Properties

Label 324.4.b.d.323.25
Level $324$
Weight $4$
Character 324.323
Analytic conductor $19.117$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,4,Mod(323,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.323");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.25
Character \(\chi\) \(=\) 324.323
Dual form 324.4.b.d.323.26

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.26792 - 1.69014i) q^{2} +(2.28688 - 7.66617i) q^{4} +16.3324i q^{5} -28.7358i q^{7} +(-7.77043 - 21.2514i) q^{8} +(27.6040 + 37.0405i) q^{10} -25.2086 q^{11} +74.9324 q^{13} +(-48.5674 - 65.1703i) q^{14} +(-53.5404 - 35.0632i) q^{16} -28.4061i q^{17} -132.976i q^{19} +(125.207 + 37.3502i) q^{20} +(-57.1709 + 42.6059i) q^{22} +13.9485 q^{23} -141.747 q^{25} +(169.940 - 126.646i) q^{26} +(-220.293 - 65.7152i) q^{28} -134.473i q^{29} -117.851i q^{31} +(-180.687 + 10.9702i) q^{32} +(-48.0102 - 64.4226i) q^{34} +469.324 q^{35} +164.638 q^{37} +(-224.747 - 301.577i) q^{38} +(347.086 - 126.910i) q^{40} +83.5882i q^{41} +43.4468i q^{43} +(-57.6489 + 193.253i) q^{44} +(31.6341 - 23.5749i) q^{46} +449.188 q^{47} -482.745 q^{49} +(-321.471 + 239.572i) q^{50} +(171.361 - 574.445i) q^{52} +5.67062i q^{53} -411.717i q^{55} +(-610.674 + 223.289i) q^{56} +(-227.278 - 304.974i) q^{58} -836.816 q^{59} -446.126 q^{61} +(-199.185 - 267.277i) q^{62} +(-391.241 + 330.265i) q^{64} +1223.83i q^{65} -130.483i q^{67} +(-217.766 - 64.9613i) q^{68} +(1064.39 - 793.222i) q^{70} +209.816 q^{71} +163.546 q^{73} +(373.384 - 278.260i) q^{74} +(-1019.41 - 304.099i) q^{76} +724.388i q^{77} +1292.83i q^{79} +(572.666 - 874.443i) q^{80} +(141.275 + 189.571i) q^{82} +444.157 q^{83} +463.940 q^{85} +(73.4310 + 98.5336i) q^{86} +(195.882 + 535.717i) q^{88} +1173.89i q^{89} -2153.24i q^{91} +(31.8986 - 106.932i) q^{92} +(1018.72 - 759.189i) q^{94} +2171.81 q^{95} +523.610 q^{97} +(-1094.82 + 815.904i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} - 104 q^{10} + 184 q^{13} - 436 q^{16} + 36 q^{22} - 576 q^{25} - 252 q^{28} - 752 q^{34} - 824 q^{37} + 472 q^{40} - 972 q^{46} - 3136 q^{49} - 1472 q^{52} - 716 q^{58} + 1192 q^{61} + 680 q^{64}+ \cdots + 7264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.26792 1.69014i 0.801829 0.597553i
\(3\) 0 0
\(4\) 2.28688 7.66617i 0.285860 0.958271i
\(5\) 16.3324i 1.46081i 0.683012 + 0.730407i \(0.260670\pi\)
−0.683012 + 0.730407i \(0.739330\pi\)
\(6\) 0 0
\(7\) 28.7358i 1.55159i −0.630988 0.775793i \(-0.717350\pi\)
0.630988 0.775793i \(-0.282650\pi\)
\(8\) −7.77043 21.2514i −0.343408 0.939186i
\(9\) 0 0
\(10\) 27.6040 + 37.0405i 0.872915 + 1.17132i
\(11\) −25.2086 −0.690970 −0.345485 0.938424i \(-0.612286\pi\)
−0.345485 + 0.938424i \(0.612286\pi\)
\(12\) 0 0
\(13\) 74.9324 1.59865 0.799327 0.600896i \(-0.205189\pi\)
0.799327 + 0.600896i \(0.205189\pi\)
\(14\) −48.5674 65.1703i −0.927156 1.24411i
\(15\) 0 0
\(16\) −53.5404 35.0632i −0.836568 0.547862i
\(17\) 28.4061i 0.405264i −0.979255 0.202632i \(-0.935050\pi\)
0.979255 0.202632i \(-0.0649496\pi\)
\(18\) 0 0
\(19\) 132.976i 1.60561i −0.596238 0.802807i \(-0.703339\pi\)
0.596238 0.802807i \(-0.296661\pi\)
\(20\) 125.207 + 37.3502i 1.39986 + 0.417588i
\(21\) 0 0
\(22\) −57.1709 + 42.6059i −0.554040 + 0.412892i
\(23\) 13.9485 0.126455 0.0632276 0.997999i \(-0.479861\pi\)
0.0632276 + 0.997999i \(0.479861\pi\)
\(24\) 0 0
\(25\) −141.747 −1.13398
\(26\) 169.940 126.646i 1.28185 0.955282i
\(27\) 0 0
\(28\) −220.293 65.7152i −1.48684 0.443536i
\(29\) 134.473i 0.861071i −0.902574 0.430535i \(-0.858325\pi\)
0.902574 0.430535i \(-0.141675\pi\)
\(30\) 0 0
\(31\) 117.851i 0.682798i −0.939919 0.341399i \(-0.889099\pi\)
0.939919 0.341399i \(-0.110901\pi\)
\(32\) −180.687 + 10.9702i −0.998162 + 0.0606024i
\(33\) 0 0
\(34\) −48.0102 64.4226i −0.242167 0.324953i
\(35\) 469.324 2.26658
\(36\) 0 0
\(37\) 164.638 0.731520 0.365760 0.930709i \(-0.380809\pi\)
0.365760 + 0.930709i \(0.380809\pi\)
\(38\) −224.747 301.577i −0.959441 1.28743i
\(39\) 0 0
\(40\) 347.086 126.910i 1.37198 0.501655i
\(41\) 83.5882i 0.318397i 0.987247 + 0.159199i \(0.0508910\pi\)
−0.987247 + 0.159199i \(0.949109\pi\)
\(42\) 0 0
\(43\) 43.4468i 0.154083i 0.997028 + 0.0770415i \(0.0245474\pi\)
−0.997028 + 0.0770415i \(0.975453\pi\)
\(44\) −57.6489 + 193.253i −0.197521 + 0.662137i
\(45\) 0 0
\(46\) 31.6341 23.5749i 0.101395 0.0755638i
\(47\) 449.188 1.39406 0.697030 0.717042i \(-0.254504\pi\)
0.697030 + 0.717042i \(0.254504\pi\)
\(48\) 0 0
\(49\) −482.745 −1.40742
\(50\) −321.471 + 239.572i −0.909258 + 0.677613i
\(51\) 0 0
\(52\) 171.361 574.445i 0.456991 1.53195i
\(53\) 5.67062i 0.0146966i 0.999973 + 0.00734830i \(0.00233906\pi\)
−0.999973 + 0.00734830i \(0.997661\pi\)
\(54\) 0 0
\(55\) 411.717i 1.00938i
\(56\) −610.674 + 223.289i −1.45723 + 0.532827i
\(57\) 0 0
\(58\) −227.278 304.974i −0.514536 0.690432i
\(59\) −836.816 −1.84651 −0.923256 0.384186i \(-0.874482\pi\)
−0.923256 + 0.384186i \(0.874482\pi\)
\(60\) 0 0
\(61\) −446.126 −0.936403 −0.468202 0.883622i \(-0.655098\pi\)
−0.468202 + 0.883622i \(0.655098\pi\)
\(62\) −199.185 267.277i −0.408008 0.547487i
\(63\) 0 0
\(64\) −391.241 + 330.265i −0.764142 + 0.645048i
\(65\) 1223.83i 2.33534i
\(66\) 0 0
\(67\) 130.483i 0.237925i −0.992899 0.118963i \(-0.962043\pi\)
0.992899 0.118963i \(-0.0379568\pi\)
\(68\) −217.766 64.9613i −0.388353 0.115849i
\(69\) 0 0
\(70\) 1064.39 793.222i 1.81741 1.35440i
\(71\) 209.816 0.350712 0.175356 0.984505i \(-0.443892\pi\)
