Properties

Label 324.4.e.g.217.1
Level $324$
Weight $4$
Character 324.217
Analytic conductor $19.117$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,4,Mod(109,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 217.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 324.217
Dual form 324.4.e.g.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 + 7.79423i) q^{5} +(0.500000 - 0.866025i) q^{7} +(31.5000 - 54.5596i) q^{11} +(14.0000 + 24.2487i) q^{13} -72.0000 q^{17} +98.0000 q^{19} +(63.0000 + 109.119i) q^{23} +(22.0000 - 38.1051i) q^{25} +(-63.0000 + 109.119i) q^{29} +(129.500 + 224.301i) q^{31} +9.00000 q^{35} +386.000 q^{37} +(-225.000 - 389.711i) q^{41} +(17.0000 - 29.4449i) q^{43} +(-27.0000 + 46.7654i) q^{47} +(171.000 + 296.181i) q^{49} +693.000 q^{53} +567.000 q^{55} +(90.0000 + 155.885i) q^{59} +(140.000 - 242.487i) q^{61} +(-126.000 + 218.238i) q^{65} +(293.000 + 507.491i) q^{67} -504.000 q^{71} +161.000 q^{73} +(-31.5000 - 54.5596i) q^{77} +(-220.000 + 381.051i) q^{79} +(499.500 - 865.159i) q^{83} +(-324.000 - 561.184i) q^{85} -882.000 q^{89} +28.0000 q^{91} +(441.000 + 763.834i) q^{95} +(360.500 - 624.404i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 9 q^{5} + q^{7} + 63 q^{11} + 28 q^{13} - 144 q^{17} + 196 q^{19} + 126 q^{23} + 44 q^{25} - 126 q^{29} + 259 q^{31} + 18 q^{35} + 772 q^{37} - 450 q^{41} + 34 q^{43} - 54 q^{47} + 342 q^{49} + 1386 q^{53}+ \cdots + 721 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.50000 + 7.79423i 0.402492 + 0.697137i 0.994026 0.109143i \(-0.0348107\pi\)
−0.591534 + 0.806280i \(0.701477\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.0269975 0.0467610i −0.852211 0.523198i \(-0.824739\pi\)
0.879208 + 0.476437i \(0.158072\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 31.5000 54.5596i 0.863419 1.49549i −0.00518978 0.999987i \(-0.501652\pi\)
0.868609 0.495499i \(-0.165015\pi\)
\(12\) 0 0
\(13\) 14.0000 + 24.2487i 0.298685 + 0.517337i 0.975835 0.218507i \(-0.0701188\pi\)
−0.677151 + 0.735844i \(0.736785\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −72.0000 −1.02721 −0.513605 0.858027i \(-0.671690\pi\)
−0.513605 + 0.858027i \(0.671690\pi\)
\(18\) 0 0
\(19\) 98.0000 1.18330 0.591651 0.806194i \(-0.298476\pi\)
0.591651 + 0.806194i \(0.298476\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 63.0000 + 109.119i 0.571148 + 0.989258i 0.996448 + 0.0842053i \(0.0268352\pi\)
−0.425300 + 0.905052i \(0.639831\pi\)
\(24\) 0 0
\(25\) 22.0000 38.1051i 0.176000 0.304841i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −63.0000 + 109.119i −0.403407 + 0.698722i −0.994135 0.108149i \(-0.965507\pi\)
0.590728 + 0.806871i \(0.298841\pi\)
\(30\) 0 0
\(31\) 129.500 + 224.301i 0.750287 + 1.29953i 0.947684 + 0.319211i \(0.103418\pi\)
−0.197397 + 0.980324i \(0.563249\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.00000 0.0434651
\(36\) 0 0
\(37\) 386.000 1.71508 0.857541 0.514416i \(-0.171991\pi\)
0.857541 + 0.514416i \(0.171991\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −225.000 389.711i −0.857051 1.48446i −0.874729 0.484612i \(-0.838961\pi\)
0.0176779 0.999844i \(-0.494373\pi\)
\(42\) 0 0
\(43\) 17.0000 29.4449i 0.0602901 0.104426i −0.834305 0.551303i \(-0.814131\pi\)
0.894595 + 0.446878i \(0.147464\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −27.0000 + 46.7654i −0.0837948 + 0.145137i −0.904877 0.425673i \(-0.860037\pi\)
0.821082 + 0.570810i \(0.193371\pi\)
\(48\) 0 0
\(49\) 171.000 + 296.181i 0.498542 + 0.863501i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 693.000 1.79605 0.898027 0.439940i \(-0.145000\pi\)
0.898027 + 0.439940i \(0.145000\pi\)
\(54\) 0 0
\(55\) 567.000 1.39008
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 90.0000 + 155.885i 0.198593 + 0.343974i 0.948073 0.318054i \(-0.103029\pi\)
−0.749479 + 0.662028i \(0.769696\pi\)
\(60\) 0 0
\(61\) 140.000 242.487i 0.293855 0.508972i −0.680863 0.732411i \(-0.738395\pi\)
0.974718 + 0.223439i \(0.0717283\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −126.000 + 218.238i −0.240437 + 0.416448i
\(66\) 0 0
\(67\) 293.000 + 507.491i 0.534263 + 0.925371i 0.999199 + 0.0400266i \(0.0127443\pi\)
−0.464935 + 0.885345i \(0.653922\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −504.000 −0.842448 −0.421224 0.906957i \(-0.638399\pi\)
−0.421224 + 0.906957i \(0.638399\pi\)
\(72\) 0 0
\(73\) 161.000 0.258132 0.129066 0.991636i \(-0.458802\pi\)
0.129066 + 0.991636i \(0.458802\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −31.5000 54.5596i −0.0466202 0.0807486i
\(78\) 0 0
\(79\) −220.000 + 381.051i −0.313316 + 0.542679i −0.979078 0.203485i \(-0.934773\pi\)
