Properties

Label 324.4.e.c.109.1
Level $324$
Weight $4$
Character 324.109
Analytic conductor $19.117$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,4,Mod(109,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 324.109
Dual form 324.4.e.c.217.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 2.59808i) q^{5} +(2.00000 + 3.46410i) q^{7} +(12.0000 + 20.7846i) q^{11} +(12.5000 - 21.6506i) q^{13} -21.0000 q^{17} -52.0000 q^{19} +(-84.0000 + 145.492i) q^{23} +(58.0000 + 100.459i) q^{25} +(88.5000 + 153.286i) q^{29} +(62.0000 - 107.387i) q^{31} -12.0000 q^{35} -265.000 q^{37} +(-213.000 + 368.927i) q^{41} +(80.0000 + 138.564i) q^{43} +(270.000 + 467.654i) q^{47} +(163.500 - 283.190i) q^{49} -258.000 q^{53} -72.0000 q^{55} +(-264.000 + 457.261i) q^{59} +(252.500 + 437.343i) q^{61} +(37.5000 + 64.9519i) q^{65} +(122.000 - 211.310i) q^{67} +204.000 q^{71} -397.000 q^{73} +(-48.0000 + 83.1384i) q^{77} +(-100.000 - 173.205i) q^{79} +(270.000 + 467.654i) q^{83} +(31.5000 - 54.5596i) q^{85} -453.000 q^{89} +100.000 q^{91} +(78.0000 - 135.100i) q^{95} +(-145.000 - 251.147i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} + 4 q^{7} + 24 q^{11} + 25 q^{13} - 42 q^{17} - 104 q^{19} - 168 q^{23} + 116 q^{25} + 177 q^{29} + 124 q^{31} - 24 q^{35} - 530 q^{37} - 426 q^{41} + 160 q^{43} + 540 q^{47} + 327 q^{49}+ \cdots - 290 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.50000 + 2.59808i −0.134164 + 0.232379i −0.925278 0.379290i \(-0.876168\pi\)
0.791114 + 0.611669i \(0.209502\pi\)
\(6\) 0 0
\(7\) 2.00000 + 3.46410i 0.107990 + 0.187044i 0.914956 0.403554i \(-0.132225\pi\)
−0.806966 + 0.590598i \(0.798892\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 12.0000 + 20.7846i 0.328921 + 0.569709i 0.982298 0.187324i \(-0.0599815\pi\)
−0.653377 + 0.757033i \(0.726648\pi\)
\(12\) 0 0
\(13\) 12.5000 21.6506i 0.266683 0.461908i −0.701320 0.712846i \(-0.747406\pi\)
0.968003 + 0.250938i \(0.0807391\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −21.0000 −0.299603 −0.149801 0.988716i \(-0.547863\pi\)
−0.149801 + 0.988716i \(0.547863\pi\)
\(18\) 0 0
\(19\) −52.0000 −0.627875 −0.313937 0.949444i \(-0.601648\pi\)
−0.313937 + 0.949444i \(0.601648\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −84.0000 + 145.492i −0.761531 + 1.31901i 0.180530 + 0.983569i \(0.442219\pi\)
−0.942061 + 0.335441i \(0.891115\pi\)
\(24\) 0 0
\(25\) 58.0000 + 100.459i 0.464000 + 0.803672i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 88.5000 + 153.286i 0.566691 + 0.981538i 0.996890 + 0.0788035i \(0.0251100\pi\)
−0.430199 + 0.902734i \(0.641557\pi\)
\(30\) 0 0
\(31\) 62.0000 107.387i 0.359211 0.622171i −0.628619 0.777714i \(-0.716379\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −12.0000 −0.0579534
\(36\) 0 0
\(37\) −265.000 −1.17745 −0.588726 0.808333i \(-0.700370\pi\)
−0.588726 + 0.808333i \(0.700370\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −213.000 + 368.927i −0.811342 + 1.40529i 0.100583 + 0.994929i \(0.467929\pi\)
−0.911925 + 0.410356i \(0.865404\pi\)
\(42\) 0 0
\(43\) 80.0000 + 138.564i 0.283718 + 0.491414i 0.972298 0.233747i \(-0.0750986\pi\)
−0.688579 + 0.725161i \(0.741765\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 270.000 + 467.654i 0.837948 + 1.45137i 0.891608 + 0.452809i \(0.149578\pi\)
−0.0536598 + 0.998559i \(0.517089\pi\)
\(48\) 0 0
\(49\) 163.500 283.190i 0.476676 0.825628i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −258.000 −0.668661 −0.334330 0.942456i \(-0.608510\pi\)
−0.334330 + 0.942456i \(0.608510\pi\)
\(54\) 0 0
\(55\) −72.0000 −0.176518
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −264.000 + 457.261i −0.582540 + 1.00899i 0.412637 + 0.910896i \(0.364608\pi\)
−0.995177 + 0.0980937i \(0.968726\pi\)
\(60\) 0 0
\(61\) 252.500 + 437.343i 0.529989 + 0.917967i 0.999388 + 0.0349814i \(0.0111372\pi\)
−0.469399 + 0.882986i \(0.655529\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 37.5000 + 64.9519i 0.0715585 + 0.123943i
\(66\) 0 0
\(67\) 122.000 211.310i 0.222458 0.385308i −0.733096 0.680125i \(-0.761925\pi\)
0.955554 + 0.294817i \(0.0952587\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 204.000 0.340991 0.170495 0.985358i \(-0.445463\pi\)
0.170495 + 0.985358i \(0.445463\pi\)
\(72\) 0 0
\(73\) −397.000 −0.636511 −0.318256 0.948005i \(-0.603097\pi\)
−0.318256 + 0.948005i \(0.603097\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −48.0000 + 83.1384i −0.0710404 + 0.123046i
\(78\) 0 0
\(79\) −100.000 173.205i −0.142416 0.246672i 0.785990 0.618239i \(-0.212154\pi\)