0.175356 + 0.984505i \(0.443892\pi\)
\(72\) 0 0
\(73\) 163.546 0.262214 0.131107 0.991368i \(-0.458147\pi\)
0.131107 + 0.991368i \(0.458147\pi\)
\(74\) 373.384 278.260i 0.586554 0.437123i
\(75\) 0 0
\(76\) −1019.41 304.099i −1.53861 0.458981i
\(77\) 724.388i 1.07210i
\(78\) 0 0
\(79\) 1292.83i 1.84120i 0.390507 + 0.920600i \(0.372300\pi\)
−0.390507 + 0.920600i \(0.627700\pi\)
\(80\) 572.666 874.443i 0.800325 1.22207i
\(81\) 0 0
\(82\) 141.275 + 189.571i 0.190259 + 0.255300i
\(83\) 444.157 0.587380 0.293690 0.955901i \(-0.405117\pi\)
0.293690 + 0.955901i \(0.405117\pi\)
\(84\) 0 0
\(85\) 463.940 0.592016
\(86\) 73.4310 + 98.5336i 0.0920728 + 0.123548i
\(87\) 0 0
\(88\) 195.882 + 535.717i 0.237285 + 0.648950i
\(89\) 1173.89i 1.39811i 0.715069 + 0.699054i \(0.246395\pi\)
−0.715069 + 0.699054i \(0.753605\pi\)
\(90\) 0 0
\(91\) 2153.24i 2.48045i
\(92\) 31.8986 106.932i 0.0361485 0.121178i
\(93\) 0 0
\(94\) 1018.72 759.189i 1.11780 0.833025i
\(95\) 2171.81 2.34551
\(96\) 0 0
\(97\) 523.610 0.548088 0.274044 0.961717i \(-0.411639\pi\)
0.274044 + 0.961717i \(0.411639\pi\)
\(98\) −1094.82 + 815.904i −1.12851 + 0.841008i
\(99\) 0 0
\(100\) −324.159 + 1086.66i −0.324159 + 1.08666i
\(101\) 854.748i 0.842085i −0.907041 0.421043i \(-0.861664\pi\)
0.907041 0.421043i \(-0.138336\pi\)
\(102\) 0 0
\(103\) 638.740i 0.611038i 0.952186 + 0.305519i \(0.0988299\pi\)
−0.952186 + 0.305519i \(0.901170\pi\)
\(104\) −582.257 1592.42i −0.548991 1.50143i
\(105\) 0 0
\(106\) 9.58413 + 12.8605i 0.00878201 + 0.0117842i
\(107\) 957.902 0.865457 0.432728 0.901524i \(-0.357551\pi\)
0.432728 + 0.901524i \(0.357551\pi\)
\(108\) 0 0
\(109\) 1470.56 1.29224 0.646118 0.763238i \(-0.276392\pi\)
0.646118 + 0.763238i \(0.276392\pi\)
\(110\) −695.857 933.739i −0.603158 0.809350i
\(111\) 0 0
\(112\) −1007.57 + 1538.52i −0.850056 + 1.29801i
\(113\) 929.247i 0.773595i 0.922165 + 0.386798i \(0.126419\pi\)
−0.922165 + 0.386798i \(0.873581\pi\)
\(114\) 0 0
\(115\) 227.813i 0.184728i
\(116\) −1030.90 307.524i −0.825140 0.246145i
\(117\) 0 0
\(118\) −1897.83 + 1414.33i −1.48059 + 1.10339i
\(119\) −816.272 −0.628802
\(120\) 0 0
\(121\) −695.527 −0.522560
\(122\) −1011.78 + 754.014i −0.750835 + 0.559551i
\(123\) 0 0
\(124\) −903.469 269.512i −0.654305 0.195184i
\(125\) 273.525i 0.195719i
\(126\) 0 0
\(127\) 1502.92i 1.05010i 0.851072 + 0.525049i \(0.175953\pi\)
−0.851072 + 0.525049i \(0.824047\pi\)
\(128\) −329.109 + 1410.26i −0.227261 + 0.973834i
\(129\) 0 0
\(130\) 2068.43 + 2775.53i 1.39549 + 1.87254i
\(131\) 1920.19 1.28067 0.640334 0.768097i \(-0.278796\pi\)
0.640334 + 0.768097i \(0.278796\pi\)
\(132\) 0 0
\(133\) −3821.16 −2.49125
\(134\) −220.533 295.923i −0.142173 0.190775i
\(135\) 0 0
\(136\) −603.668 + 220.728i −0.380619 + 0.139171i
\(137\) 500.027i 0.311826i −0.987771 0.155913i \(-0.950168\pi\)
0.987771 0.155913i \(-0.0498319\pi\)
\(138\) 0 0
\(139\) 718.181i 0.438240i −0.975698 0.219120i \(-0.929681\pi\)
0.975698 0.219120i \(-0.0703186\pi\)
\(140\) 1073.29 3597.92i 0.647924 2.17200i
\(141\) 0 0
\(142\) 475.844 354.617i 0.281211 0.209569i
\(143\) −1888.94 −1.10462
\(144\) 0 0
\(145\) 2196.27 1.25787
\(146\) 370.908 276.415i 0.210250 0.156687i
\(147\) 0 0
\(148\) 376.506 1262.14i 0.209112 0.700995i
\(149\) 3481.39i 1.91414i −0.289857 0.957070i \(-0.593608\pi\)
0.289857 0.957070i \(-0.406392\pi\)
\(150\) 0 0
\(151\) 2004.44i 1.08026i 0.841582 + 0.540129i \(0.181624\pi\)
−0.841582 + 0.540129i \(0.818376\pi\)
\(152\) −2825.91 + 1033.28i −1.50797 + 0.551381i
\(153\) 0 0
\(154\) 1224.31 + 1642.85i 0.640637 + 0.859641i
\(155\) 1924.80 0.997441
\(156\) 0 0
\(157\) 2609.03 1.32626 0.663132 0.748502i \(-0.269227\pi\)
0.663132 + 0.748502i \(0.269227\pi\)
\(158\) 2185.06 + 2932.03i 1.10022 + 1.47633i
\(159\) 0 0
\(160\) −179.170 2951.05i −0.0885289 1.45813i
\(161\) 400.822i 0.196206i
\(162\) 0 0
\(163\) 470.259i 0.225972i 0.993597 + 0.112986i \(0.0360416\pi\)
−0.993597 + 0.112986i \(0.963958\pi\)
\(164\) 640.801 + 191.156i 0.305111 + 0.0910169i
\(165\) 0 0
\(166\) 1007.31 750.686i 0.470979 0.350991i
\(167\) 1387.47 0.642907 0.321453 0.946925i \(-0.395829\pi\)
0.321453 + 0.946925i \(0.395829\pi\)
\(168\) 0 0
\(169\) 3417.87 1.55570
\(170\) 1052.18 784.122i 0.474696 0.353761i
\(171\) 0 0
\(172\) 333.070 + 99.3574i 0.147653 + 0.0440461i
\(173\) 1786.67i 0.785192i 0.919711 + 0.392596i \(0.128423\pi\)
−0.919711 + 0.392596i \(0.871577\pi\)
\(174\) 0 0
\(175\) 4073.22i 1.75947i
\(176\) 1349.68 + 883.893i 0.578044 + 0.378557i
\(177\) 0 0
\(178\) 1984.03 + 2662.27i 0.835444 + 1.12104i
\(179\) −1050.11 −0.438485 −0.219243 0.975670i \(-0.570359\pi\)
−0.219243 + 0.975670i \(0.570359\pi\)
\(180\) 0 0
\(181\) −3014.95 −1.23812 −0.619060 0.785344i \(-0.712486\pi\)
−0.619060 + 0.785344i \(0.712486\pi\)
\(182\) −3639.27 4883.37i −1.48220 1.98890i
\(183\) 0 0
\(184\) −108.386 296.425i −0.0434257 0.118765i
\(185\) 2688.93i 1.06862i
\(186\) 0 0
\(187\) 716.078i 0.280026i
\(188\) 1027.24 3443.55i 0.398506 1.33589i
\(189\) 0 0
\(190\) 4925.48 3670.66i 1.88069 1.40156i
\(191\) 1874.50 0.710127 0.355063 0.934842i \(-0.384459\pi\)
0.355063 + 0.934842i \(0.384459\pi\)
\(192\) 0 0
\(193\) −914.887 −0.341218 −0.170609 0.985339i \(-0.554573\pi\)
−0.170609 + 0.985339i \(0.554573\pi\)
\(194\) 1187.50 884.973i 0.439473 0.327512i
\(195\) 0 0
\(196\) −1103.98 + 3700.80i −0.402324 + 1.34869i
\(197\) 1430.37i 0.517308i 0.965970 + 0.258654i \(0.0832790\pi\)