0.665762 + 0.746164i \(0.268106\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 499.500 865.159i 0.660569 1.14414i −0.319897 0.947452i \(-0.603648\pi\)
0.980466 0.196687i \(-0.0630183\pi\)
\(84\) 0 0
\(85\) −324.000 561.184i −0.413444 0.716106i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −882.000 −1.05047 −0.525235 0.850957i \(-0.676023\pi\)
−0.525235 + 0.850957i \(0.676023\pi\)
\(90\) 0 0
\(91\) 28.0000 0.0322549
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 441.000 + 763.834i 0.476270 + 0.824924i
\(96\) 0 0
\(97\) 360.500 624.404i 0.377353 0.653594i −0.613323 0.789832i \(-0.710168\pi\)
0.990676 + 0.136238i \(0.0435011\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −220.500 + 381.917i −0.217233 + 0.376259i −0.953961 0.299930i \(-0.903037\pi\)
0.736728 + 0.676189i \(0.236370\pi\)
\(102\) 0 0
\(103\) 266.000 + 460.726i 0.254464 + 0.440744i 0.964750 0.263169i \(-0.0847677\pi\)
−0.710286 + 0.703913i \(0.751434\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −819.000 −0.739960 −0.369980 0.929040i \(-0.620635\pi\)
−0.369980 + 0.929040i \(0.620635\pi\)
\(108\) 0 0
\(109\) −1294.00 −1.13709 −0.568545 0.822652i \(-0.692493\pi\)
−0.568545 + 0.822652i \(0.692493\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 567.000 + 982.073i 0.472025 + 0.817572i 0.999488 0.0320065i \(-0.0101897\pi\)
−0.527462 + 0.849578i \(0.676856\pi\)
\(114\) 0 0
\(115\) −567.000 + 982.073i −0.459765 + 0.796337i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −36.0000 + 62.3538i −0.0277321 + 0.0480333i
\(120\) 0 0
\(121\) −1319.00 2284.58i −0.990984 1.71644i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1521.00 1.08834
\(126\) 0 0
\(127\) −1807.00 −1.26256 −0.631281 0.775554i \(-0.717470\pi\)
−0.631281 + 0.775554i \(0.717470\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1102.50 1909.59i −0.735312 1.27360i −0.954586 0.297934i \(-0.903702\pi\)
0.219274 0.975663i \(-0.429631\pi\)
\(132\) 0 0
\(133\) 49.0000 84.8705i 0.0319462 0.0553324i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 693.000 1200.31i 0.432168 0.748537i −0.564892 0.825165i \(-0.691082\pi\)
0.997060 + 0.0766283i \(0.0244155\pi\)
\(138\) 0 0
\(139\) −238.000 412.228i −0.145229 0.251545i 0.784229 0.620471i \(-0.213059\pi\)
−0.929459 + 0.368927i \(0.879725\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1764.00 1.03156
\(144\) 0 0
\(145\) −1134.00 −0.649473
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −787.500 1363.99i −0.432983 0.749949i 0.564145 0.825676i \(-0.309206\pi\)
−0.997129 + 0.0757264i \(0.975872\pi\)
\(150\) 0 0
\(151\) −224.500 + 388.845i −0.120990 + 0.209562i −0.920159 0.391546i \(-0.871940\pi\)
0.799168 + 0.601108i \(0.205274\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1165.50 + 2018.71i −0.603969 + 1.04611i
\(156\) 0 0
\(157\) −910.000 1576.17i −0.462585 0.801221i 0.536504 0.843898i \(-0.319745\pi\)
−0.999089 + 0.0426767i \(0.986411\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 126.000 0.0616782
\(162\) 0 0
\(163\) −1828.00 −0.878405 −0.439202 0.898388i \(-0.644739\pi\)
−0.439202 + 0.898388i \(0.644739\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −405.000 701.481i −0.187664 0.325043i 0.756807 0.653638i \(-0.226758\pi\)
−0.944471 + 0.328595i \(0.893425\pi\)
\(168\) 0 0
\(169\) 706.500 1223.69i 0.321575 0.556984i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −661.500 + 1145.75i −0.290710 + 0.503525i −0.973978 0.226643i \(-0.927225\pi\)
0.683267 + 0.730168i \(0.260558\pi\)
\(174\) 0 0
\(175\) −22.0000 38.1051i −0.00950311 0.0164599i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 315.000 0.131532 0.0657659 0.997835i \(-0.479051\pi\)
0.0657659 + 0.997835i \(0.479051\pi\)
\(180\) 0 0
\(181\) −2800.00 −1.14985 −0.574924 0.818207i \(-0.694968\pi\)
−0.574924 + 0.818207i \(0.694968\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1737.00 + 3008.57i 0.690307 + 1.19565i
\(186\) 0 0
\(187\) −2268.00 + 3928.29i −0.886912 + 1.53618i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1638.00 + 2837.10i −0.620532 + 1.07479i 0.368855 + 0.929487i \(0.379750\pi\)
−0.989387 + 0.145305i \(0.953584\pi\)
\(192\) 0 0
\(193\) −1610.50 2789.47i −0.600655 1.04036i −0.992722 0.120428i \(-0.961573\pi\)
0.392068 0.919936i \(-0.371760\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3339.00 −1.20758 −0.603792 0.797142i \(-0.706344\pi\)
−0.603792 + 0.797142i \(0.706344\pi\)
\(198\) 0 0
\(199\) 3689.00 1.31410 0.657051 0.753846i \(-0.271804\pi\)
0.657051 + 0.753846i \(0.271804\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 63.0000 + 109.119i 0.0217819 + 0.0377274i
\(204\) 0 0