−0.928406 + 0.371567i \(0.878820\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 270.000 + 467.654i 0.357064 + 0.618454i 0.987469 0.157813i \(-0.0504443\pi\)
−0.630405 + 0.776267i \(0.717111\pi\)
\(84\) 0 0
\(85\) 31.5000 54.5596i 0.0401959 0.0696214i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −453.000 −0.539527 −0.269764 0.962927i \(-0.586946\pi\)
−0.269764 + 0.962927i \(0.586946\pi\)
\(90\) 0 0
\(91\) 100.000 0.115196
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 78.0000 135.100i 0.0842382 0.145905i
\(96\) 0 0
\(97\) −145.000 251.147i −0.151779 0.262888i 0.780103 0.625651i \(-0.215167\pi\)
−0.931881 + 0.362763i \(0.881833\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −687.000 1189.92i −0.676822 1.17229i −0.975933 0.218072i \(-0.930023\pi\)
0.299110 0.954219i \(-0.403310\pi\)
\(102\) 0 0
\(103\) −634.000 + 1098.12i −0.606504 + 1.05050i 0.385308 + 0.922788i \(0.374095\pi\)
−0.991812 + 0.127707i \(0.959238\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1164.00 1.05166 0.525832 0.850588i \(-0.323754\pi\)
0.525832 + 0.850588i \(0.323754\pi\)
\(108\) 0 0
\(109\) 587.000 0.515820 0.257910 0.966169i \(-0.416966\pi\)
0.257910 + 0.966169i \(0.416966\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 616.500 1067.81i 0.513234 0.888947i −0.486648 0.873598i \(-0.661781\pi\)
0.999882 0.0153493i \(-0.00488603\pi\)
\(114\) 0 0
\(115\) −252.000 436.477i −0.204340 0.353928i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −42.0000 72.7461i −0.0323541 0.0560389i
\(120\) 0 0
\(121\) 377.500 653.849i 0.283621 0.491247i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −723.000 −0.517337
\(126\) 0 0
\(127\) 1496.00 1.04526 0.522632 0.852558i \(-0.324950\pi\)
0.522632 + 0.852558i \(0.324950\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1002.00 1735.51i 0.668284 1.15750i −0.310100 0.950704i \(-0.600363\pi\)
0.978384 0.206797i \(-0.0663040\pi\)
\(132\) 0 0
\(133\) −104.000 180.133i −0.0678041 0.117440i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1387.50 2403.22i −0.865271 1.49869i −0.866778 0.498694i \(-0.833813\pi\)
0.00150687 0.999999i \(-0.499520\pi\)
\(138\) 0 0
\(139\) −1006.00 + 1742.44i −0.613869 + 1.06325i 0.376713 + 0.926330i \(0.377054\pi\)
−0.990582 + 0.136922i \(0.956279\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 600.000 0.350871
\(144\) 0 0
\(145\) −531.000 −0.304118
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1072.50 1857.62i 0.589682 1.02136i −0.404592 0.914497i \(-0.632586\pi\)
0.994274 0.106862i \(-0.0340803\pi\)
\(150\) 0 0
\(151\) −1588.00 2750.50i −0.855825 1.48233i −0.875877 0.482534i \(-0.839717\pi\)
0.0200521 0.999799i \(-0.493617\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 186.000 + 322.161i 0.0963863 + 0.166946i
\(156\) 0 0
\(157\) −257.500 + 446.003i −0.130896 + 0.226719i −0.924022 0.382338i \(-0.875119\pi\)
0.793126 + 0.609058i \(0.208452\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −672.000 −0.328950
\(162\) 0 0
\(163\) 3272.00 1.57229 0.786144 0.618044i \(-0.212075\pi\)
0.786144 + 0.618044i \(0.212075\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 342.000 592.361i 0.158472 0.274481i −0.775846 0.630922i \(-0.782677\pi\)
0.934318 + 0.356441i \(0.116010\pi\)
\(168\) 0 0
\(169\) 786.000 + 1361.39i 0.357761 + 0.619660i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1561.50 2704.60i −0.686235 1.18859i −0.973047 0.230607i \(-0.925929\pi\)
0.286812 0.957987i \(-0.407404\pi\)
\(174\) 0 0
\(175\) −232.000 + 401.836i −0.100215 + 0.173577i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2892.00 1.20759 0.603794 0.797140i \(-0.293655\pi\)
0.603794 + 0.797140i \(0.293655\pi\)
\(180\) 0 0
\(181\) −1426.00 −0.585601 −0.292800 0.956174i \(-0.594587\pi\)
−0.292800 + 0.956174i \(0.594587\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 397.500 688.490i 0.157972 0.273615i
\(186\) 0 0
\(187\) −252.000 436.477i −0.0985458 0.170686i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 798.000 + 1382.18i 0.302310 + 0.523617i 0.976659 0.214796i \(-0.0689088\pi\)
−0.674349 + 0.738413i \(0.735575\pi\)
\(192\) 0 0
\(193\) −557.500 + 965.618i −0.207926 + 0.360138i −0.951061 0.309003i \(-0.900005\pi\)
0.743135 + 0.669142i \(0.233338\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1245.00 −0.450267 −0.225133 0.974328i \(-0.572282\pi\)
−0.225133 + 0.974328i \(0.572282\pi\)
\(198\) 0 0
\(199\) −700.000 −0.249355 −0.124678 0.992197i \(-0.539790\pi\)
−0.124678 + 0.992197i \(0.539790\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −354.000 + 613.146i −0.122394 + 0.211992i
\(204\) 0 0
