\) 344.078i 0.973200i
\(51\) 0 0
\(52\) 243.292 0.648819
\(53\) − 770.746i − 1.99755i −0.0494806 0.998775i \(-0.515757\pi\)
0.0494806 0.998775i \(-0.484243\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 563.069 1.27473
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −820.300 −1.72178 −0.860890 0.508790i \(-0.830093\pi\)
−0.860890 + 0.508790i \(0.830093\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −512.000 −1.00000
\(65\) − 55.6627i − 0.106217i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 941.714i 1.67941i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 1246.90 1.99915 0.999576 0.0291103i \(-0.00926742\pi\)
0.999576 + 0.0291103i \(0.00926742\pi\)
\(74\) 1272.64i 1.99921i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 117.140i 0.163708i
\(81\) 0 0
\(82\) −484.000 −0.651815
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 215.454 0.274933
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 262.225i − 0.312312i −0.987732 0.156156i \(-0.950090\pi\)
0.987732 0.156156i \(-0.0499103\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1816.00 −1.90090 −0.950448 0.310884i \(-0.899375\pi\)
−0.950448 + 0.310884i \(0.899375\pi\)
\(98\) 970.151i 1.00000i
\(99\) 0 0
\(100\) −973.200 −0.973200
\(101\) − 948.937i − 0.934879i −0.884025 0.467440i \(-0.845177\pi\)
0.884025 0.467440i \(-0.154823\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 688.135i 0.648819i
\(105\) 0 0
\(106\) 2180.00 1.99755
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 782.080 0.687245 0.343623 0.939108i \(-0.388346\pi\)
0.343623 + 0.939108i \(0.388346\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 2277.50i − 1.89601i −0.318261 0.948003i \(-0.603099\pi\)
0.318261 0.948003i \(-0.396901\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1592.60i 1.27473i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) − 2320.16i − 1.72178i
\(123\) 0 0
\(124\) 0 0
\(125\) 451.447i 0.323029i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) − 1448.15i − 1.00000i
\(129\) 0 0
\(130\) 157.438 0.106217
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −2663.57 −1.67941
\(137\) − 2265.75i − 1.41296i −0.707732 0.706481i \(-0.750282\pi\)
0.707732 0.706481i \(-0.249718\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 364.370 0.208685
\(146\) 3526.75i 1.99915i
\(147\) 0 0
\(148\) −3599.57 −1.99921
\(149\) − 3150.97i − 1.73247i −0.499638 0.866234i \(-0.666534\pi\)
0.499638 0.866234i \(-0.333466\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3255.28 −1.65478 −0.827388 0.561630i \(-0.810174\pi\)
−0.827388 + 0.561630i \(0.810174\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −331.323 −0.163708
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) − 1368.96i − 0.651815i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −1272.14 −0.579034
\(170\) 609.396i 0.274933i
\(171\) 0 0
\(172\) 0 0
\(173\) 3422.17i 1.50394i 0.659195 + 0.751972i \(0.270897\pi\)
−0.659195 + 0.751972i \(0.729103\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 741.684 0.312312
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −2860.00 −1.17449 −0.587243 0.809410i \(-0.699787\pi\)
−0.587243 + 0.809410i \(0.699787\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 823.543i 0.327287i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 2743.35 1.02317 0.511583 0.859234i \(-0.329059\pi\)
0.511583 + 0.859234i \(0.329059\pi\)
\(194\) − 5136.42i − 1.90090i
\(195\) 0 0
\(196\) −2744.00 −1.00000
\(197\) 264.661i 0.0957174i 0.998854 + 0.0478587i \(0.0152397\pi\)
−0.998854 + 0.0478587i \(0.984760\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) − 2752.62i − 0.973200i
\(201\) 0 0
\(202\) 2684.00 0.934879
\(203\) 0 0
\(204\) 0 0
\(205\) −313.203 −0.106708
\(206\) 0 0
\(207\) 0 0
\(208\) −1946.34 −0.648819
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 6165.97i 1.99755i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 2212.06i 0.687245i
\(219\) 0 0
\(220\) 0 0
\(221\) 3579.87i 1.08963i
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 6441.73 1.89601