−0.965970 + 0.258654i \(0.916721\pi\)
\(198\) 0 0
\(199\) 2018.44i 0.719011i −0.933143 0.359505i \(-0.882945\pi\)
0.933143 0.359505i \(-0.117055\pi\)
\(200\) 1101.44 + 3012.33i 0.389417 + 1.06502i
\(201\) 0 0
\(202\) −1444.64 1938.50i −0.503191 0.675209i
\(203\) −3864.19 −1.33603
\(204\) 0 0
\(205\) −1365.20 −0.465119
\(206\) 1079.56 + 1448.61i 0.365128 + 0.489948i
\(207\) 0 0
\(208\) −4011.91 2627.37i −1.33738 0.875843i
\(209\) 3352.12i 1.10943i
\(210\) 0 0
\(211\) 559.398i 0.182515i 0.995827 + 0.0912573i \(0.0290886\pi\)
−0.995827 + 0.0912573i \(0.970911\pi\)
\(212\) 43.4720 + 12.9680i 0.0140833 + 0.00420117i
\(213\) 0 0
\(214\) 2172.44 1618.99i 0.693949 0.517157i
\(215\) −709.590 −0.225087
\(216\) 0 0
\(217\) −3386.55 −1.05942
\(218\) 3335.09 2485.44i 1.03615 0.772180i
\(219\) 0 0
\(220\) −3156.29 941.546i −0.967260 0.288541i
\(221\) 2128.54i 0.647878i
\(222\) 0 0
\(223\) 2917.34i 0.876052i −0.898962 0.438026i \(-0.855678\pi\)
0.898962 0.438026i \(-0.144322\pi\)
\(224\) 315.238 + 5192.17i 0.0940299 + 1.54873i
\(225\) 0 0
\(226\) 1570.55 + 2107.45i 0.462264 + 0.620291i
\(227\) −5468.88 −1.59904 −0.799520 0.600639i \(-0.794913\pi\)
−0.799520 + 0.600639i \(0.794913\pi\)
\(228\) 0 0
\(229\) −3910.91 −1.12856 −0.564280 0.825583i \(-0.690846\pi\)
−0.564280 + 0.825583i \(0.690846\pi\)
\(230\) 385.035 + 516.661i 0.110385 + 0.148120i
\(231\) 0 0
\(232\) −2857.74 + 1044.92i −0.808706 + 0.295699i
\(233\) 102.013i 0.0286827i −0.999897 0.0143413i \(-0.995435\pi\)
0.999897 0.0143413i \(-0.00456515\pi\)
\(234\) 0 0
\(235\) 7336.32i 2.03646i
\(236\) −1913.70 + 6415.18i −0.527843 + 1.76946i
\(237\) 0 0
\(238\) −1851.23 + 1379.61i −0.504192 + 0.375743i
\(239\) −5650.10 −1.52918 −0.764592 0.644515i \(-0.777059\pi\)
−0.764592 + 0.644515i \(0.777059\pi\)
\(240\) 0 0
\(241\) 4532.38 1.21144 0.605719 0.795679i \(-0.292886\pi\)
0.605719 + 0.795679i \(0.292886\pi\)
\(242\) −1577.40 + 1175.54i −0.419004 + 0.312258i
\(243\) 0 0
\(244\) −1020.24 + 3420.08i −0.267680 + 0.897329i
\(245\) 7884.38i 2.05598i
\(246\) 0 0
\(247\) 9964.18i 2.56682i
\(248\) −2504.50 + 915.756i −0.641274 + 0.234478i
\(249\) 0 0
\(250\) −462.295 620.332i −0.116952 0.156933i
\(251\) 1967.05 0.494659 0.247329 0.968931i \(-0.420447\pi\)
0.247329 + 0.968931i \(0.420447\pi\)
\(252\) 0 0
\(253\) −351.623 −0.0873768
\(254\) 2540.14 + 3408.49i 0.627490 + 0.841999i
\(255\) 0 0
\(256\) 1637.15 + 3754.59i 0.399694 + 0.916649i
\(257\) 1618.17i 0.392758i 0.980528 + 0.196379i \(0.0629183\pi\)
−0.980528 + 0.196379i \(0.937082\pi\)
\(258\) 0 0
\(259\) 4730.99i 1.13502i
\(260\) 9382.06 + 2798.74i 2.23789 + 0.667579i
\(261\) 0 0
\(262\) 4354.82 3245.38i 1.02688 0.765267i
\(263\) −4674.88 −1.09607 −0.548034 0.836456i \(-0.684623\pi\)
−0.548034 + 0.836456i \(0.684623\pi\)
\(264\) 0 0
\(265\) −92.6149 −0.0214690
\(266\) −8666.06 + 6458.27i −1.99756 + 1.48865i
\(267\) 0 0
\(268\) −1000.30 298.398i −0.227997 0.0680132i
\(269\) 3538.93i 0.802127i −0.916050 0.401064i \(-0.868641\pi\)
0.916050 0.401064i \(-0.131359\pi\)
\(270\) 0 0
\(271\) 319.089i 0.0715250i −0.999360 0.0357625i \(-0.988614\pi\)
0.999360 0.0357625i \(-0.0113860\pi\)
\(272\) −996.009 + 1520.87i −0.222029 + 0.339031i
\(273\) 0 0
\(274\) −845.113 1134.02i −0.186333 0.250031i
\(275\) 3573.25 0.783546
\(276\) 0 0
\(277\) 5129.90 1.11273 0.556364 0.830938i \(-0.312196\pi\)
0.556364 + 0.830938i \(0.312196\pi\)
\(278\) −1213.82 1628.77i −0.261872 0.351393i
\(279\) 0 0
\(280\) −3646.85 9973.78i −0.778361 2.12874i
\(281\) 2669.38i 0.566697i −0.959017 0.283349i \(-0.908555\pi\)
0.959017 0.283349i \(-0.0914454\pi\)
\(282\) 0 0
\(283\) 1733.18i 0.364053i −0.983294 0.182026i \(-0.941734\pi\)
0.983294 0.182026i \(-0.0582656\pi\)
\(284\) 479.823 1608.48i 0.100254 0.336077i
\(285\) 0 0
\(286\) −4283.96 + 3192.57i −0.885719 + 0.660071i
\(287\) 2401.97 0.494021
\(288\) 0 0
\(289\) 4106.09 0.835761
\(290\) 4980.96 3712.00i 1.00859 0.751642i
\(291\) 0 0
\(292\) 374.009 1253.77i 0.0749563 0.251272i
\(293\) 4141.37i 0.825738i 0.910790 + 0.412869i \(0.135473\pi\)
−0.910790 + 0.412869i \(0.864527\pi\)
\(294\) 0 0
\(295\) 13667.2i 2.69741i
\(296\) −1279.31 3498.77i −0.251210 0.687034i
\(297\) 0 0
\(298\) −5884.03 7895.50i −1.14380 1.53481i
\(299\) 1045.20 0.202158
\(300\) 0 0
\(301\) 1248.48 0.239073
\(302\) 3387.77 + 4545.90i 0.645511 + 0.866182i
\(303\) 0 0
\(304\) −4662.55 + 7119.56i −0.879656 + 1.34321i
\(305\) 7286.31i 1.36791i
\(306\) 0 0
\(307\) 3128.44i 0.581595i −0.956785 0.290797i \(-0.906079\pi\)
0.956785 0.290797i \(-0.0939206\pi\)
\(308\) 5553.28 + 1656.59i 1.02736 + 0.306470i
\(309\) 0 0
\(310\) 4365.27 3253.17i 0.799777 0.596024i
\(311\) −8570.21 −1.56261 −0.781306 0.624149i \(-0.785446\pi\)
−0.781306 + 0.624149i \(0.785446\pi\)
\(312\) 0 0
\(313\) 209.373 0.0378098 0.0189049 0.999821i \(-0.493982\pi\)
0.0189049 + 0.999821i \(0.493982\pi\)
\(314\) 5917.06 4409.62i 1.06344 0.792514i
\(315\) 0 0
\(316\) 9911.06 + 2956.54i 1.76437 + 0.526325i
\(317\) 2067.70i 0.366353i −0.983080 0.183176i \(-0.941362\pi\)
0.983080 0.183176i \(-0.0586380\pi\)
\(318\) 0 0
\(319\) 3389.88i 0.594974i
\(320\) −5394.01 6389.90i −0.942295 1.11627i
\(321\) 0 0
\(322\) −677.444 909.030i −0.117244 0.157324i
\(323\) −3777.32 −0.650698
\(324\) 0 0
\(325\) −10621.5 −1.81284
\(326\) 794.802 + 1066.51i 0.135031 + 0.181191i
\(327\) 0 0
\(328\) 1776.36 649.516i 0.299034 0.109340i
\(329\) 12907.8i 2.16300i
\(330\) 0 0