\(205\) 2025.00 3507.40i 0.689913 1.19496i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3087.00 5346.84i 1.02169 1.76961i
\(210\) 0 0
\(211\) 3011.00 + 5215.20i 0.982397 + 1.70156i 0.652976 + 0.757379i \(0.273520\pi\)
0.329421 + 0.944183i \(0.393146\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 306.000 0.0970652
\(216\) 0 0
\(217\) 259.000 0.0810233
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1008.00 1745.91i −0.306812 0.531414i
\(222\) 0 0
\(223\) 476.000 824.456i 0.142939 0.247577i −0.785663 0.618654i \(-0.787678\pi\)
0.928602 + 0.371077i \(0.121012\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2646.00 4583.01i 0.773662 1.34002i −0.161882 0.986810i \(-0.551756\pi\)
0.935544 0.353211i \(-0.114910\pi\)
\(228\) 0 0
\(229\) −1099.00 1903.52i −0.317135 0.549294i 0.662754 0.748837i \(-0.269388\pi\)
−0.979889 + 0.199543i \(0.936054\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5166.00 −1.45251 −0.726257 0.687423i \(-0.758742\pi\)
−0.726257 + 0.687423i \(0.758742\pi\)
\(234\) 0 0
\(235\) −486.000 −0.134907
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1701.00 + 2946.22i 0.460370 + 0.797385i 0.998979 0.0451709i \(-0.0143832\pi\)
−0.538609 + 0.842556i \(0.681050\pi\)
\(240\) 0 0
\(241\) −931.000 + 1612.54i −0.248842 + 0.431007i −0.963205 0.268768i \(-0.913383\pi\)
0.714363 + 0.699776i \(0.246717\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1539.00 + 2665.63i −0.401319 + 0.695105i
\(246\) 0 0
\(247\) 1372.00 + 2376.37i 0.353434 + 0.612166i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5472.00 1.37605 0.688027 0.725685i \(-0.258477\pi\)
0.688027 + 0.725685i \(0.258477\pi\)
\(252\) 0 0
\(253\) 7938.00 1.97256
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2646.00 + 4583.01i 0.642229 + 1.11237i 0.984934 + 0.172931i \(0.0553237\pi\)
−0.342705 + 0.939443i \(0.611343\pi\)
\(258\) 0 0
\(259\) 193.000 334.286i 0.0463028 0.0801989i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 819.000 1418.55i 0.192022 0.332591i −0.753898 0.656991i \(-0.771829\pi\)
0.945920 + 0.324400i \(0.105162\pi\)
\(264\) 0 0
\(265\) 3118.50 + 5401.40i 0.722898 + 1.25210i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1206.00 0.273350 0.136675 0.990616i \(-0.456358\pi\)
0.136675 + 0.990616i \(0.456358\pi\)
\(270\) 0 0
\(271\) 4319.00 0.968120 0.484060 0.875035i \(-0.339162\pi\)
0.484060 + 0.875035i \(0.339162\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1386.00 2400.62i −0.303923 0.526411i
\(276\) 0 0
\(277\) 1124.00 1946.83i 0.243807 0.422287i −0.717988 0.696055i \(-0.754937\pi\)
0.961796 + 0.273769i \(0.0882702\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1008.00 + 1745.91i −0.213994 + 0.370648i −0.952961 0.303094i \(-0.901981\pi\)
0.738967 + 0.673742i \(0.235314\pi\)
\(282\) 0 0
\(283\) 1169.00 + 2024.77i 0.245547 + 0.425300i 0.962285 0.272042i \(-0.0876991\pi\)
−0.716738 + 0.697342i \(0.754366\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −450.000 −0.0925528
\(288\) 0 0
\(289\) 271.000 0.0551598
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4257.00 7373.34i −0.848794 1.47015i −0.882285 0.470715i \(-0.843996\pi\)
0.0334915 0.999439i \(-0.489337\pi\)
\(294\) 0 0
\(295\) −810.000 + 1402.96i −0.159864 + 0.276893i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1764.00 + 3055.34i −0.341186 + 0.590952i
\(300\) 0 0
\(301\) −17.0000 29.4449i −0.00325536 0.00563845i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2520.00 0.473098
\(306\) 0 0
\(307\) 6104.00 1.13477 0.567384 0.823453i \(-0.307956\pi\)
0.567384 + 0.823453i \(0.307956\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2169.00 3756.82i −0.395475 0.684983i 0.597687 0.801730i \(-0.296087\pi\)
−0.993162 + 0.116747i \(0.962753\pi\)
\(312\) 0 0
\(313\) 4077.50 7062.44i 0.736338 1.27538i −0.217795 0.975994i \(-0.569886\pi\)
0.954134 0.299381i \(-0.0967802\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2488.50 + 4310.21i −0.440909 + 0.763676i −0.997757 0.0669378i \(-0.978677\pi\)
0.556848 + 0.830614i \(0.312010\pi\)
\(318\) 0 0
\(319\) 3969.00 + 6874.51i 0.696619 + 1.20658i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7056.00 −1.21550
\(324\) 0 0
\(325\) 1232.00 0.210274
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 27.0000 + 46.7654i 0.00452449 + 0.00783665i
\(330\) 0 0
\(331\) −2839.00 + 4917.29i −0.471437 + 0.816552i −0.999466 0.0326738i \(-0.989598\pi\)
0.528029 + 0.849226i \(0.322931\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2637.00 + 4567.42i −0.430074 + 0.744910i
\(336\) 0 0
\(337\) −1453.00 2516.67i −0.234866 0.406800i 0.724367 0.689414i \(-0.242132\pi\)