\(205\) −639.000 1106.78i −0.217706 0.377078i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −624.000 1080.80i −0.206521 0.357706i
\(210\) 0 0
\(211\) −352.000 + 609.682i −0.114847 + 0.198921i −0.917719 0.397231i \(-0.869971\pi\)
0.802872 + 0.596152i \(0.203304\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −480.000 −0.152259
\(216\) 0 0
\(217\) 496.000 0.155164
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −262.500 + 454.663i −0.0798989 + 0.138389i
\(222\) 0 0
\(223\) 440.000 + 762.102i 0.132128 + 0.228853i 0.924497 0.381190i \(-0.124486\pi\)
−0.792369 + 0.610043i \(0.791152\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1962.00 + 3398.28i 0.573667 + 0.993621i 0.996185 + 0.0872664i \(0.0278132\pi\)
−0.422518 + 0.906355i \(0.638854\pi\)
\(228\) 0 0
\(229\) 3072.50 5321.73i 0.886622 1.53567i 0.0427795 0.999085i \(-0.486379\pi\)
0.843843 0.536590i \(-0.180288\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3885.00 −1.09234 −0.546169 0.837675i \(-0.683914\pi\)
−0.546169 + 0.837675i \(0.683914\pi\)
\(234\) 0 0
\(235\) −1620.00 −0.449690
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2430.00 + 4208.88i −0.657672 + 1.13912i 0.323545 + 0.946213i \(0.395125\pi\)
−0.981217 + 0.192909i \(0.938208\pi\)
\(240\) 0 0
\(241\) 2274.50 + 3939.55i 0.607940 + 1.05298i 0.991580 + 0.129499i \(0.0413370\pi\)
−0.383640 + 0.923483i \(0.625330\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 490.500 + 849.571i 0.127906 + 0.221539i
\(246\) 0 0
\(247\) −650.000 + 1125.83i −0.167443 + 0.290020i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4800.00 1.20706 0.603532 0.797338i \(-0.293759\pi\)
0.603532 + 0.797338i \(0.293759\pi\)
\(252\) 0 0
\(253\) −4032.00 −1.00194
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1255.50 + 2174.59i −0.304731 + 0.527810i −0.977201 0.212314i \(-0.931900\pi\)
0.672470 + 0.740124i \(0.265233\pi\)
\(258\) 0 0
\(259\) −530.000 917.987i −0.127153 0.220235i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2274.00 + 3938.68i 0.533159 + 0.923459i 0.999250 + 0.0387218i \(0.0123286\pi\)
−0.466091 + 0.884737i \(0.654338\pi\)
\(264\) 0 0
\(265\) 387.000 670.304i 0.0897103 0.155383i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2517.00 −0.570499 −0.285249 0.958453i \(-0.592076\pi\)
−0.285249 + 0.958453i \(0.592076\pi\)
\(270\) 0 0
\(271\) 4040.00 0.905581 0.452791 0.891617i \(-0.350429\pi\)
0.452791 + 0.891617i \(0.350429\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1392.00 + 2411.01i −0.305239 + 0.528690i
\(276\) 0 0
\(277\) 3545.00 + 6140.12i 0.768947 + 1.33186i 0.938134 + 0.346272i \(0.112553\pi\)
−0.169187 + 0.985584i \(0.554114\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1582.50 + 2740.97i 0.335957 + 0.581895i 0.983668 0.179991i \(-0.0576068\pi\)
−0.647711 + 0.761886i \(0.724274\pi\)
\(282\) 0 0
\(283\) 3374.00 5843.94i 0.708705 1.22751i −0.256633 0.966509i \(-0.582613\pi\)
0.965338 0.261004i \(-0.0840535\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1704.00 −0.350467
\(288\) 0 0
\(289\) −4472.00 −0.910238
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3247.50 + 5624.83i −0.647512 + 1.12152i 0.336203 + 0.941789i \(0.390857\pi\)
−0.983715 + 0.179734i \(0.942476\pi\)
\(294\) 0 0
\(295\) −792.000 1371.78i −0.156312 0.270740i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2100.00 + 3637.31i 0.406174 + 0.703515i
\(300\) 0 0
\(301\) −320.000 + 554.256i −0.0612774 + 0.106136i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1515.00 −0.284422
\(306\) 0 0
\(307\) −8980.00 −1.66943 −0.834716 0.550681i \(-0.814368\pi\)
−0.834716 + 0.550681i \(0.814368\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1932.00 + 3346.32i −0.352263 + 0.610137i −0.986646 0.162882i \(-0.947921\pi\)
0.634383 + 0.773019i \(0.281254\pi\)
\(312\) 0 0
\(313\) −2747.50 4758.81i −0.496159 0.859373i 0.503831 0.863802i \(-0.331923\pi\)
−0.999990 + 0.00442912i \(0.998590\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 442.500 + 766.432i 0.0784015 + 0.135795i 0.902560 0.430563i \(-0.141685\pi\)
−0.824159 + 0.566359i \(0.808352\pi\)
\(318\) 0 0
\(319\) −2124.00 + 3678.88i −0.372794 + 0.645698i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1092.00 0.188113
\(324\) 0 0
\(325\) 2900.00 0.494963
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1080.00 + 1870.61i −0.180980 + 0.313466i
\(330\) 0 0
\(331\) 5462.00 + 9460.46i 0.907005 + 1.57098i 0.818203 + 0.574930i \(0.194971\pi\)
0.0888021 + 0.996049i \(0.471696\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 366.000 + 633.931i 0.0596917 + 0.103389i
\(336\) 0 0
\(337\) 3935.00 6815.62i 0.636063 1.10169i −0.350226 0.936665i \(-0.613895\pi\)