\(331\) 3625.24i 0.601998i 0.953624 + 0.300999i \(0.0973201\pi\)
−0.953624 + 0.300999i \(0.902680\pi\)
\(332\) 1015.73 3404.98i 0.167908 0.562870i
\(333\) 0 0
\(334\) 3146.66 2345.01i 0.515501 0.384171i
\(335\) 2131.09 0.347564
\(336\) 0 0
\(337\) 8703.35 1.40683 0.703415 0.710780i \(-0.251658\pi\)
0.703415 + 0.710780i \(0.251658\pi\)
\(338\) 7751.43 5776.66i 1.24740 0.929612i
\(339\) 0 0
\(340\) 1060.97 3556.64i 0.169234 0.567312i
\(341\) 2970.86i 0.471793i
\(342\) 0 0
\(343\) 4015.67i 0.632146i
\(344\) 923.303 337.600i 0.144713 0.0529133i
\(345\) 0 0
\(346\) 3019.72 + 4052.02i 0.469194 + 0.629589i
\(347\) −1836.37 −0.284096 −0.142048 0.989860i \(-0.545369\pi\)
−0.142048 + 0.989860i \(0.545369\pi\)
\(348\) 0 0
\(349\) −4573.46 −0.701466 −0.350733 0.936476i \(-0.614068\pi\)
−0.350733 + 0.936476i \(0.614068\pi\)
\(350\) 6884.30 + 9237.72i 1.05138 + 1.41079i
\(351\) 0 0
\(352\) 4554.85 276.544i 0.689700 0.0418745i
\(353\) 9649.17i 1.45488i 0.686170 + 0.727441i \(0.259291\pi\)
−0.686170 + 0.727441i \(0.740709\pi\)
\(354\) 0 0
\(355\) 3426.79i 0.512325i
\(356\) 8999.20 + 2684.53i 1.33977 + 0.399663i
\(357\) 0 0
\(358\) −2381.56 + 1774.83i −0.351590 + 0.262018i
\(359\) 7152.93 1.05158 0.525790 0.850614i \(-0.323770\pi\)
0.525790 + 0.850614i \(0.323770\pi\)
\(360\) 0 0
\(361\) −10823.5 −1.57800
\(362\) −6837.66 + 5095.68i −0.992760 + 0.739843i
\(363\) 0 0
\(364\) −16507.1 4924.20i −2.37694 0.709061i
\(365\) 2671.10i 0.383045i
\(366\) 0 0
\(367\) 3628.69i 0.516120i 0.966129 + 0.258060i \(0.0830833\pi\)
−0.966129 + 0.258060i \(0.916917\pi\)
\(368\) −746.810 489.080i −0.105788 0.0692801i
\(369\) 0 0
\(370\) 4544.65 + 6098.26i 0.638555 + 0.856847i
\(371\) 162.950 0.0228030
\(372\) 0 0
\(373\) −1184.16 −0.164380 −0.0821898 0.996617i \(-0.526191\pi\)
−0.0821898 + 0.996617i \(0.526191\pi\)
\(374\) 1210.27 + 1624.00i 0.167330 + 0.224533i
\(375\) 0 0
\(376\) −3490.39 9545.86i −0.478731 1.30928i
\(377\) 10076.4i 1.37656i
\(378\) 0 0
\(379\) 7627.16i 1.03372i 0.856069 + 0.516861i \(0.172900\pi\)
−0.856069 + 0.516861i \(0.827100\pi\)
\(380\) 4966.66 16649.5i 0.670485 2.24763i
\(381\) 0 0
\(382\) 4251.21 3168.16i 0.569400 0.424339i
\(383\) −11069.3 −1.47681 −0.738403 0.674360i \(-0.764420\pi\)
−0.738403 + 0.674360i \(0.764420\pi\)
\(384\) 0 0
\(385\) −11831.0 −1.56614
\(386\) −2074.89 + 1546.28i −0.273598 + 0.203896i
\(387\) 0 0
\(388\) 1197.43 4014.09i 0.156676 0.525217i
\(389\) 10917.1i 1.42293i −0.702720 0.711467i \(-0.748031\pi\)
0.702720 0.711467i \(-0.251969\pi\)
\(390\) 0 0
\(391\) 396.224i 0.0512478i
\(392\) 3751.14 + 10259.0i 0.483319 + 1.32183i
\(393\) 0 0
\(394\) 2417.52 + 3243.96i 0.309119 + 0.414793i
\(395\) −21115.0 −2.68965
\(396\) 0 0
\(397\) 6630.04 0.838166 0.419083 0.907948i \(-0.362352\pi\)
0.419083 + 0.907948i \(0.362352\pi\)
\(398\) −3411.43 4577.64i −0.429647 0.576524i
\(399\) 0 0
\(400\) 7589.21 + 4970.12i 0.948651 + 0.621265i
\(401\) 500.859i 0.0623733i −0.999514 0.0311866i \(-0.990071\pi\)
0.999514 0.0311866i \(-0.00992863\pi\)
\(402\) 0 0
\(403\) 8830.88i 1.09156i
\(404\) −6552.65 1954.70i −0.806946 0.240718i
\(405\) 0 0
\(406\) −8763.66 + 6531.01i −1.07126 + 0.798347i
\(407\) −4150.28 −0.505459
\(408\) 0 0
\(409\) −685.198 −0.0828383 −0.0414192 0.999142i \(-0.513188\pi\)
−0.0414192 + 0.999142i \(0.513188\pi\)
\(410\) −3096.15 + 2307.37i −0.372946 + 0.277934i
\(411\) 0 0
\(412\) 4896.69 + 1460.72i 0.585540 + 0.174671i
\(413\) 24046.6i 2.86502i
\(414\) 0 0
\(415\) 7254.15i 0.858054i
\(416\) −13539.3 + 822.025i −1.59572 + 0.0968824i
\(417\) 0 0
\(418\) 5665.55 + 7602.33i 0.662945 + 0.889575i
\(419\) 8330.78 0.971325 0.485662 0.874146i \(-0.338578\pi\)
0.485662 + 0.874146i \(0.338578\pi\)
\(420\) 0 0
\(421\) 13947.9 1.61467 0.807337 0.590091i \(-0.200908\pi\)
0.807337 + 0.590091i \(0.200908\pi\)
\(422\) 945.459 + 1268.67i 0.109062 + 0.146345i
\(423\) 0 0
\(424\) 120.508 44.0632i 0.0138029 0.00504693i
\(425\) 4026.49i 0.459561i
\(426\) 0 0
\(427\) 12819.8i 1.45291i
\(428\) 2190.60 7343.44i 0.247399 0.829343i
\(429\) 0 0
\(430\) −1609.29 + 1199.30i −0.180481 + 0.134501i
\(431\) 7150.85 0.799174 0.399587 0.916695i \(-0.369153\pi\)
0.399587 + 0.916695i \(0.369153\pi\)
\(432\) 0 0
\(433\) 15233.5 1.69071 0.845354 0.534207i \(-0.179390\pi\)
0.845354 + 0.534207i \(0.179390\pi\)
\(434\) −7680.41 + 5723.73i −0.849473 + 0.633060i
\(435\) 0 0
\(436\) 3362.98 11273.5i 0.369398 1.23831i
\(437\) 1854.81i 0.203038i
\(438\) 0 0
\(439\) 15988.2i 1.73821i 0.494629 + 0.869104i \(0.335304\pi\)
−0.494629 + 0.869104i \(0.664696\pi\)
\(440\) −8749.54 + 3199.22i −0.947995 + 0.346629i
\(441\) 0 0
\(442\) −3597.52 4827.34i −0.387142 0.519487i
\(443\) 2083.25 0.223427 0.111713 0.993740i \(-0.464366\pi\)
0.111713 + 0.993740i \(0.464366\pi\)
\(444\) 0 0
\(445\) −19172.4 −2.04238
\(446\) −4930.70 6616.28i −0.523488 0.702444i
\(447\) 0 0
\(448\) 9490.41 + 11242.6i 1.00085 + 1.18563i
\(449\) 10985.2i 1.15462i −0.816526 0.577308i \(-0.804103\pi\)
0.816526 0.577308i \(-0.195897\pi\)
\(450\) 0 0
\(451\) 2107.14i 0.220003i
\(452\) 7123.77 + 2125.07i 0.741314 + 0.221140i
\(453\) 0 0
\(454\) −12402.9 + 9243.15i −1.28216 + 0.955512i
\(455\) 35167.6 3.62348
\(456\) 0 0
\(457\) 12613.3 1.29108 0.645542 0.763724i \(-0.276631\pi\)
0.645542 + 0.763724i \(0.276631\pi\)
\(458\) −8869.62 + 6609.98i −0.904913 + 0.674375i
\(459\) 0 0
\(460\) 1746.45 + 520.981i 0.177019 + 0.0528062i
\(461\) 9242.85i 0.933802i 0.884310 + 0.466901i \(0.154630\pi\)