−0.959234 + 0.282614i \(0.908799\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16317.0 2.59125
\(342\) 0 0
\(343\) 685.000 0.107832
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3496.50 + 6056.12i 0.540928 + 0.936914i 0.998851 + 0.0479227i \(0.0152601\pi\)
−0.457923 + 0.888992i \(0.651407\pi\)
\(348\) 0 0
\(349\) −3955.00 + 6850.26i −0.606608 + 1.05068i 0.385187 + 0.922839i \(0.374137\pi\)
−0.991795 + 0.127838i \(0.959196\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1233.00 2135.62i 0.185909 0.322004i −0.757973 0.652286i \(-0.773810\pi\)
0.943883 + 0.330281i \(0.107144\pi\)
\(354\) 0 0
\(355\) −2268.00 3928.29i −0.339079 0.587302i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7182.00 −1.05585 −0.527927 0.849290i \(-0.677030\pi\)
−0.527927 + 0.849290i \(0.677030\pi\)
\(360\) 0 0
\(361\) 2745.00 0.400204
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 724.500 + 1254.87i 0.103896 + 0.179953i
\(366\) 0 0
\(367\) 5715.50 9899.54i 0.812934 1.40804i −0.0978684 0.995199i \(-0.531202\pi\)
0.910802 0.412843i \(-0.135464\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 346.500 600.156i 0.0484889 0.0839852i
\(372\) 0 0
\(373\) 3308.00 + 5729.62i 0.459200 + 0.795358i 0.998919 0.0464871i \(-0.0148027\pi\)
−0.539718 + 0.841846i \(0.681469\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3528.00 −0.481966
\(378\) 0 0
\(379\) −9820.00 −1.33092 −0.665461 0.746433i \(-0.731765\pi\)
−0.665461 + 0.746433i \(0.731765\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 720.000 + 1247.08i 0.0960582 + 0.166378i 0.910050 0.414499i \(-0.136043\pi\)
−0.813992 + 0.580877i \(0.802710\pi\)
\(384\) 0 0
\(385\) 283.500 491.036i 0.0375286 0.0650014i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2992.50 5183.16i 0.390041 0.675570i −0.602414 0.798184i \(-0.705794\pi\)
0.992454 + 0.122614i \(0.0391277\pi\)
\(390\) 0 0
\(391\) −4536.00 7856.58i −0.586689 1.01618i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3960.00 −0.504428
\(396\) 0 0
\(397\) −11284.0 −1.42652 −0.713259 0.700900i \(-0.752782\pi\)
−0.713259 + 0.700900i \(0.752782\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3654.00 6328.91i −0.455043 0.788157i 0.543648 0.839313i \(-0.317043\pi\)
−0.998691 + 0.0511565i \(0.983709\pi\)
\(402\) 0 0
\(403\) −3626.00 + 6280.42i −0.448198 + 0.776302i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12159.0 21060.0i 1.48083 2.56488i
\(408\) 0 0
\(409\) −3167.50 5486.27i −0.382941 0.663273i 0.608540 0.793523i \(-0.291755\pi\)
−0.991481 + 0.130250i \(0.958422\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 180.000 0.0214461
\(414\) 0 0
\(415\) 8991.00 1.06350
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3186.00 + 5518.31i 0.371471 + 0.643406i 0.989792 0.142519i \(-0.0455202\pi\)
−0.618321 + 0.785926i \(0.712187\pi\)
\(420\) 0 0
\(421\) −1660.00 + 2875.20i −0.192170 + 0.332848i −0.945969 0.324257i \(-0.894886\pi\)
0.753799 + 0.657105i \(0.228219\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1584.00 + 2743.57i −0.180789 + 0.313136i
\(426\) 0 0
\(427\) −140.000 242.487i −0.0158667 0.0274819i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2898.00 0.323879 0.161939 0.986801i \(-0.448225\pi\)
0.161939 + 0.986801i \(0.448225\pi\)
\(432\) 0 0
\(433\) −4291.00 −0.476241 −0.238120 0.971236i \(-0.576531\pi\)
−0.238120 + 0.971236i \(0.576531\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6174.00 + 10693.7i 0.675841 + 1.17059i
\(438\) 0 0
\(439\) 4161.50 7207.93i 0.452432 0.783635i −0.546105 0.837717i \(-0.683890\pi\)
0.998536 + 0.0540821i \(0.0172233\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1890.00 + 3273.58i −0.202701 + 0.351089i −0.949398 0.314076i \(-0.898305\pi\)
0.746697 + 0.665165i \(0.231639\pi\)
\(444\) 0 0
\(445\) −3969.00 6874.51i −0.422806 0.732321i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12474.0 −1.31110 −0.655551 0.755151i \(-0.727563\pi\)
−0.655551 + 0.755151i \(0.727563\pi\)
\(450\) 0 0
\(451\) −28350.0 −2.95998
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 126.000 + 218.238i 0.0129824 + 0.0224861i
\(456\) 0 0
\(457\) −8339.50 + 14444.4i −0.853622 + 1.47852i 0.0242951 + 0.999705i \(0.492266\pi\)
−0.877917 + 0.478812i \(0.841067\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8635.50 + 14957.1i −0.872441 + 1.51111i −0.0129772 + 0.999916i \(0.504131\pi\)
−0.859464 + 0.511196i \(0.829202\pi\)
\(462\) 0 0
\(463\) −8693.50 15057.6i −0.872616 1.51142i −0.859281 0.511504i \(-0.829088\pi\)
−0.0133352 0.999911i \(-0.504245\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3087.00 −0.305887 −0.152944 0.988235i \(-0.548875\pi\)
−0.152944 + 0.988235i \(0.548875\pi\)