0.986289 0.165028i \(-0.0527713\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2976.00 0.472608
\(342\) 0 0
\(343\) 2680.00 0.421885
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2358.00 4084.18i 0.364796 0.631845i −0.623948 0.781466i \(-0.714472\pi\)
0.988743 + 0.149622i \(0.0478055\pi\)
\(348\) 0 0
\(349\) 821.000 + 1422.01i 0.125923 + 0.218105i 0.922093 0.386968i \(-0.126477\pi\)
−0.796170 + 0.605073i \(0.793144\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1545.00 2676.02i −0.232952 0.403485i 0.725724 0.687986i \(-0.241505\pi\)
−0.958676 + 0.284502i \(0.908172\pi\)
\(354\) 0 0
\(355\) −306.000 + 530.008i −0.0457487 + 0.0792391i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5688.00 −0.836215 −0.418107 0.908398i \(-0.637306\pi\)
−0.418107 + 0.908398i \(0.637306\pi\)
\(360\) 0 0
\(361\) −4155.00 −0.605773
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 595.500 1031.44i 0.0853970 0.147912i
\(366\) 0 0
\(367\) −3388.00 5868.19i −0.481886 0.834651i 0.517898 0.855442i \(-0.326715\pi\)
−0.999784 + 0.0207914i \(0.993381\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −516.000 893.738i −0.0722086 0.125069i
\(372\) 0 0
\(373\) −3079.00 + 5332.98i −0.427412 + 0.740299i −0.996642 0.0818791i \(-0.973908\pi\)
0.569231 + 0.822178i \(0.307241\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4425.00 0.604507
\(378\) 0 0
\(379\) 7484.00 1.01432 0.507160 0.861852i \(-0.330695\pi\)
0.507160 + 0.861852i \(0.330695\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2310.00 + 4001.04i −0.308187 + 0.533795i −0.977966 0.208765i \(-0.933055\pi\)
0.669779 + 0.742560i \(0.266389\pi\)
\(384\) 0 0
\(385\) −144.000 249.415i −0.0190621 0.0330166i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 465.000 + 805.404i 0.0606078 + 0.104976i 0.894737 0.446593i \(-0.147363\pi\)
−0.834129 + 0.551569i \(0.814029\pi\)
\(390\) 0 0
\(391\) 1764.00 3055.34i 0.228157 0.395179i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 600.000 0.0764285
\(396\) 0 0
\(397\) 1919.00 0.242599 0.121300 0.992616i \(-0.461294\pi\)
0.121300 + 0.992616i \(0.461294\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5002.50 8664.58i 0.622975 1.07902i −0.365954 0.930633i \(-0.619257\pi\)
0.988929 0.148391i \(-0.0474095\pi\)
\(402\) 0 0
\(403\) −1550.00 2684.68i −0.191591 0.331845i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3180.00 5507.92i −0.387289 0.670805i
\(408\) 0 0
\(409\) −3827.50 + 6629.42i −0.462733 + 0.801477i −0.999096 0.0425106i \(-0.986464\pi\)
0.536363 + 0.843987i \(0.319798\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2112.00 −0.251634
\(414\) 0 0
\(415\) −1620.00 −0.191621
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7020.00 12159.0i 0.818495 1.41768i −0.0882958 0.996094i \(-0.528142\pi\)
0.906791 0.421581i \(-0.138525\pi\)
\(420\) 0 0
\(421\) −5609.50 9715.94i −0.649383 1.12476i −0.983270 0.182152i \(-0.941694\pi\)
0.333887 0.942613i \(-0.391639\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1218.00 2109.64i −0.139016 0.240782i
\(426\) 0 0
\(427\) −1010.00 + 1749.37i −0.114467 + 0.198262i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1884.00 −0.210555 −0.105277 0.994443i \(-0.533573\pi\)
−0.105277 + 0.994443i \(0.533573\pi\)
\(432\) 0 0
\(433\) 17507.0 1.94303 0.971516 0.236975i \(-0.0761558\pi\)
0.971516 + 0.236975i \(0.0761558\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4368.00 7565.60i 0.478146 0.828173i
\(438\) 0 0
\(439\) 1754.00 + 3038.02i 0.190692 + 0.330288i 0.945480 0.325681i \(-0.105593\pi\)
−0.754788 + 0.655969i \(0.772260\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6210.00 10756.0i −0.666018 1.15358i −0.979008 0.203821i \(-0.934664\pi\)
0.312990 0.949756i \(-0.398669\pi\)
\(444\) 0 0
\(445\) 679.500 1176.93i 0.0723851 0.125375i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8658.00 0.910014 0.455007 0.890488i \(-0.349637\pi\)
0.455007 + 0.890488i \(0.349637\pi\)
\(450\) 0 0
\(451\) −10224.0 −1.06747
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −150.000 + 259.808i −0.0154552 + 0.0267692i
\(456\) 0 0
\(457\) −167.500 290.119i −0.0171451 0.0296962i 0.857326 0.514775i \(-0.172124\pi\)
−0.874471 + 0.485078i \(0.838791\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −123.000 213.042i −0.0124266 0.0215236i 0.859745 0.510723i \(-0.170622\pi\)
−0.872172 + 0.489200i \(0.837289\pi\)
\(462\) 0 0
\(463\) −7156.00 + 12394.6i −0.718288 + 1.24411i 0.243389 + 0.969929i \(0.421741\pi\)
−0.961677 + 0.274183i \(0.911593\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8184.00 0.810943 0.405471 0.914108i \(-0.367107\pi\)