−0.884310 + 0.466901i \(0.845370\pi\)
\(462\) 0 0
\(463\) 8998.82i 0.903263i −0.892205 0.451632i \(-0.850842\pi\)
0.892205 0.451632i \(-0.149158\pi\)
\(464\) −4715.06 + 7199.75i −0.471748 + 0.720345i
\(465\) 0 0
\(466\) −172.415 231.356i −0.0171394 0.0229986i
\(467\) 7921.96 0.784978 0.392489 0.919757i \(-0.371614\pi\)
0.392489 + 0.919757i \(0.371614\pi\)
\(468\) 0 0
\(469\) −3749.52 −0.369161
\(470\) 12399.4 + 16638.2i 1.21690 + 1.63290i
\(471\) 0 0
\(472\) 6502.42 + 17783.5i 0.634106 + 1.73422i
\(473\) 1095.23i 0.106467i
\(474\) 0 0
\(475\) 18848.9i 1.82073i
\(476\) −1866.71 + 6257.68i −0.179749 + 0.602563i
\(477\) 0 0
\(478\) −12814.0 + 9549.45i −1.22614 + 0.913769i
\(479\) 12970.5 1.23724 0.618619 0.785691i \(-0.287692\pi\)
0.618619 + 0.785691i \(0.287692\pi\)
\(480\) 0 0
\(481\) 12336.7 1.16945
\(482\) 10279.1 7660.35i 0.971366 0.723899i
\(483\) 0 0
\(484\) −1590.59 + 5332.03i −0.149379 + 0.500754i
\(485\) 8551.82i 0.800656i
\(486\) 0 0
\(487\) 17968.0i 1.67188i −0.548820 0.835941i \(-0.684923\pi\)
0.548820 0.835941i \(-0.315077\pi\)
\(488\) 3466.59 + 9480.79i 0.321568 + 0.879457i
\(489\) 0 0
\(490\) −13325.7 17881.1i −1.22856 1.64854i
\(491\) 3141.82 0.288774 0.144387 0.989521i \(-0.453879\pi\)
0.144387 + 0.989521i \(0.453879\pi\)
\(492\) 0 0
\(493\) −3819.86 −0.348961
\(494\) −16840.8 22597.9i −1.53381 2.05815i
\(495\) 0 0
\(496\) −4132.24 + 6309.81i −0.374079 + 0.571207i
\(497\) 6029.22i 0.544160i
\(498\) 0 0
\(499\) 17629.0i 1.58153i −0.612120 0.790765i \(-0.709683\pi\)
0.612120 0.790765i \(-0.290317\pi\)
\(500\) −2096.89 625.519i −0.187552 0.0559481i
\(501\) 0 0
\(502\) 4461.11 3324.59i 0.396632 0.295585i
\(503\) −19916.6 −1.76548 −0.882742 0.469857i \(-0.844305\pi\)
−0.882742 + 0.469857i \(0.844305\pi\)
\(504\) 0 0
\(505\) 13960.1 1.23013
\(506\) −797.451 + 594.291i −0.0700613 + 0.0522123i
\(507\) 0 0
\(508\) 11521.6 + 3436.99i 1.00628 + 0.300181i
\(509\) 12378.1i 1.07790i 0.842339 + 0.538948i \(0.181178\pi\)
−0.842339 + 0.538948i \(0.818822\pi\)
\(510\) 0 0
\(511\) 4699.61i 0.406847i
\(512\) 10058.7 + 5748.10i 0.868233 + 0.496157i
\(513\) 0 0
\(514\) 2734.93 + 3669.88i 0.234694 + 0.314925i
\(515\) −10432.2 −0.892613
\(516\) 0 0
\(517\) −11323.4 −0.963254
\(518\) −7996.02 10729.5i −0.678233 0.910089i
\(519\) 0 0
\(520\) 26008.0 9509.66i 2.19332 0.801973i
\(521\) 7958.58i 0.669236i −0.942354 0.334618i \(-0.891393\pi\)
0.942354 0.334618i \(-0.108607\pi\)
\(522\) 0 0
\(523\) 14041.6i 1.17399i −0.809590 0.586995i \(-0.800311\pi\)
0.809590 0.586995i \(-0.199689\pi\)
\(524\) 4391.23 14720.5i 0.366091 1.22723i
\(525\) 0 0
\(526\) −10602.2 + 7901.19i −0.878858 + 0.654959i
\(527\) −3347.70 −0.276713
\(528\) 0 0
\(529\) −11972.4 −0.984009
\(530\) −210.043 + 156.532i −0.0172145 + 0.0128289i
\(531\) 0 0
\(532\) −8738.51 + 29293.6i −0.712148 + 2.38729i
\(533\) 6263.47i 0.509007i
\(534\) 0 0
\(535\) 15644.8i 1.26427i
\(536\) −2772.93 + 1013.91i −0.223456 + 0.0817053i
\(537\) 0 0
\(538\) −5981.27 8025.99i −0.479314 0.643169i
\(539\) 12169.3 0.972485
\(540\) 0 0
\(541\) 3818.43 0.303451 0.151726 0.988423i \(-0.451517\pi\)
0.151726 + 0.988423i \(0.451517\pi\)
\(542\) −539.304 723.667i −0.0427400 0.0573508i
\(543\) 0 0
\(544\) 311.621 + 5132.60i 0.0245600 + 0.404519i
\(545\) 24017.7i 1.88772i
\(546\) 0 0
\(547\) 7896.31i 0.617225i 0.951188 + 0.308612i \(0.0998645\pi\)
−0.951188 + 0.308612i \(0.900135\pi\)
\(548\) −3833.29 1143.50i −0.298814 0.0891385i
\(549\) 0 0
\(550\) 8103.83 6039.28i 0.628270 0.468211i
\(551\) −17881.7 −1.38255
\(552\) 0 0
\(553\) 37150.5 2.85678
\(554\) 11634.2 8670.23i 0.892218 0.664915i
\(555\) 0 0
\(556\) −5505.70 1642.39i −0.419953 0.125275i
\(557\) 18190.9i 1.38379i 0.721996 + 0.691897i \(0.243225\pi\)
−0.721996 + 0.691897i \(0.756775\pi\)
\(558\) 0 0
\(559\) 3255.57i 0.246326i
\(560\) −25127.8 16456.0i −1.89615 1.24177i
\(561\) 0 0
\(562\) −4511.62 6053.93i −0.338632 0.454394i
\(563\) 4821.74 0.360945 0.180473 0.983580i \(-0.442237\pi\)
0.180473 + 0.983580i \(0.442237\pi\)
\(564\) 0 0
\(565\) −15176.8 −1.13008
\(566\) −2929.31 3930.71i −0.217541 0.291908i
\(567\) 0 0
\(568\) −1630.36 4458.87i −0.120437 0.329384i
\(569\) 7625.95i 0.561857i 0.959729 + 0.280928i \(0.0906423\pi\)
−0.959729 + 0.280928i \(0.909358\pi\)
\(570\) 0 0
\(571\) 16062.5i 1.17722i 0.808416 + 0.588612i \(0.200325\pi\)
−0.808416 + 0.588612i \(0.799675\pi\)
\(572\) −4319.77 + 14480.9i −0.315767 + 1.05853i
\(573\) 0 0
\(574\) 5447.47 4059.66i 0.396120 0.295204i
\(575\) −1977.17 −0.143398
\(576\) 0 0
\(577\) 9185.17 0.662710 0.331355 0.943506i \(-0.392494\pi\)
0.331355 + 0.943506i \(0.392494\pi\)
\(578\) 9312.27 6939.86i 0.670137 0.499412i
\(579\) 0 0
\(580\) 5022.60 16837.0i 0.359573 1.20538i
\(581\) 12763.2i 0.911371i
\(582\) 0 0
\(583\) 142.948i 0.0101549i
\(584\) −1270.82 3475.57i −0.0900462 0.246267i
\(585\) 0 0
\(586\) 6999.48 + 9392.27i 0.493423 + 0.662101i
\(587\) 24311.5 1.70944 0.854721 0.519087i \(-0.173728\pi\)
0.854721 + 0.519087i \(0.173728\pi\)
\(588\) 0 0
\(589\) −15671.3 −1.09631
\(590\) −23099.5 30996.1i −1.61185 2.16286i
\(591\) 0 0
\(592\) −8814.76 5772.72i −0.611967 0.400773i
\(593\) 17807.1i 1.23314i 0.787302 + 0.616568i \(0.211477\pi\)
−0.787302 + 0.616568i \(0.788523\pi\)
\(594\) 0 0
\(595\) 13331.7i 0.918564i
\(596\) −26689.0 7961.52i −1.83427 0.547175i
\(597\) 0 0
\(598\) 2370.42 1766.53i 0.162096 0.120800i
\(599\) −3443.89 −0.234914 −0.117457 0.993078i \(-0.537474\pi\)