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 4191.90 1.20964 0.604822 0.796360i \(-0.293244\pi\)
0.604822 + 0.796360i \(0.293244\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4504.55 −1.27473
\(233\) 7001.26i 1.96853i 0.176698 + 0.984265i \(0.443458\pi\)
−0.176698 + 0.984265i \(0.556542\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 7234.59 1.93370 0.966849 0.255349i \(-0.0821903\pi\)
0.966849 + 0.255349i \(0.0821903\pi\)
\(242\) − 3764.64i − 1.00000i
\(243\) 0 0
\(244\) 6562.40 1.72178
\(245\) 627.798i 0.163708i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −1276.89 −0.323029
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) 8217.16i 1.99445i 0.0744739 + 0.997223i \(0.476272\pi\)
−0.0744739 + 0.997223i \(0.523728\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 445.302i 0.106217i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 1410.71 0.327016
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 6981.10i − 1.58232i −0.611607 0.791162i \(-0.709477\pi\)
0.611607 0.791162i \(-0.290523\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) − 7533.71i − 1.67941i
\(273\) 0 0
\(274\) 6408.50 1.41296
\(275\) 0 0
\(276\) 0 0
\(277\) 1316.00 0.285454 0.142727 0.989762i \(-0.454413\pi\)
0.142727 + 0.989762i \(0.454413\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5677.75i 1.20536i 0.797983 + 0.602680i \(0.205900\pi\)
−0.797983 + 0.602680i \(0.794100\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8943.63 −1.82040
\(290\) 1030.59i 0.208685i
\(291\) 0 0
\(292\) −9975.17 −1.99915
\(293\) 5771.93i 1.15085i 0.817853 + 0.575427i \(0.195164\pi\)
−0.817853 + 0.575427i \(0.804836\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 10181.1i − 1.99921i
\(297\) 0 0
\(298\) 8912.30 1.73247
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 1501.41i − 0.281870i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 10963.8 1.97991 0.989954 0.141388i \(-0.0451565\pi\)
0.989954 + 0.141388i \(0.0451565\pi\)
\(314\) − 9207.33i − 1.65478i
\(315\) 0 0
\(316\) 0 0
\(317\) 1857.56i 0.329120i 0.986367 + 0.164560i \(0.0526204\pi\)
−0.986367 + 0.164560i \(0.947380\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) − 937.122i − 0.163708i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −3699.56 −0.631430
\(326\) 0 0
\(327\) 0 0
\(328\) 3872.00 0.651815
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 416.000 0.0672432 0.0336216 0.999435i \(-0.489296\pi\)
0.0336216 + 0.999435i \(0.489296\pi\)
\(338\) − 3598.15i − 0.579034i
\(339\) 0 0
\(340\) −1723.63 −0.274933
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −9679.35 −1.50394
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 9470.00 1.45249 0.726243 0.687438i \(-0.241265\pi\)
0.726243 + 0.687438i \(0.241265\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 6752.87i − 1.01818i −0.860712 0.509092i \(-0.829981\pi\)
0.860712 0.509092i \(-0.170019\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2097.80i 0.312312i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 6859.00 1.00000
\(362\) − 8089.30i − 1.17449i
\(363\) 0 0
\(364\) 0 0
\(365\) 2282.21i 0.327278i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −2329.33 −0.327287
\(371\) 0 0
\(372\) 0 0
\(373\) −12922.0 −1.79377 −0.896884 0.442265i \(-0.854175\pi\)
−0.896884 + 0.442265i \(0.854175\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6054.18i 0.827072i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7759.38i 1.02317i
\(387\) 0 0
\(388\) 14528.0 1.90090
\(389\) 10582.6i 1.37932i 0.724131 + 0.689662i \(0.242241\pi\)
−0.724131 + 0.689662i \(0.757759\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 7761.20i − 1.00000i
\(393\) 0 0
\(394\) −748.575 −0.0957174
\(395\) 0 0
\(396\) 0 0
\(397\) −15687.7 −1.98324 −0.991619 0.129199i \(-0.958759\pi\)
−0.991619 + 0.129199i \(0.958759\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 7785.60 0.973200
\(401\) − 14718.3i − 1.83290i −0.400145 0.916452i \(-0.631040\pi\)