0.405471 + 0.914108i \(0.367107\pi\)
\(468\) 0 0
\(469\) 976.000 0.0960927
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1920.00 + 3325.54i −0.186642 + 0.323274i
\(474\) 0 0
\(475\) −3016.00 5223.87i −0.291334 0.504605i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9054.00 15682.0i −0.863649 1.49588i −0.868383 0.495895i \(-0.834840\pi\)
0.00473362 0.999989i \(-0.498493\pi\)
\(480\) 0 0
\(481\) −3312.50 + 5737.42i −0.314006 + 0.543875i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 870.000 0.0814529
\(486\) 0 0
\(487\) 13700.0 1.27476 0.637378 0.770551i \(-0.280019\pi\)
0.637378 + 0.770551i \(0.280019\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10068.0 17438.3i 0.925382 1.60281i 0.134436 0.990922i \(-0.457078\pi\)
0.790946 0.611886i \(-0.209589\pi\)
\(492\) 0 0
\(493\) −1858.50 3219.02i −0.169782 0.294071i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 408.000 + 706.677i 0.0368235 + 0.0637802i
\(498\) 0 0
\(499\) 6704.00 11611.7i 0.601427 1.04170i −0.391178 0.920315i \(-0.627932\pi\)
0.992605 0.121388i \(-0.0387344\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −21600.0 −1.91470 −0.957352 0.288923i \(-0.906703\pi\)
−0.957352 + 0.288923i \(0.906703\pi\)
\(504\) 0 0
\(505\) 4122.00 0.363221
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2973.00 5149.39i 0.258892 0.448414i −0.707054 0.707160i \(-0.749976\pi\)
0.965945 + 0.258746i \(0.0833094\pi\)
\(510\) 0 0
\(511\) −794.000 1375.25i −0.0687368 0.119056i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1902.00 3294.36i −0.162742 0.281877i
\(516\) 0 0
\(517\) −6480.00 + 11223.7i −0.551238 + 0.954772i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8970.00 0.754286 0.377143 0.926155i \(-0.376907\pi\)
0.377143 + 0.926155i \(0.376907\pi\)
\(522\) 0 0
\(523\) −12520.0 −1.04677 −0.523386 0.852096i \(-0.675331\pi\)
−0.523386 + 0.852096i \(0.675331\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1302.00 + 2255.13i −0.107621 + 0.186404i
\(528\) 0 0
\(529\) −8028.50 13905.8i −0.659859 1.14291i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5325.00 + 9223.17i 0.432742 + 0.749531i
\(534\) 0 0
\(535\) −1746.00 + 3024.16i −0.141096 + 0.244385i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7848.00 0.627156
\(540\) 0 0
\(541\) 3911.00 0.310808 0.155404 0.987851i \(-0.450332\pi\)
0.155404 + 0.987851i \(0.450332\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −880.500 + 1525.07i −0.0692045 + 0.119866i
\(546\) 0 0
\(547\) 8510.00 + 14739.8i 0.665194 + 1.15215i 0.979233 + 0.202740i \(0.0649847\pi\)
−0.314038 + 0.949410i \(0.601682\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4602.00 7970.90i −0.355811 0.616283i
\(552\) 0 0
\(553\) 400.000 692.820i 0.0307590 0.0532762i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13875.0 1.05548 0.527740 0.849406i \(-0.323039\pi\)
0.527740 + 0.849406i \(0.323039\pi\)
\(558\) 0 0
\(559\) 4000.00 0.302651
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −270.000 + 467.654i −0.0202116 + 0.0350076i −0.875954 0.482394i \(-0.839767\pi\)
0.855743 + 0.517402i \(0.173101\pi\)
\(564\) 0 0
\(565\) 1849.50 + 3203.43i 0.137715 + 0.238530i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6256.50 + 10836.6i 0.460960 + 0.798406i 0.999009 0.0445076i \(-0.0141719\pi\)
−0.538049 + 0.842913i \(0.680839\pi\)
\(570\) 0 0
\(571\) 10208.0 17680.8i 0.748146 1.29583i −0.200564 0.979681i \(-0.564277\pi\)
0.948710 0.316147i \(-0.102389\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −19488.0 −1.41340
\(576\) 0 0
\(577\) −1801.00 −0.129942 −0.0649711 0.997887i \(-0.520696\pi\)
−0.0649711 + 0.997887i \(0.520696\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1080.00 + 1870.61i −0.0771187 + 0.133573i
\(582\) 0 0
\(583\) −3096.00 5362.43i −0.219937 0.380942i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2760.00 + 4780.46i 0.194067 + 0.336134i 0.946594 0.322427i \(-0.104499\pi\)
−0.752527 + 0.658561i \(0.771165\pi\)
\(588\) 0 0
\(589\) −3224.00 + 5584.13i −0.225539 + 0.390645i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11937.0 −0.826634 −0.413317 0.910587i \(-0.635630\pi\)
−0.413317 + 0.910587i \(0.635630\pi\)
\(594\) 0 0
\(595\) 252.000 0.0173630
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8094.00 + 14019.2i −0.552107 + 0.956277i 0.446016 + 0.895025i \(0.352843\pi\)
−0.998122 + 0.0612516i \(0.980491\pi\)
\(600\) 0 0
\(601\) 5970.50 + 10341.2i 0.405228 + 0.701875i 0.994348 0.106171i \(-0.0338589\pi\)
−0.589120 + 0.808045i \(0.700526\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1132.50 + 1961.55i 0.0761036 + 0.131815i