−0.117457 + 0.993078i \(0.537474\pi\)
\(600\) 0 0
\(601\) 1463.61 0.0993373 0.0496687 0.998766i \(-0.484183\pi\)
0.0496687 + 0.998766i \(0.484183\pi\)
\(602\) 2831.44 2110.10i 0.191696 0.142859i
\(603\) 0 0
\(604\) 15366.4 + 4583.90i 1.03518 + 0.308802i
\(605\) 11359.6i 0.763363i
\(606\) 0 0
\(607\) 8989.33i 0.601097i 0.953767 + 0.300548i \(0.0971697\pi\)
−0.953767 + 0.300548i \(0.902830\pi\)
\(608\) 1458.77 + 24026.9i 0.0973042 + 1.60266i
\(609\) 0 0
\(610\) −12314.9 16524.7i −0.817400 1.09683i
\(611\) 33658.7 2.22862
\(612\) 0 0
\(613\) −27489.4 −1.81124 −0.905619 0.424093i \(-0.860593\pi\)
−0.905619 + 0.424093i \(0.860593\pi\)
\(614\) −5287.49 7095.04i −0.347534 0.466340i
\(615\) 0 0
\(616\) 15394.2 5628.81i 1.00690 0.368168i
\(617\) 16826.3i 1.09789i −0.835857 0.548947i \(-0.815029\pi\)
0.835857 0.548947i \(-0.184971\pi\)
\(618\) 0 0
\(619\) 4809.44i 0.312290i −0.987734 0.156145i \(-0.950093\pi\)
0.987734 0.156145i \(-0.0499067\pi\)
\(620\) 4401.77 14755.8i 0.285128 0.955819i
\(621\) 0 0
\(622\) −19436.5 + 14484.8i −1.25295 + 0.933744i
\(623\) 33732.5 2.16928
\(624\) 0 0
\(625\) −13251.1 −0.848070
\(626\) 474.840 353.869i 0.0303170 0.0225933i
\(627\) 0 0
\(628\) 5966.54 20001.3i 0.379125 1.27092i
\(629\) 4676.71i 0.296459i
\(630\) 0 0
\(631\) 1519.28i 0.0958501i −0.998851 0.0479250i \(-0.984739\pi\)
0.998851 0.0479250i \(-0.0152609\pi\)
\(632\) 27474.4 10045.9i 1.72923 0.632282i
\(633\) 0 0
\(634\) −3494.70 4689.38i −0.218915 0.293752i
\(635\) −24546.3 −1.53400
\(636\) 0 0
\(637\) −36173.2 −2.24998
\(638\) 5729.36 + 7687.96i 0.355529 + 0.477068i
\(639\) 0 0
\(640\) −23033.0 5375.13i −1.42259 0.331986i
\(641\) 25895.1i 1.59563i 0.602905 + 0.797813i \(0.294010\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(642\) 0 0
\(643\) 13730.8i 0.842128i −0.907031 0.421064i \(-0.861657\pi\)
0.907031 0.421064i \(-0.138343\pi\)
\(644\) −3072.77 916.631i −0.188019 0.0560874i
\(645\) 0 0
\(646\) −8566.64 + 6384.18i −0.521749 + 0.388827i
\(647\) 2661.25 0.161707 0.0808537 0.996726i \(-0.474235\pi\)
0.0808537 + 0.996726i \(0.474235\pi\)
\(648\) 0 0
\(649\) 21094.9 1.27588
\(650\) −24088.6 + 17951.7i −1.45359 + 1.08327i
\(651\) 0 0
\(652\) 3605.08 + 1075.42i 0.216543 + 0.0645964i
\(653\) 3829.74i 0.229509i −0.993394 0.114754i \(-0.963392\pi\)
0.993394 0.114754i \(-0.0366081\pi\)
\(654\) 0 0
\(655\) 31361.3i 1.87082i
\(656\) 2930.87 4475.34i 0.174438 0.266361i
\(657\) 0 0
\(658\) −21815.9 29273.7i −1.29251 1.73436i
\(659\) −3096.41 −0.183033 −0.0915166 0.995804i \(-0.529171\pi\)
−0.0915166 + 0.995804i \(0.529171\pi\)
\(660\) 0 0
\(661\) −2973.62 −0.174978 −0.0874890 0.996165i \(-0.527884\pi\)
−0.0874890 + 0.996165i \(0.527884\pi\)
\(662\) 6127.15 + 8221.74i 0.359726 + 0.482699i
\(663\) 0 0
\(664\) −3451.29 9438.94i −0.201711 0.551660i
\(665\) 62408.6i 3.63925i
\(666\) 0 0
\(667\) 1875.71i 0.108887i
\(668\) 3172.97 10636.6i 0.183781 0.616079i
\(669\) 0 0
\(670\) 4833.14 3601.84i 0.278687 0.207688i
\(671\) 11246.2 0.647027
\(672\) 0 0
\(673\) −11999.8 −0.687307 −0.343653 0.939097i \(-0.611665\pi\)
−0.343653 + 0.939097i \(0.611665\pi\)
\(674\) 19738.4 14709.8i 1.12804 0.840656i
\(675\) 0 0
\(676\) 7816.24 26201.9i 0.444711 1.49078i
\(677\) 12465.0i 0.707633i −0.935315 0.353817i \(-0.884884\pi\)
0.935315 0.353817i \(-0.115116\pi\)
\(678\) 0 0
\(679\) 15046.3i 0.850406i
\(680\) −3605.01 9859.36i −0.203303 0.556013i
\(681\) 0 0
\(682\) 5021.17 + 6737.67i 0.281921 + 0.378297i
\(683\) 27869.9 1.56136 0.780682 0.624928i \(-0.214872\pi\)
0.780682 + 0.624928i \(0.214872\pi\)
\(684\) 0 0
\(685\) 8166.64 0.455520
\(686\) 6787.04 + 9107.21i 0.377741 + 0.506873i
\(687\) 0 0
\(688\) 1523.38 2326.16i 0.0844163 0.128901i
\(689\) 424.914i 0.0234948i
\(690\) 0 0
\(691\) 10519.7i 0.579143i −0.957156 0.289571i \(-0.906487\pi\)
0.957156 0.289571i \(-0.0935127\pi\)
\(692\) 13696.9 + 4085.90i 0.752427 + 0.224455i
\(693\) 0 0
\(694\) −4164.73 + 3103.71i −0.227797 + 0.169763i
\(695\) 11729.6 0.640187
\(696\) 0 0
\(697\) 2374.42 0.129035
\(698\) −10372.2 + 7729.77i −0.562456 + 0.419163i
\(699\) 0 0
\(700\) 31226.0 + 9314.96i 1.68605 + 0.502960i
\(701\) 30219.3i 1.62820i 0.580726 + 0.814099i \(0.302769\pi\)
−0.580726 + 0.814099i \(0.697231\pi\)
\(702\) 0 0
\(703\) 21892.8i 1.17454i
\(704\) 9862.62 8325.50i 0.527999 0.445709i
\(705\) 0 0
\(706\) 16308.4 + 21883.5i 0.869370 + 1.16657i
\(707\) −24561.9 −1.30657
\(708\) 0 0
\(709\) 11964.2 0.633744 0.316872 0.948468i \(-0.397367\pi\)
0.316872 + 0.948468i \(0.397367\pi\)
\(710\) 5791.75 + 7771.68i 0.306142 + 0.410797i
\(711\) 0 0
\(712\) 24946.7 9121.59i 1.31308 0.480121i
\(713\) 1643.85i 0.0863433i
\(714\) 0 0
\(715\) 30850.9i 1.61365i
\(716\) −2401.47 + 8050.32i −0.125345 + 0.420188i
\(717\) 0 0
\(718\) 16222.2 12089.4i 0.843188 0.628376i
\(719\) −4225.51 −0.219172 −0.109586 0.993977i \(-0.534953\pi\)
−0.109586 + 0.993977i \(0.534953\pi\)
\(720\) 0 0
\(721\) 18354.7 0.948078
\(722\) −24546.8 + 18293.2i −1.26529 + 0.942939i
\(723\) 0 0
\(724\) −6894.83 + 23113.1i −0.353928 + 1.18645i
\(725\) 19061.2i 0.976437i
\(726\) 0 0
\(727\) 11508.9i 0.587128i −0.955939 0.293564i \(-0.905159\pi\)
0.955939 0.293564i \(-0.0948413\pi\)
\(728\) −45759.3 + 16731.6i −2.32961 + 0.851806i
\(729\) 0 0
\(730\) 4514.52 + 6057.82i 0.228890 + 0.307137i
\(731\) 1234.15 0.0624443
\(732\) 0 0
\(733\) 4536.67 0.228602 0.114301 0.993446i \(-0.463537\pi\)
0.114301 + 0.993446i \(0.463537\pi\)