\(468\) 0 0
\(469\) 586.000 0.0576950
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1071.00 1855.03i −0.104111 0.180326i
\(474\) 0 0
\(475\) 2156.00 3734.30i 0.208261 0.360719i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2619.00 + 4536.24i −0.249823 + 0.432706i −0.963477 0.267793i \(-0.913706\pi\)
0.713654 + 0.700499i \(0.247039\pi\)
\(480\) 0 0
\(481\) 5404.00 + 9360.00i 0.512269 + 0.887275i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6489.00 0.607526
\(486\) 0 0
\(487\) −4384.00 −0.407922 −0.203961 0.978979i \(-0.565382\pi\)
−0.203961 + 0.978979i \(0.565382\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1921.50 3328.14i −0.176611 0.305900i 0.764107 0.645090i \(-0.223180\pi\)
−0.940718 + 0.339191i \(0.889847\pi\)
\(492\) 0 0
\(493\) 4536.00 7856.58i 0.414384 0.717734i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −252.000 + 436.477i −0.0227440 + 0.0393937i
\(498\) 0 0
\(499\) −6283.00 10882.5i −0.563659 0.976286i −0.997173 0.0751389i \(-0.976060\pi\)
0.433514 0.901147i \(-0.357273\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5238.00 0.464316 0.232158 0.972678i \(-0.425421\pi\)
0.232158 + 0.972678i \(0.425421\pi\)
\(504\) 0 0
\(505\) −3969.00 −0.349739
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3154.50 5463.75i −0.274697 0.475789i 0.695362 0.718660i \(-0.255244\pi\)
−0.970059 + 0.242871i \(0.921911\pi\)
\(510\) 0 0
\(511\) 80.5000 139.430i 0.00696890 0.0120705i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2394.00 + 4146.53i −0.204839 + 0.354792i
\(516\) 0 0
\(517\) 1701.00 + 2946.22i 0.144700 + 0.250628i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5868.00 0.493439 0.246720 0.969087i \(-0.420647\pi\)
0.246720 + 0.969087i \(0.420647\pi\)
\(522\) 0 0
\(523\) 6776.00 0.566527 0.283264 0.959042i \(-0.408583\pi\)
0.283264 + 0.959042i \(0.408583\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9324.00 16149.6i −0.770702 1.33489i
\(528\) 0 0
\(529\) −1854.50 + 3212.09i −0.152420 + 0.264000i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6300.00 10911.9i 0.511976 0.886769i
\(534\) 0 0
\(535\) −3685.50 6383.47i −0.297828 0.515853i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 21546.0 1.72180
\(540\) 0 0
\(541\) −9388.00 −0.746066 −0.373033 0.927818i \(-0.621682\pi\)
−0.373033 + 0.927818i \(0.621682\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5823.00 10085.7i −0.457670 0.792707i
\(546\) 0 0
\(547\) −7528.00 + 13038.9i −0.588435 + 1.01920i 0.406002 + 0.913872i \(0.366922\pi\)
−0.994438 + 0.105328i \(0.966411\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6174.00 + 10693.7i −0.477353 + 0.826799i
\(552\) 0 0
\(553\) 220.000 + 381.051i 0.0169175 + 0.0293019i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16569.0 −1.26041 −0.630207 0.776427i \(-0.717030\pi\)
−0.630207 + 0.776427i \(0.717030\pi\)
\(558\) 0 0
\(559\) 952.000 0.0720310
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7276.50 + 12603.3i 0.544703 + 0.943454i 0.998626 + 0.0524124i \(0.0166910\pi\)
−0.453922 + 0.891041i \(0.649976\pi\)
\(564\) 0 0
\(565\) −5103.00 + 8838.66i −0.379973 + 0.658133i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2142.00 3710.05i 0.157816 0.273345i −0.776265 0.630407i \(-0.782888\pi\)
0.934081 + 0.357062i \(0.116221\pi\)
\(570\) 0 0
\(571\) −346.000 599.290i −0.0253584 0.0439220i 0.853068 0.521800i \(-0.174739\pi\)
−0.878426 + 0.477878i \(0.841406\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5544.00 0.402088
\(576\) 0 0
\(577\) 4886.00 0.352525 0.176262 0.984343i \(-0.443599\pi\)
0.176262 + 0.984343i \(0.443599\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −499.500 865.159i −0.0356674 0.0617777i
\(582\) 0 0
\(583\) 21829.5 37809.8i 1.55075 2.68597i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5512.50 + 9547.93i −0.387607 + 0.671355i −0.992127 0.125235i \(-0.960032\pi\)
0.604520 + 0.796590i \(0.293365\pi\)
\(588\) 0 0
\(589\) 12691.0 + 21981.5i 0.887816 + 1.53774i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14562.0 1.00841 0.504207 0.863583i \(-0.331785\pi\)
0.504207 + 0.863583i \(0.331785\pi\)
\(594\) 0 0
\(595\) −648.000 −0.0446477
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5733.00 + 9929.85i 0.391058 + 0.677333i 0.992589 0.121516i \(-0.0387757\pi\)
−0.601531 + 0.798849i \(0.705442\pi\)
\(600\) 0 0
\(601\) −5477.50 + 9487.31i −0.371767 + 0.643919i −0.989837 0.142204i \(-0.954581\pi\)
0.618071 + 0.786123i \(0.287915\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11871.0 20561.2i 0.797727 1.38170i
\(606\) 0 0
\(607\) −616.000 1066.94i −0.0411906 0.0713441i 0.844695 0.535248i \(-0.179782\pi\)