\(606\) 0 0
\(607\) 6230.00 10790.7i 0.416586 0.721549i −0.579007 0.815322i \(-0.696560\pi\)
0.995594 + 0.0937737i \(0.0298930\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13500.0 0.893865
\(612\) 0 0
\(613\) 4670.00 0.307699 0.153850 0.988094i \(-0.450833\pi\)
0.153850 + 0.988094i \(0.450833\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4717.50 + 8170.95i −0.307811 + 0.533144i −0.977883 0.209152i \(-0.932930\pi\)
0.670072 + 0.742296i \(0.266263\pi\)
\(618\) 0 0
\(619\) 6980.00 + 12089.7i 0.453231 + 0.785019i 0.998585 0.0531872i \(-0.0169380\pi\)
−0.545354 + 0.838206i \(0.683605\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −906.000 1569.24i −0.0582634 0.100915i
\(624\) 0 0
\(625\) −6165.50 + 10679.0i −0.394592 + 0.683453i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5565.00 0.352768
\(630\) 0 0
\(631\) −18904.0 −1.19264 −0.596320 0.802747i \(-0.703371\pi\)
−0.596320 + 0.802747i \(0.703371\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2244.00 + 3886.72i −0.140237 + 0.242897i
\(636\) 0 0
\(637\) −4087.50 7079.76i −0.254243 0.440361i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10690.5 + 18516.5i 0.658735 + 1.14096i 0.980943 + 0.194294i \(0.0622416\pi\)
−0.322208 + 0.946669i \(0.604425\pi\)
\(642\) 0 0
\(643\) 710.000 1229.76i 0.0435454 0.0754228i −0.843431 0.537237i \(-0.819468\pi\)
0.886977 + 0.461814i \(0.152801\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21204.0 −1.28843 −0.644216 0.764844i \(-0.722816\pi\)
−0.644216 + 0.764844i \(0.722816\pi\)
\(648\) 0 0
\(649\) −12672.0 −0.766440
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11595.0 + 20083.1i −0.694866 + 1.20354i 0.275360 + 0.961341i \(0.411203\pi\)
−0.970226 + 0.242202i \(0.922130\pi\)
\(654\) 0 0
\(655\) 3006.00 + 5206.54i 0.179319 + 0.310590i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4902.00 + 8490.51i 0.289765 + 0.501887i 0.973753 0.227606i \(-0.0730897\pi\)
−0.683989 + 0.729492i \(0.739756\pi\)
\(660\) 0 0
\(661\) 15120.5 26189.5i 0.889742 1.54108i 0.0495612 0.998771i \(-0.484218\pi\)
0.840181 0.542307i \(-0.182449\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 624.000 0.0363875
\(666\) 0 0
\(667\) −29736.0 −1.72621
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6060.00 + 10496.2i −0.348649 + 0.603878i
\(672\) 0 0
\(673\) −401.500 695.418i −0.0229966 0.0398312i 0.854298 0.519783i \(-0.173987\pi\)
−0.877295 + 0.479952i \(0.840654\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7233.00 + 12527.9i 0.410616 + 0.711207i 0.994957 0.100301i \(-0.0319805\pi\)
−0.584342 + 0.811508i \(0.698647\pi\)
\(678\) 0 0
\(679\) 580.000 1004.59i 0.0327811 0.0567785i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7020.00 −0.393284 −0.196642 0.980475i \(-0.563004\pi\)
−0.196642 + 0.980475i \(0.563004\pi\)
\(684\) 0 0
\(685\) 8325.00 0.464353
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3225.00 + 5585.86i −0.178320 + 0.308860i
\(690\) 0 0
\(691\) 12230.0 + 21183.0i 0.673301 + 1.16619i 0.976962 + 0.213412i \(0.0684576\pi\)
−0.303661 + 0.952780i \(0.598209\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3018.00 5227.33i −0.164718 0.285301i
\(696\) 0 0
\(697\) 4473.00 7747.46i 0.243080 0.421027i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27651.0 1.48982 0.744910 0.667165i \(-0.232492\pi\)
0.744910 + 0.667165i \(0.232492\pi\)
\(702\) 0 0
\(703\) 13780.0 0.739292
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2748.00 4759.68i 0.146180 0.253191i
\(708\) 0 0
\(709\) 2460.50 + 4261.71i 0.130333 + 0.225743i 0.923805 0.382864i \(-0.125062\pi\)
−0.793472 + 0.608607i \(0.791729\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10416.0 + 18041.0i 0.547100 + 0.947605i
\(714\) 0 0
\(715\) −900.000 + 1558.85i −0.0470743 + 0.0815350i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20232.0 −1.04941 −0.524705 0.851284i \(-0.675824\pi\)
−0.524705 + 0.851284i \(0.675824\pi\)
\(720\) 0 0
\(721\) −5072.00 −0.261985
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10266.0 + 17781.2i −0.525889 + 0.910867i
\(726\) 0 0
\(727\) −3250.00 5629.17i −0.165799 0.287172i 0.771140 0.636666i \(-0.219687\pi\)
−0.936939 + 0.349494i \(0.886354\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1680.00 2909.85i −0.0850028 0.147229i
\(732\) 0 0
\(733\) −6859.00 + 11880.1i −0.345625 + 0.598640i −0.985467 0.169867i \(-0.945666\pi\)
0.639842 + 0.768506i \(0.279000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5856.00 0.292685
\(738\) 0 0
\(739\) −13588.0 −0.676377 −0.338189 0.941078i \(-0.609814\pi\)