\(734\) 6132.98 + 8229.56i 0.308409 + 0.413840i
\(735\) 0 0
\(736\) −2520.31 + 153.018i −0.126223 + 0.00766350i
\(737\) 3289.28i 0.164399i
\(738\) 0 0
\(739\) 7388.95i 0.367804i −0.982945 0.183902i \(-0.941127\pi\)
0.982945 0.183902i \(-0.0588728\pi\)
\(740\) 20613.8 + 6149.25i 1.02402 + 0.305474i
\(741\) 0 0
\(742\) 369.556 275.407i 0.0182841 0.0136260i
\(743\) 1185.60 0.0585402 0.0292701 0.999572i \(-0.490682\pi\)
0.0292701 + 0.999572i \(0.490682\pi\)
\(744\) 0 0
\(745\) 56859.5 2.79620
\(746\) −2685.58 + 2001.40i −0.131804 + 0.0982256i
\(747\) 0 0
\(748\) 5489.57 + 1637.58i 0.268341 + 0.0800480i
\(749\) 27526.1i 1.34283i
\(750\) 0 0
\(751\) 16788.0i 0.815718i 0.913045 + 0.407859i \(0.133724\pi\)
−0.913045 + 0.407859i \(0.866276\pi\)
\(752\) −24049.7 15750.0i −1.16623 0.763753i
\(753\) 0 0
\(754\) −17030.5 22852.4i −0.822565 1.10376i
\(755\) −32737.3 −1.57806
\(756\) 0 0
\(757\) −18854.0 −0.905230 −0.452615 0.891706i \(-0.649509\pi\)
−0.452615 + 0.891706i \(0.649509\pi\)
\(758\) 12890.9 + 17297.7i 0.617704 + 0.828869i
\(759\) 0 0
\(760\) −16875.9 46153.9i −0.805465 2.20287i
\(761\) 28006.1i 1.33406i 0.745030 + 0.667031i \(0.232435\pi\)
−0.745030 + 0.667031i \(0.767565\pi\)
\(762\) 0 0
\(763\) 42257.5i 2.00501i
\(764\) 4286.76 14370.3i 0.202997 0.680494i
\(765\) 0 0
\(766\) −25104.3 + 18708.7i −1.18415 + 0.882470i
\(767\) −62704.6 −2.95193
\(768\) 0 0
\(769\) −16324.7 −0.765517 −0.382759 0.923848i \(-0.625026\pi\)
−0.382759 + 0.923848i \(0.625026\pi\)
\(770\) −26831.7 + 19996.0i −1.25578 + 0.935852i
\(771\) 0 0
\(772\) −2092.23 + 7013.68i −0.0975404 + 0.326979i
\(773\) 10017.2i 0.466100i −0.972465 0.233050i \(-0.925129\pi\)
0.972465 0.233050i \(-0.0748706\pi\)
\(774\) 0 0
\(775\) 16705.1i 0.774278i
\(776\) −4068.68 11127.4i −0.188218 0.514757i
\(777\) 0 0
\(778\) −18451.5 24759.2i −0.850279 1.14095i
\(779\) 11115.2 0.511223
\(780\) 0 0
\(781\) −5289.16 −0.242331
\(782\) −669.672 898.602i −0.0306233 0.0410920i
\(783\) 0 0
\(784\) 25846.3 + 16926.6i 1.17740 + 0.771072i
\(785\) 42611.8i 1.93743i
\(786\) 0 0
\(787\) 5638.43i 0.255386i −0.991814 0.127693i \(-0.959243\pi\)
0.991814 0.127693i \(-0.0407572\pi\)
\(788\) 10965.5 + 3271.08i 0.495722 + 0.147878i
\(789\) 0 0
\(790\) −47887.1 + 35687.3i −2.15664 + 1.60721i
\(791\) 26702.6 1.20030
\(792\) 0 0
\(793\) −33429.3 −1.49699
\(794\) 15036.4 11205.7i 0.672066 0.500849i
\(795\) 0 0
\(796\) −15473.7 4615.91i −0.689007 0.205536i
\(797\) 8971.06i 0.398709i −0.979927 0.199355i \(-0.936115\pi\)
0.979927 0.199355i \(-0.0638845\pi\)
\(798\) 0 0
\(799\) 12759.7i 0.564963i
\(800\) 25611.9 1555.00i 1.13189 0.0687219i
\(801\) 0 0
\(802\) −846.519 1135.90i −0.0372714 0.0500127i
\(803\) −4122.76 −0.181182
\(804\) 0 0
\(805\) 6546.39 0.286621
\(806\) −14925.4 20027.7i −0.652264 0.875242i
\(807\) 0 0
\(808\) −18164.6 + 6641.76i −0.790875 + 0.289179i
\(809\) 17977.5i 0.781282i 0.920543 + 0.390641i \(0.127747\pi\)
−0.920543 + 0.390641i \(0.872253\pi\)
\(810\) 0 0
\(811\) 22820.8i 0.988095i 0.869435 + 0.494048i \(0.164483\pi\)
−0.869435 + 0.494048i \(0.835517\pi\)
\(812\) −8836.94 + 29623.6i −0.381916 + 1.28028i
\(813\) 0 0
\(814\) −9412.48 + 7014.54i −0.405292 + 0.302039i
\(815\) −7680.46 −0.330104
\(816\) 0 0
\(817\) 5777.36 0.247398
\(818\) −1553.97 + 1158.08i −0.0664222 + 0.0495003i
\(819\) 0 0
\(820\) −3122.04 + 10465.8i −0.132959 + 0.445710i
\(821\) 33659.1i 1.43083i −0.698701 0.715414i \(-0.746238\pi\)
0.698701 0.715414i \(-0.253762\pi\)
\(822\) 0 0
\(823\) 16220.2i 0.687001i 0.939152 + 0.343501i \(0.111613\pi\)
−0.939152 + 0.343501i \(0.888387\pi\)
\(824\) 13574.1 4963.28i 0.573878 0.209835i
\(825\) 0 0
\(826\) 40642.0 + 54535.5i 1.71200 + 2.29726i
\(827\) −25875.9 −1.08802 −0.544010 0.839078i \(-0.683095\pi\)
−0.544010 + 0.839078i \(0.683095\pi\)
\(828\) 0 0
\(829\) 4852.05 0.203279 0.101640 0.994821i \(-0.467591\pi\)
0.101640 + 0.994821i \(0.467591\pi\)
\(830\) 12260.5 + 16451.8i 0.512733 + 0.688012i
\(831\) 0 0
\(832\) −29316.6 + 24747.5i −1.22160 + 1.03121i
\(833\) 13712.9i 0.570377i
\(834\) 0 0
\(835\) 22660.7i 0.939168i
\(836\) 25698.0 + 7665.90i 1.06314 + 0.317142i
\(837\) 0 0
\(838\) 18893.5 14080.1i 0.778836 0.580418i
\(839\) −10799.9 −0.444402 −0.222201 0.975001i \(-0.571324\pi\)
−0.222201 + 0.975001i \(0.571324\pi\)
\(840\) 0 0
\(841\) 6305.94 0.258557
\(842\) 31632.6 23573.8i 1.29469 0.964854i
\(843\) 0 0
\(844\) 4288.44 + 1279.28i 0.174898 + 0.0521735i
\(845\) 55822.0i 2.27258i
\(846\) 0 0
\(847\) 19986.5i 0.810797i
\(848\) 198.830 303.607i 0.00805172 0.0122947i
\(849\) 0 0
\(850\) 6805.32 + 9131.74i 0.274612 + 0.368490i
\(851\) 2296.45 0.0925046
\(852\) 0 0
\(853\) −2346.64 −0.0941939 −0.0470970 0.998890i \(-0.514997\pi\)
−0.0470970 + 0.998890i \(0.514997\pi\)
\(854\) 21667.2 + 29074.2i 0.868192 + 1.16499i
\(855\) 0 0
\(856\) −7443.31 20356.7i −0.297205 0.812825i
\(857\) 36754.7i 1.46501i 0.680761 + 0.732506i \(0.261649\pi\)
−0.680761 + 0.732506i \(0.738351\pi\)
\(858\) 0 0
\(859\) 1569.67i 0.0623475i 0.999514 + 0.0311737i \(0.00992452\pi\)
−0.999514 + 0.0311737i \(0.990075\pi\)
\(860\) −1622.75 + 5439.84i −0.0643432 + 0.215694i
\(861\) 0 0
\(862\) 16217.5 12085.9i 0.640801 0.477549i
\(863\) −38951.9 −1.53643 −0.768215 0.640192i \(-0.778855\pi\)
−0.768215 + 0.640192i \(0.778855\pi\)
\(864\) 0 0
\(865\) −29180.6 −1.14702
\(866\) 34548.3 25746.7i 1.35566 1.01029i
\(867\) 0 0
\(868\) −7744.62 + 25961.9i −0.302845 + 1.01521i
\(869\) 32590.4i 1.27221i