−0.885886 + 0.463904i \(0.846448\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1512.00 −0.100113
\(612\) 0 0
\(613\) 25622.0 1.68819 0.844097 0.536191i \(-0.180137\pi\)
0.844097 + 0.536191i \(0.180137\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10521.0 + 18222.9i 0.686482 + 1.18902i 0.972969 + 0.230938i \(0.0741794\pi\)
−0.286486 + 0.958084i \(0.592487\pi\)
\(618\) 0 0
\(619\) −3262.00 + 5649.95i −0.211811 + 0.366867i −0.952281 0.305222i \(-0.901269\pi\)
0.740471 + 0.672089i \(0.234603\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −441.000 + 763.834i −0.0283600 + 0.0491210i
\(624\) 0 0
\(625\) 4094.50 + 7091.88i 0.262048 + 0.453880i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −27792.0 −1.76175
\(630\) 0 0
\(631\) 20663.0 1.30361 0.651807 0.758384i \(-0.274011\pi\)
0.651807 + 0.758384i \(0.274011\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8131.50 14084.2i −0.508171 0.880178i
\(636\) 0 0
\(637\) −4788.00 + 8293.06i −0.297814 + 0.515829i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −441.000 + 763.834i −0.0271739 + 0.0470665i −0.879293 0.476282i \(-0.841984\pi\)
0.852119 + 0.523349i \(0.175317\pi\)
\(642\) 0 0
\(643\) 3626.00 + 6280.42i 0.222388 + 0.385187i 0.955533 0.294885i \(-0.0952815\pi\)
−0.733145 + 0.680073i \(0.761948\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21168.0 −1.28624 −0.643122 0.765764i \(-0.722361\pi\)
−0.643122 + 0.765764i \(0.722361\pi\)
\(648\) 0 0
\(649\) 11340.0 0.685877
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7150.50 + 12385.0i 0.428516 + 0.742211i 0.996742 0.0806618i \(-0.0257034\pi\)
−0.568226 + 0.822873i \(0.692370\pi\)
\(654\) 0 0
\(655\) 9922.50 17186.3i 0.591915 1.02523i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7528.50 13039.7i 0.445021 0.770799i −0.553033 0.833159i \(-0.686530\pi\)
0.998054 + 0.0623608i \(0.0198629\pi\)
\(660\) 0 0
\(661\) 2345.00 + 4061.66i 0.137988 + 0.239002i 0.926735 0.375716i \(-0.122603\pi\)
−0.788747 + 0.614718i \(0.789270\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 882.000 0.0514323
\(666\) 0 0
\(667\) −15876.0 −0.921621
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8820.00 15276.7i −0.507440 0.878912i
\(672\) 0 0
\(673\) 2601.50 4505.93i 0.149005 0.258084i −0.781855 0.623460i \(-0.785726\pi\)
0.930860 + 0.365376i \(0.119060\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3087.00 5346.84i 0.175248 0.303539i −0.764999 0.644032i \(-0.777261\pi\)
0.940247 + 0.340493i \(0.110594\pi\)
\(678\) 0 0
\(679\) −360.500 624.404i −0.0203751 0.0352908i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −756.000 −0.0423536 −0.0211768 0.999776i \(-0.506741\pi\)
−0.0211768 + 0.999776i \(0.506741\pi\)
\(684\) 0 0
\(685\) 12474.0 0.695777
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9702.00 + 16804.4i 0.536454 + 0.929165i
\(690\) 0 0
\(691\) −8974.00 + 15543.4i −0.494048 + 0.855716i −0.999976 0.00685939i \(-0.997817\pi\)
0.505929 + 0.862575i \(0.331150\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2142.00 3710.05i 0.116907 0.202490i
\(696\) 0 0
\(697\) 16200.0 + 28059.2i 0.880371 + 1.52485i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34083.0 −1.83637 −0.918186 0.396149i \(-0.870346\pi\)
−0.918186 + 0.396149i \(0.870346\pi\)
\(702\) 0 0
\(703\) 37828.0 2.02946
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 220.500 + 381.917i 0.0117295 + 0.0203161i
\(708\) 0 0
\(709\) 2642.00 4576.08i 0.139947 0.242395i −0.787529 0.616277i \(-0.788640\pi\)
0.927476 + 0.373882i \(0.121973\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16317.0 + 28261.9i −0.857050 + 1.48445i
\(714\) 0 0
\(715\) 7938.00 + 13749.0i 0.415195 + 0.719139i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24516.0 1.27162 0.635808 0.771847i \(-0.280667\pi\)
0.635808 + 0.771847i \(0.280667\pi\)
\(720\) 0 0
\(721\) 532.000 0.0274795
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2772.00 + 4801.24i 0.141999 + 0.245950i
\(726\) 0 0
\(727\) 6240.50 10808.9i 0.318359 0.551415i −0.661786 0.749692i \(-0.730201\pi\)
0.980146 + 0.198278i \(0.0635348\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1224.00 + 2120.03i −0.0619306 + 0.107267i
\(732\) 0 0
\(733\) 1547.00 + 2679.48i 0.0779533 + 0.135019i 0.902367 0.430969i \(-0.141828\pi\)
−0.824413 + 0.565988i \(0.808495\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 36918.0 1.84517
\(738\) 0 0
\(739\) −376.000 −0.0187164 −0.00935818 0.999956i \(-0.502979\pi\)
−0.00935818 + 0.999956i \(0.502979\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14742.0 + 25533.9i 0.727902 + 1.26076i 0.957768 + 0.287542i \(0.0928380\pi\)