0.400145 0.916452i \(-0.368960\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 7591.50i 0.934879i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 13648.6 1.65008 0.825038 0.565078i \(-0.191154\pi\)
0.825038 + 0.565078i \(0.191154\pi\)
\(410\) − 885.873i − 0.106708i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) − 5505.08i − 0.648819i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −16137.0 −1.86810 −0.934050 0.357142i \(-0.883751\pi\)
−0.934050 + 0.357142i \(0.883751\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −17440.0 −1.99755
\(425\) − 14319.9i − 1.63440i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 12596.3 1.39801 0.699005 0.715117i \(-0.253627\pi\)
0.699005 + 0.715117i \(0.253627\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6256.64 −0.687245
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −10125.4 −1.08963
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 479.954 0.0511281
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18550.2i 1.94975i 0.222742 + 0.974877i \(0.428499\pi\)
−0.222742 + 0.974877i \(0.571501\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 18220.0i 1.89601i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9066.62 −0.928049 −0.464024 0.885822i \(-0.653595\pi\)
−0.464024 + 0.885822i \(0.653595\pi\)
\(458\) 11856.5i 1.20964i
\(459\) 0 0
\(460\) 0 0
\(461\) 12262.6i 1.23889i 0.785040 + 0.619445i \(0.212642\pi\)
−0.785040 + 0.619445i \(0.787358\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) − 12740.8i − 1.27473i
\(465\) 0 0
\(466\) −19802.5 −1.96853
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −13683.6 −1.29712
\(482\) 20462.5i 1.93370i
\(483\) 0 0
\(484\) 10648.0 1.00000
\(485\) − 3323.85i − 0.311193i
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 18561.3i 1.72178i
\(489\) 0 0
\(490\) −1775.68 −0.163708
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −23434.0 −2.14080
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) − 3611.58i − 0.323029i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 1736.85 0.153048
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 22815.5i − 1.98680i −0.114715 0.993398i \(-0.536596\pi\)
0.114715 0.993398i \(-0.463404\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11585.2i 1.00000i
\(513\) 0 0
\(514\) −23241.6 −1.99445
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −1259.50 −0.106217
\(521\) − 15738.8i − 1.32347i −0.749737 0.661736i \(-0.769820\pi\)
0.749737 0.661736i \(-0.230180\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 3990.09i 0.327016i
\(531\) 0 0
\(532\) 0 0
\(533\) − 5204.02i − 0.422910i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 19745.5 1.58232
\(539\) 0 0
\(540\) 0 0
\(541\) 7101.40 0.564349 0.282175 0.959363i \(-0.408944\pi\)
0.282175 + 0.959363i \(0.408944\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 21308.5 1.67941
\(545\) 1431.45i 0.112508i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 18126.0i 1.41296i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 3722.21i 0.285454i
\(555\) 0 0
\(556\) 0 0
\(557\) − 14760.1i − 1.12281i −0.827541 0.561406i \(-0.810261\pi\)
0.827541 0.561406i \(-0.189739\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −16059.1 −1.20536
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 4168.54 0.310392
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 27000.4i − 1.98930i −0.103286 0.994652i \(-0.532936\pi\)
0.103286 0.994652i \(-0.467064\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 25546.2 1.84316 0.921578 0.388194i \(-0.126901\pi\)
0.921578 + 0.388194i \(0.126901\pi\)
\(578\) − 25296.4i − 1.82040i
\(579\) 0 0
\(580\) −2914.96 −0.208685
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) − 28214.0i − 1.99915i
\(585\) 0 0
\(586\) −16325.5 −1.15085
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 28796.5 1.99921
\(593\) 27549.9i 1.90782i 0.300089 + 0.953911i \(0.402983\pi\)
−0.300089 + 0.953911i \(0.597017\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 25207.8i 1.73247i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 12311.2 0.835580 0.417790 0.908544i \(-0.362805\pi\)