\(870\) 0 0
\(871\) 9777.37i 0.380360i
\(872\) −11426.9 31251.3i −0.443764 1.21365i
\(873\) 0 0
\(874\) −3134.89 4206.56i −0.121326 0.162802i
\(875\) −7859.96 −0.303675
\(876\) 0 0
\(877\) 15187.5 0.584772 0.292386 0.956300i \(-0.405551\pi\)
0.292386 + 0.956300i \(0.405551\pi\)
\(878\) 27022.2 + 36259.8i 1.03867 + 1.39375i
\(879\) 0 0
\(880\) −14436.1 + 22043.5i −0.553001 + 0.844415i
\(881\) 40482.4i 1.54811i −0.633118 0.774055i \(-0.718225\pi\)
0.633118 0.774055i \(-0.281775\pi\)
\(882\) 0 0
\(883\) 6705.26i 0.255549i −0.991803 0.127775i \(-0.959217\pi\)
0.991803 0.127775i \(-0.0407834\pi\)
\(884\) −16317.7 4867.71i −0.620843 0.185202i
\(885\) 0 0
\(886\) 4724.63 3520.97i 0.179150 0.133510i
\(887\) −3567.45 −0.135043 −0.0675215 0.997718i \(-0.521509\pi\)
−0.0675215 + 0.997718i \(0.521509\pi\)
\(888\) 0 0
\(889\) 43187.5 1.62932
\(890\) −43481.3 + 32403.9i −1.63764 + 1.22043i
\(891\) 0 0
\(892\) −22364.8 6671.60i −0.839496 0.250428i
\(893\) 59731.0i 2.23832i
\(894\) 0 0
\(895\) 17150.8i 0.640545i
\(896\) 40525.0 + 9457.19i 1.51099 + 0.352614i
\(897\) 0 0
\(898\) −18566.5 24913.5i −0.689945 0.925805i
\(899\) −15847.9 −0.587937
\(900\) 0 0
\(901\) 161.080 0.00595601
\(902\) −3561.35 4778.81i −0.131464 0.176405i
\(903\) 0 0
\(904\) 19747.8 7220.65i 0.726550 0.265659i
\(905\) 49241.4i 1.80866i
\(906\) 0 0
\(907\) 24925.1i 0.912487i 0.889855 + 0.456243i \(0.150805\pi\)
−0.889855 + 0.456243i \(0.849195\pi\)
\(908\) −12506.7 + 41925.4i −0.457101 + 1.53231i
\(909\) 0 0
\(910\) 79757.1 59438.0i 2.90541 2.16522i
\(911\) 5019.02 0.182533 0.0912664 0.995827i \(-0.470909\pi\)
0.0912664 + 0.995827i \(0.470909\pi\)
\(912\) 0 0
\(913\) −11196.6 −0.405862
\(914\) 28605.9 21318.2i 1.03523 0.771492i
\(915\) 0 0
\(916\) −8943.78 + 29981.7i −0.322610 + 1.08147i
\(917\) 55178.0i 1.98707i
\(918\) 0 0
\(919\) 40328.5i 1.44757i 0.690027 + 0.723784i \(0.257599\pi\)
−0.690027 + 0.723784i \(0.742401\pi\)
\(920\) 4841.34 1770.21i 0.173494 0.0634369i
\(921\) 0 0
\(922\) 15621.7 + 20962.0i 0.557997 + 0.748749i
\(923\) 15722.0 0.560667
\(924\) 0 0
\(925\) −23337.0 −0.829529
\(926\) −15209.2 20408.6i −0.539748 0.724263i
\(927\) 0 0
\(928\) 1475.20 + 24297.5i 0.0521830 + 0.859488i
\(929\) 7714.26i 0.272440i −0.990679 0.136220i \(-0.956505\pi\)
0.990679 0.136220i \(-0.0434954\pi\)
\(930\) 0 0
\(931\) 64193.2i 2.25977i
\(932\) −782.046 233.290i −0.0274858 0.00819923i
\(933\) 0 0
\(934\) 17966.3 13389.2i 0.629418 0.469066i
\(935\) −11695.3 −0.409065
\(936\) 0 0
\(937\) 3225.39 0.112453 0.0562267 0.998418i \(-0.482093\pi\)
0.0562267 + 0.998418i \(0.482093\pi\)
\(938\) −8503.58 + 6337.19i −0.296004 + 0.220594i
\(939\) 0 0
\(940\) 56241.5 + 16777.3i 1.95148 + 0.582143i
\(941\) 1577.19i 0.0546385i 0.999627 + 0.0273193i \(0.00869707\pi\)
−0.999627 + 0.0273193i \(0.991303\pi\)
\(942\) 0 0
\(943\) 1165.93i 0.0402630i
\(944\) 44803.4 + 29341.4i 1.54473 + 1.01163i
\(945\) 0 0
\(946\) −1851.09 2483.89i −0.0636196 0.0853682i
\(947\) 15469.4 0.530822 0.265411 0.964135i \(-0.414492\pi\)
0.265411 + 0.964135i \(0.414492\pi\)
\(948\) 0 0
\(949\) 12254.9 0.419189
\(950\) 31857.3 + 42747.8i 1.08799 + 1.45992i
\(951\) 0 0
\(952\) 6342.78 + 17346.9i 0.215936 + 0.590563i
\(953\) 18386.7i 0.624979i −0.949921 0.312489i \(-0.898837\pi\)
0.949921 0.312489i \(-0.101163\pi\)
\(954\) 0 0
\(955\) 30615.1i 1.03736i
\(956\) −12921.1 + 43314.7i −0.437132 + 1.46537i
\(957\) 0 0
\(958\) 29416.0 21921.9i 0.992054 0.739316i
\(959\) −14368.7 −0.483825
\(960\) 0 0
\(961\) 15902.1 0.533788
\(962\) 27978.6 20850.7i 0.937698 0.698808i
\(963\) 0 0
\(964\) 10365.0 34746.0i 0.346301 1.16089i
\(965\) 14942.3i 0.498456i
\(966\) 0 0
\(967\) 39747.2i 1.32180i −0.750472 0.660902i \(-0.770174\pi\)
0.750472 0.660902i \(-0.229826\pi\)
\(968\) 5404.55 + 14780.9i 0.179451 + 0.490781i
\(969\) 0 0
\(970\) 14453.7 + 19394.8i 0.478434 + 0.641989i
\(971\) 3005.74 0.0993396 0.0496698 0.998766i \(-0.484183\pi\)
0.0496698 + 0.998766i \(0.484183\pi\)
\(972\) 0 0
\(973\) −20637.5 −0.679967
\(974\) −30368.3 40749.8i −0.999038 1.34056i
\(975\) 0 0
\(976\) 23885.8 + 15642.6i 0.783366 + 0.513020i
\(977\) 27553.3i 0.902261i −0.892458 0.451130i \(-0.851021\pi\)
0.892458 0.451130i \(-0.148979\pi\)
\(978\) 0 0
\(979\) 29592.0i 0.966051i
\(980\) −60443.0 18030.6i −1.97019 0.587721i
\(981\) 0 0
\(982\) 7125.38 5310.10i 0.231548 0.172558i
\(983\) 59679.1 1.93639 0.968193 0.250203i \(-0.0804975\pi\)
0.968193 + 0.250203i \(0.0804975\pi\)
\(984\) 0 0
\(985\) −23361.4 −0.755692
\(986\) −8663.12 + 6456.09i −0.279807 + 0.208523i
\(987\) 0 0
\(988\) −76387.1 22786.9i −2.45971 0.733751i
\(989\) 606.019i 0.0194846i
\(990\) 0 0
\(991\) 46352.5i 1.48581i 0.669398 + 0.742904i \(0.266552\pi\)
−0.669398 + 0.742904i \(0.733448\pi\)
\(992\) 1292.85 + 21294.2i 0.0413792 + 0.681543i
\(993\) 0 0
\(994\) −10190.2 13673.8i −0.325164 0.436323i
\(995\) 32965.9 1.05034
\(996\) 0 0
\(997\) −38260.4 −1.21537 −0.607683 0.794180i \(-0.707901\pi\)
−0.607683 + 0.794180i \(0.707901\pi\)
\(998\) −29795.5 39981.1i −0.945049 1.26812i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.b.d.323.25 yes 32
3.2 odd 2 inner 324.4.b.d.323.8 yes 32
4.3 odd 2 inner 324.4.b.d.323.7 32
12.11 even 2 inner 324.4.b.d.323.26 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.4.b.d.323.7 32 4.3 odd 2 inner
324.4.b.d.323.8 yes 32 3.2 odd 2 inner
324.4.b.d.323.25 yes 32 1.1 even 1 trivial
324.4.b.d.323.26 yes 32 12.11 even 2 inner