−0.338189 + 0.941078i \(0.609814\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17046.0 + 29524.5i −0.841665 + 1.45781i 0.0468213 + 0.998903i \(0.485091\pi\)
−0.888486 + 0.458903i \(0.848242\pi\)
\(744\) 0 0
\(745\) 3217.50 + 5572.87i 0.158228 + 0.274059i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2328.00 + 4032.21i 0.113569 + 0.196707i
\(750\) 0 0
\(751\) 470.000 814.064i 0.0228369 0.0395547i −0.854381 0.519647i \(-0.826063\pi\)
0.877218 + 0.480092i \(0.159397\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9528.00 0.459284
\(756\) 0 0
\(757\) −5410.00 −0.259749 −0.129874 0.991530i \(-0.541457\pi\)
−0.129874 + 0.991530i \(0.541457\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3424.50 5931.41i 0.163125 0.282541i −0.772863 0.634573i \(-0.781176\pi\)
0.935988 + 0.352032i \(0.114509\pi\)
\(762\) 0 0
\(763\) 1174.00 + 2033.43i 0.0557033 + 0.0964810i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6600.00 + 11431.5i 0.310707 + 0.538160i
\(768\) 0 0
\(769\) 4566.50 7909.41i 0.214138 0.370898i −0.738868 0.673851i \(-0.764639\pi\)
0.953006 + 0.302953i \(0.0979724\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −37845.0 −1.76092 −0.880459 0.474122i \(-0.842766\pi\)
−0.880459 + 0.474122i \(0.842766\pi\)
\(774\) 0 0
\(775\) 14384.0 0.666695
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11076.0 19184.2i 0.509421 0.882343i
\(780\) 0 0
\(781\) 2448.00 + 4240.06i 0.112159 + 0.194265i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −772.500 1338.01i −0.0351232 0.0608352i
\(786\) 0 0
\(787\) 16988.0 29424.1i 0.769450 1.33273i −0.168412 0.985717i \(-0.553864\pi\)
0.937862 0.347009i \(-0.112803\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4932.00 0.221696
\(792\) 0 0
\(793\) 12625.0 0.565355
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11902.5 20615.7i 0.528994 0.916244i −0.470434 0.882435i \(-0.655903\pi\)
0.999428 0.0338094i \(-0.0107639\pi\)
\(798\) 0 0
\(799\) −5670.00 9820.73i −0.251052 0.434834i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4764.00 8251.49i −0.209362 0.362626i
\(804\) 0 0
\(805\) 1008.00 1745.91i 0.0441333 0.0764412i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6567.00 0.285394 0.142697 0.989766i \(-0.454423\pi\)
0.142697 + 0.989766i \(0.454423\pi\)
\(810\) 0 0
\(811\) −8656.00 −0.374788 −0.187394 0.982285i \(-0.560004\pi\)
−0.187394 + 0.982285i \(0.560004\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4908.00 + 8500.91i −0.210944 + 0.365367i
\(816\) 0 0
\(817\) −4160.00 7205.33i −0.178140 0.308547i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2995.50 5188.36i −0.127337 0.220554i 0.795307 0.606207i \(-0.207310\pi\)
−0.922644 + 0.385653i \(0.873976\pi\)
\(822\) 0 0
\(823\) −22906.0 + 39674.4i −0.970174 + 1.68039i −0.275153 + 0.961400i \(0.588729\pi\)
−0.695021 + 0.718990i \(0.744605\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 35160.0 1.47840 0.739198 0.673489i \(-0.235205\pi\)
0.739198 + 0.673489i \(0.235205\pi\)
\(828\) 0 0
\(829\) −9898.00 −0.414682 −0.207341 0.978269i \(-0.566481\pi\)
−0.207341 + 0.978269i \(0.566481\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3433.50 + 5947.00i −0.142814 + 0.247360i
\(834\) 0 0
\(835\) 1026.00 + 1777.08i 0.0425224 + 0.0736509i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2016.00 3491.81i −0.0829560 0.143684i 0.821562 0.570119i \(-0.193103\pi\)
−0.904518 + 0.426435i \(0.859769\pi\)
\(840\) 0 0
\(841\) −3470.00 + 6010.22i −0.142277 + 0.246431i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −4716.00 −0.191994
\(846\) 0 0
\(847\) 3020.00 0.122513
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 22260.0 38555.5i 0.896666 1.55307i
\(852\) 0 0
\(853\) −9319.00 16141.0i −0.374064 0.647898i 0.616123 0.787650i \(-0.288703\pi\)
−0.990186 + 0.139753i \(0.955369\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18787.5 32540.9i −0.748855 1.29705i −0.948372 0.317161i \(-0.897271\pi\)
0.199517 0.979894i \(-0.436063\pi\)
\(858\) 0 0
\(859\) 3134.00 5428.25i 0.124483 0.215610i −0.797048 0.603916i \(-0.793606\pi\)
0.921531 + 0.388306i \(0.126940\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −44832.0 −1.76837 −0.884183 0.467142i \(-0.845284\pi\)
−0.884183 + 0.467142i \(0.845284\pi\)
\(864\) 0 0
\(865\) 9369.00 0.368272
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2400.00 4156.92i 0.0936875 0.162271i
\(870\) 0 0
\(871\) −3050.00 5282.75i −0.118651 0.205510i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1446.00 2504.55i −0.0558671 0.0967647i
\(876\) 0 0