−0.229866 + 0.973222i \(0.573829\pi\)
\(744\) 0 0
\(745\) 7087.50 12275.9i 0.348545 0.603697i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −409.500 + 709.275i −0.0199770 + 0.0346013i
\(750\) 0 0
\(751\) −5840.50 10116.0i −0.283785 0.491531i 0.688528 0.725209i \(-0.258257\pi\)
−0.972314 + 0.233678i \(0.924924\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4041.00 −0.194791
\(756\) 0 0
\(757\) 890.000 0.0427313 0.0213657 0.999772i \(-0.493199\pi\)
0.0213657 + 0.999772i \(0.493199\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −16416.0 28433.3i −0.781970 1.35441i −0.930792 0.365549i \(-0.880881\pi\)
0.148822 0.988864i \(-0.452452\pi\)
\(762\) 0 0
\(763\) −647.000 + 1120.64i −0.0306985 + 0.0531714i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2520.00 + 4364.77i −0.118634 + 0.205479i
\(768\) 0 0
\(769\) −1592.50 2758.29i −0.0746775 0.129345i 0.826268 0.563277i \(-0.190459\pi\)
−0.900946 + 0.433931i \(0.857126\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21222.0 0.987454 0.493727 0.869617i \(-0.335634\pi\)
0.493727 + 0.869617i \(0.335634\pi\)
\(774\) 0 0
\(775\) 11396.0 0.528202
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −22050.0 38191.7i −1.01415 1.75656i
\(780\) 0 0
\(781\) −15876.0 + 27498.0i −0.727385 + 1.25987i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8190.00 14185.5i 0.372374 0.644971i
\(786\) 0 0
\(787\) −6160.00 10669.4i −0.279009 0.483258i 0.692130 0.721773i \(-0.256673\pi\)
−0.971139 + 0.238515i \(0.923339\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1134.00 0.0509740
\(792\) 0 0
\(793\) 7840.00 0.351080
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5953.50 10311.8i −0.264597 0.458295i 0.702861 0.711327i \(-0.251906\pi\)
−0.967458 + 0.253032i \(0.918572\pi\)
\(798\) 0 0
\(799\) 1944.00 3367.11i 0.0860748 0.149086i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5071.50 8784.10i 0.222876 0.386032i
\(804\) 0 0
\(805\) 567.000 + 982.073i 0.0248250 + 0.0429982i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14994.0 0.651620 0.325810 0.945435i \(-0.394363\pi\)
0.325810 + 0.945435i \(0.394363\pi\)
\(810\) 0 0
\(811\) −38878.0 −1.68334 −0.841672 0.539990i \(-0.818428\pi\)
−0.841672 + 0.539990i \(0.818428\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8226.00 14247.8i −0.353551 0.612369i
\(816\) 0 0
\(817\) 1666.00 2885.60i 0.0713414 0.123567i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1953.00 3382.70i 0.0830209 0.143796i −0.821525 0.570172i \(-0.806877\pi\)
0.904546 + 0.426376i \(0.140210\pi\)
\(822\) 0 0
\(823\) 5103.50 + 8839.52i 0.216157 + 0.374394i 0.953630 0.300982i \(-0.0973145\pi\)
−0.737473 + 0.675376i \(0.763981\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8064.00 −0.339072 −0.169536 0.985524i \(-0.554227\pi\)
−0.169536 + 0.985524i \(0.554227\pi\)
\(828\) 0 0
\(829\) −10486.0 −0.439317 −0.219659 0.975577i \(-0.570494\pi\)
−0.219659 + 0.975577i \(0.570494\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12312.0 21325.0i −0.512107 0.886996i
\(834\) 0 0
\(835\) 3645.00 6313.33i 0.151066 0.261655i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16848.0 + 29181.6i −0.693275 + 1.20079i 0.277484 + 0.960730i \(0.410499\pi\)
−0.970759 + 0.240057i \(0.922834\pi\)
\(840\) 0 0
\(841\) 4256.50 + 7372.47i 0.174525 + 0.302287i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12717.0 0.517726
\(846\) 0 0
\(847\) −2638.00 −0.107016
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 24318.0 + 42120.0i 0.979566 + 1.69666i
\(852\) 0 0
\(853\) 7889.00 13664.1i 0.316664 0.548478i −0.663126 0.748508i \(-0.730771\pi\)
0.979790 + 0.200030i \(0.0641040\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13068.0 + 22634.4i −0.520880 + 0.902191i 0.478825 + 0.877910i \(0.341063\pi\)
−0.999705 + 0.0242807i \(0.992270\pi\)
\(858\) 0 0
\(859\) −11956.0 20708.4i −0.474893 0.822540i 0.524693 0.851291i \(-0.324180\pi\)
−0.999587 + 0.0287519i \(0.990847\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −17892.0 −0.705737 −0.352868 0.935673i \(-0.614794\pi\)
−0.352868 + 0.935673i \(0.614794\pi\)
\(864\) 0 0
\(865\) −11907.0 −0.468035
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13860.0 + 24006.2i 0.541045 + 0.937118i
\(870\) 0 0
\(871\) −8204.00 + 14209.7i −0.319153 + 0.552789i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 760.500 1317.22i 0.0293824 0.0508918i
\(876\) 0 0
\(877\) −22081.0 38245.4i −0.850197 1.47258i −0.881031 0.473059i \(-0.843150\pi\)
0.0308341 0.999525i \(-0.490184\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8820.00 0.337291 0.168645 0.985677i \(-0.446061\pi\)
0.168645 + 0.985677i \(0.446061\pi\)