0.417790 + 0.908544i \(0.362805\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 2436.15i − 0.163708i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 4246.62 0.281870
\(611\) 0 0
\(612\) 0 0
\(613\) 23222.0 1.53006 0.765031 0.643994i \(-0.222724\pi\)
0.765031 + 0.643994i \(0.222724\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 21559.4i − 1.40672i −0.710833 0.703361i \(-0.751682\pi\)
0.710833 0.703361i \(-0.248318\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14380.0 0.920317
\(626\) 31010.3i 1.97991i
\(627\) 0 0
\(628\) 26042.3 1.65478
\(629\) − 52965.0i − 3.35748i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −5253.98 −0.329120
\(635\) 0 0
\(636\) 0 0
\(637\) −10431.2 −0.648819
\(638\) 0 0
\(639\) 0 0
\(640\) 2650.58 0.163708
\(641\) − 21832.2i − 1.34527i −0.739974 0.672636i \(-0.765162\pi\)
0.739974 0.672636i \(-0.234838\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) − 10463.9i − 0.631430i
\(651\) 0 0
\(652\) 0 0
\(653\) 24303.3i 1.45645i 0.685340 + 0.728224i \(0.259654\pi\)
−0.685340 + 0.728224i \(0.740346\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 10951.7i 0.651815i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −32036.4 −1.88513 −0.942567 0.334017i \(-0.891596\pi\)
−0.942567 + 0.334017i \(0.891596\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 32223.2 1.84564 0.922818 0.385237i \(-0.125880\pi\)
0.922818 + 0.385237i \(0.125880\pi\)
\(674\) 1176.63i 0.0672432i
\(675\) 0 0
\(676\) 10177.1 0.579034
\(677\) 27612.5i 1.56756i 0.621041 + 0.783778i \(0.286710\pi\)
−0.621041 + 0.783778i \(0.713290\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) − 4875.17i − 0.274933i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 4147.03 0.231314
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 23439.6i 1.29605i
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) − 27377.3i − 1.50394i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 20143.2 1.09466
\(698\) 26785.2i 1.45249i
\(699\) 0 0
\(700\) 0 0
\(701\) − 35371.3i − 1.90578i −0.303311 0.952892i \(-0.598092\pi\)
0.303311 0.952892i \(-0.401908\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 19100.0 1.01818
\(707\) 0 0
\(708\) 0 0
\(709\) −27676.4 −1.46602 −0.733010 0.680217i \(-0.761885\pi\)
−0.733010 + 0.680217i \(0.761885\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −5933.47 −0.312312
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 19400.2i 1.00000i
\(723\) 0 0
\(724\) 22880.0 1.17449
\(725\) − 24217.5i − 1.24057i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6455.07 −0.327278
\(731\) 0 0
\(732\) 0 0
\(733\) 8732.00 0.440005 0.220003 0.975499i \(-0.429393\pi\)
0.220003 + 0.975499i \(0.429393\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) − 6588.35i − 0.327287i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 5767.28 0.283620
\(746\) − 36548.9i − 1.79377i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −17123.8 −0.827072
\(755\) 0 0
\(756\) 0 0
\(757\) −22516.0 −1.08105 −0.540527 0.841327i \(-0.681775\pi\)
−0.540527 + 0.841327i \(0.681775\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34640.8i 1.65010i 0.565059 + 0.825050i \(0.308853\pi\)
−0.565059 + 0.825050i \(0.691147\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 31153.2 1.46087 0.730437 0.682980i \(-0.239317\pi\)
0.730437 + 0.682980i \(0.239317\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −21946.8 −1.02317
\(773\) 42556.3i 1.98013i 0.140603 + 0.990066i \(0.455096\pi\)
−0.140603 + 0.990066i \(0.544904\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 41091.4i 1.90090i
\(777\) 0 0
\(778\) −29932.0 −1.37932
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 21952.0 1.00000
\(785\) − 5958.20i − 0.270901i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) − 2117.29i − 0.0957174i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 24946.6 1.11712
\(794\) − 44371.6i − 1.98324i
\(795\) 0 0
\(796\) 0 0
\(797\) 44737.0i 1.98829i 0.108064 + 0.994144i \(0.465535\pi\)
−0.108064 + 0.994144i \(0.534465\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 22021.0i 0.973200i