\(877\) −7247.50 + 12553.0i −0.279054 + 0.483336i −0.971150 0.238469i \(-0.923354\pi\)
0.692096 + 0.721806i \(0.256688\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 25986.0 0.993746 0.496873 0.867823i \(-0.334481\pi\)
0.496873 + 0.867823i \(0.334481\pi\)
\(882\) 0 0
\(883\) 34868.0 1.32888 0.664440 0.747341i \(-0.268670\pi\)
0.664440 + 0.747341i \(0.268670\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3360.00 5819.69i 0.127190 0.220300i −0.795397 0.606089i \(-0.792737\pi\)
0.922587 + 0.385789i \(0.126071\pi\)
\(888\) 0 0
\(889\) 2992.00 + 5182.30i 0.112878 + 0.195510i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14040.0 24318.0i −0.526126 0.911277i
\(894\) 0 0
\(895\) −4338.00 + 7513.64i −0.162015 + 0.280618i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 21948.0 0.814246
\(900\) 0 0
\(901\) 5418.00 0.200333
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2139.00 3704.86i 0.0785666 0.136081i
\(906\) 0 0
\(907\) 8648.00 + 14978.8i 0.316596 + 0.548360i 0.979775 0.200101i \(-0.0641269\pi\)
−0.663180 + 0.748460i \(0.730794\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7128.00 + 12346.1i 0.259233 + 0.449005i 0.966037 0.258405i \(-0.0831969\pi\)
−0.706804 + 0.707410i \(0.749864\pi\)
\(912\) 0 0
\(913\) −6480.00 + 11223.7i −0.234892 + 0.406845i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8016.00 0.288671
\(918\) 0 0
\(919\) 15752.0 0.565409 0.282704 0.959207i \(-0.408768\pi\)
0.282704 + 0.959207i \(0.408768\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2550.00 4416.73i 0.0909364 0.157506i
\(924\) 0 0
\(925\) −15370.0 26621.6i −0.546338 0.946285i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15781.5 27334.4i −0.557346 0.965351i −0.997717 0.0675353i \(-0.978486\pi\)
0.440371 0.897816i \(-0.354847\pi\)
\(930\) 0 0
\(931\) −8502.00 + 14725.9i −0.299293 + 0.518391i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1512.00 0.0528852
\(936\) 0 0
\(937\) −3901.00 −0.136009 −0.0680043 0.997685i \(-0.521663\pi\)
−0.0680043 + 0.997685i \(0.521663\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 26722.5 46284.7i 0.925748 1.60344i 0.135394 0.990792i \(-0.456770\pi\)
0.790354 0.612650i \(-0.209897\pi\)
\(942\) 0 0
\(943\) −35784.0 61979.7i −1.23572 2.14034i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4518.00 7825.41i −0.155032 0.268523i 0.778039 0.628216i \(-0.216215\pi\)
−0.933071 + 0.359693i \(0.882881\pi\)
\(948\) 0 0
\(949\) −4962.50 + 8595.30i −0.169747 + 0.294010i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −25065.0 −0.851978 −0.425989 0.904728i \(-0.640074\pi\)
−0.425989 + 0.904728i \(0.640074\pi\)
\(954\) 0 0
\(955\) −4788.00 −0.162237
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5550.00 9612.88i 0.186881 0.323687i
\(960\) 0 0
\(961\) 7207.50 + 12483.8i 0.241935 + 0.419045i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1672.50 2896.85i −0.0557924 0.0966353i
\(966\) 0 0
\(967\) −7222.00 + 12508.9i −0.240169 + 0.415986i −0.960762 0.277373i \(-0.910536\pi\)
0.720593 + 0.693358i \(0.243870\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 50004.0 1.65263 0.826316 0.563207i \(-0.190433\pi\)
0.826316 + 0.563207i \(0.190433\pi\)
\(972\) 0 0
\(973\) −8048.00 −0.265167
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22695.0 39308.9i 0.743170 1.28721i −0.207874 0.978156i \(-0.566655\pi\)
0.951045 0.309053i \(-0.100012\pi\)
\(978\) 0 0
\(979\) −5436.00 9415.43i −0.177462 0.307373i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17976.0 31135.3i −0.583261 1.01024i −0.995090 0.0989762i \(-0.968443\pi\)
0.411829 0.911261i \(-0.364890\pi\)
\(984\) 0 0
\(985\) 1867.50 3234.60i 0.0604096 0.104633i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −26880.0 −0.864241
\(990\) 0 0
\(991\) 14156.0 0.453764 0.226882 0.973922i \(-0.427147\pi\)
0.226882 + 0.973922i \(0.427147\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1050.00 1818.65i 0.0334545 0.0579449i
\(996\) 0 0
\(997\) 25770.5 + 44635.8i 0.818616 + 1.41788i 0.906702 + 0.421771i \(0.138591\pi\)
−0.0880865 + 0.996113i \(0.528075\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.e.c.109.1 2
3.2 odd 2 324.4.e.f.109.1 2
9.2 odd 6 324.4.e.f.217.1 2
9.4 even 3 324.4.a.b.1.1 yes 1
9.5 odd 6 324.4.a.a.1.1 1
9.7 even 3 inner 324.4.e.c.217.1 2
36.23 even 6 1296.4.a.d.1.1 1
36.31 odd 6 1296.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.4.a.a.1.1 1 9.5 odd 6
324.4.a.b.1.1 yes 1 9.4 even 3
324.4.e.c.109.1 2 1.1 even 1 trivial
324.4.e.c.217.1 2 9.7 even 3 inner
324.4.e.f.109.1 2 3.2 odd 2
324.4.e.f.217.1 2 9.2 odd 6
1296.4.a.d.1.1 1 36.23 even 6
1296.4.a.e.1.1 1 36.31 odd 6