\(882\) 0 0
\(883\) −4654.00 −0.177372 −0.0886861 0.996060i \(-0.528267\pi\)
−0.0886861 + 0.996060i \(0.528267\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16542.0 + 28651.6i 0.626185 + 1.08458i 0.988310 + 0.152455i \(0.0487178\pi\)
−0.362126 + 0.932129i \(0.617949\pi\)
\(888\) 0 0
\(889\) −903.500 + 1564.91i −0.0340860 + 0.0590386i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2646.00 + 4583.01i −0.0991546 + 0.171741i
\(894\) 0 0
\(895\) 1417.50 + 2455.18i 0.0529406 + 0.0916957i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −32634.0 −1.21068
\(900\) 0 0
\(901\) −49896.0 −1.84492
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12600.0 21823.8i −0.462805 0.801601i
\(906\) 0 0
\(907\) −23629.0 + 40926.6i −0.865036 + 1.49829i 0.00197452 + 0.999998i \(0.499371\pi\)
−0.867011 + 0.498289i \(0.833962\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 18333.0 31753.7i 0.666739 1.15483i −0.312071 0.950059i \(-0.601023\pi\)
0.978811 0.204767i \(-0.0656438\pi\)
\(912\) 0 0
\(913\) −31468.5 54505.0i −1.14070 1.97574i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2205.00 −0.0794062
\(918\) 0 0
\(919\) −2995.00 −0.107504 −0.0537519 0.998554i \(-0.517118\pi\)
−0.0537519 + 0.998554i \(0.517118\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7056.00 12221.4i −0.251626 0.435830i
\(924\) 0 0
\(925\) 8492.00 14708.6i 0.301854 0.522827i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6642.00 + 11504.3i −0.234572 + 0.406290i −0.959148 0.282905i \(-0.908702\pi\)
0.724577 + 0.689194i \(0.242035\pi\)
\(930\) 0 0
\(931\) 16758.0 + 29025.7i 0.589926 + 1.02178i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −40824.0 −1.42790
\(936\) 0 0
\(937\) −2989.00 −0.104212 −0.0521059 0.998642i \(-0.516593\pi\)
−0.0521059 + 0.998642i \(0.516593\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23242.5 + 40257.2i 0.805190 + 1.39463i 0.916163 + 0.400807i \(0.131270\pi\)
−0.110973 + 0.993823i \(0.535397\pi\)
\(942\) 0 0
\(943\) 28350.0 49103.6i 0.979006 1.69569i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5764.50 9984.41i 0.197805 0.342608i −0.750012 0.661425i \(-0.769952\pi\)
0.947816 + 0.318817i \(0.103285\pi\)
\(948\) 0 0
\(949\) 2254.00 + 3904.04i 0.0771000 + 0.133541i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −37044.0 −1.25915 −0.629577 0.776938i \(-0.716772\pi\)
−0.629577 + 0.776938i \(0.716772\pi\)
\(954\) 0 0
\(955\) −29484.0 −0.999036
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −693.000 1200.31i −0.0233349 0.0404172i
\(960\) 0 0
\(961\) −18645.0 + 32294.1i −0.625860 + 1.08402i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14494.5 25105.2i 0.483518 0.837477i
\(966\) 0 0
\(967\) −6227.50 10786.3i −0.207097 0.358703i 0.743702 0.668512i \(-0.233068\pi\)
−0.950799 + 0.309809i \(0.899735\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20169.0 0.666585 0.333292 0.942823i \(-0.391840\pi\)
0.333292 + 0.942823i \(0.391840\pi\)
\(972\) 0 0
\(973\) −476.000 −0.0156833
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −19971.0 34590.8i −0.653970 1.13271i −0.982151 0.188095i \(-0.939769\pi\)
0.328181 0.944615i \(-0.393565\pi\)
\(978\) 0 0
\(979\) −27783.0 + 48121.6i −0.906995 + 1.57096i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 27117.0 46968.0i 0.879856 1.52395i 0.0283568 0.999598i \(-0.490973\pi\)
0.851499 0.524357i \(-0.175694\pi\)
\(984\) 0 0
\(985\) −15025.5 26024.9i −0.486043 0.841851i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4284.00 0.137738
\(990\) 0 0
\(991\) −26137.0 −0.837809 −0.418905 0.908030i \(-0.637586\pi\)
−0.418905 + 0.908030i \(0.637586\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16600.5 + 28752.9i 0.528916 + 0.916109i
\(996\) 0 0
\(997\) 16730.0 28977.2i 0.531439 0.920479i −0.467888 0.883788i \(-0.654985\pi\)
0.999327 0.0366911i \(-0.0116818\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.e.g.217.1 2
3.2 odd 2 324.4.e.b.217.1 2
9.2 odd 6 108.4.a.d.1.1 yes 1
9.4 even 3 inner 324.4.e.g.109.1 2
9.5 odd 6 324.4.e.b.109.1 2
9.7 even 3 108.4.a.a.1.1 1
36.7 odd 6 432.4.a.c.1.1 1
36.11 even 6 432.4.a.l.1.1 1
72.11 even 6 1728.4.a.h.1.1 1
72.29 odd 6 1728.4.a.g.1.1 1
72.43 odd 6 1728.4.a.z.1.1 1
72.61 even 6 1728.4.a.y.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.4.a.a.1.1 1 9.7 even 3
108.4.a.d.1.1 yes 1 9.2 odd 6
324.4.e.b.109.1 2 9.5 odd 6
324.4.e.b.217.1 2 3.2 odd 2
324.4.e.g.109.1 2 9.4 even 3 inner
324.4.e.g.217.1 2 1.1 even 1 trivial
432.4.a.c.1.1 1 36.7 odd 6
432.4.a.l.1.1 1 36.11 even 6
1728.4.a.g.1.1 1 72.29 odd 6
1728.4.a.h.1.1 1 72.11 even 6
1728.4.a.y.1.1 1 72.61 even 6
1728.4.a.z.1.1 1 72.43 odd 6