\(801\) 0 0
\(802\) 41629.5 1.83290
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −21472.0 −0.934879
\(809\) 32328.4i 1.40495i 0.711708 + 0.702476i \(0.247922\pi\)
−0.711708 + 0.702476i \(0.752078\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 38604.1i 1.65008i
\(819\) 0 0
\(820\) 2505.63 0.106708
\(821\) 44931.3i 1.91000i 0.296600 + 0.955002i \(0.404147\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −41740.0 −1.74872 −0.874361 0.485276i \(-0.838719\pi\)
−0.874361 + 0.485276i \(0.838719\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 15570.7 0.648819
\(833\) − 40376.0i − 1.67941i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −15241.8 −0.624947
\(842\) − 45642.4i − 1.86810i
\(843\) 0 0
\(844\) 0 0
\(845\) − 2328.41i − 0.0947928i
\(846\) 0 0
\(847\) 0 0
\(848\) − 49327.8i − 1.99755i
\(849\) 0 0
\(850\) 40502.9 1.63440
\(851\) 0 0
\(852\) 0 0
\(853\) 20378.0 0.817971 0.408986 0.912541i \(-0.365883\pi\)
0.408986 + 0.912541i \(0.365883\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 7468.49i − 0.297688i −0.988861 0.148844i \(-0.952445\pi\)
0.988861 0.148844i \(-0.0475552\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −6263.64 −0.246208
\(866\) 35627.6i 1.39801i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) − 17696.5i − 0.687245i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4588.66 −0.176680 −0.0883399 0.996090i \(-0.528156\pi\)
−0.0883399 + 0.996090i \(0.528156\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41689.6i 1.59428i 0.603796 + 0.797139i \(0.293654\pi\)
−0.603796 + 0.797139i \(0.706346\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) − 28639.0i − 1.08963i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1357.52i 0.0511281i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −52468.0 −1.94975
\(899\) 0 0
\(900\) 0 0
\(901\) −90727.8 −3.35470
\(902\) 0 0
\(903\) 0 0
\(904\) −51533.8 −1.89601
\(905\) − 5234.70i − 0.192273i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) − 25644.3i − 0.928049i
\(915\) 0 0
\(916\) −33535.2 −1.20964
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −34684.0 −1.23889
\(923\) 0 0
\(924\) 0 0
\(925\) 54735.9 1.94563
\(926\) 0 0
\(927\) 0 0
\(928\) 36036.4 1.27473
\(929\) 17525.5i 0.618939i 0.950909 + 0.309469i \(0.100151\pi\)
−0.950909 + 0.309469i \(0.899849\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) − 56010.0i − 1.96853i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4897.41 0.170748 0.0853742 0.996349i \(-0.472791\pi\)
0.0853742 + 0.996349i \(0.472791\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 17766.4i − 0.615483i −0.951470 0.307742i \(-0.900427\pi\)
0.951470 0.307742i \(-0.0995732\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −37920.0 −1.29709
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 29673.5i 1.00862i 0.863522 + 0.504312i \(0.168254\pi\)
−0.863522 + 0.504312i \(0.831746\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 29791.0 1.00000
\(962\) − 38702.9i − 1.29712i
\(963\) 0 0
\(964\) −57876.8 −1.93370
\(965\) 5021.20i 0.167501i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 30117.1i 1.00000i
\(969\) 0 0
\(970\) 9401.28 0.311193
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −52499.2 −1.72178
\(977\) − 23808.3i − 0.779626i −0.920894 0.389813i \(-0.872540\pi\)
0.920894 0.389813i \(-0.127460\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) − 5022.39i − 0.163708i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −484.414 −0.0156697
\(986\) − 66281.2i − 2.14080i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −56029.9 −1.77982 −0.889912 0.456132i \(-0.849234\pi\)
−0.889912 + 0.456132i \(0.849234\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.b.a.323.4 yes 4
3.2 odd 2 inner 324.4.b.a.323.1 4
4.3 odd 2 CM 324.4.b.a.323.4 yes 4
12.11 even 2 inner 324.4.b.a.323.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.4.b.a.323.1 4 3.2 odd 2 inner
324.4.b.a.323.1 4 12.11 even 2 inner
324.4.b.a.323.4 yes 4 1.1 even 1 trivial
324.4.b.a.323.4 yes 4 4.3 odd 2 CM