Properties

Label 324.9.c.a.161.12
Level $324$
Weight $9$
Character 324.161
Analytic conductor $131.991$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,9,Mod(161,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.161");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 324.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(131.990669660\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 1777 x^{14} - 2036 x^{13} - 1362401 x^{12} - 229443563 x^{11} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{88} \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.12
Root \(-45.2983 + 25.4240i\) of defining polynomial
Character \(\chi\) \(=\) 324.161
Dual form 324.9.c.a.161.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+466.761i q^{5} -1577.33 q^{7} -10955.1i q^{11} -21081.8 q^{13} +106309. i q^{17} +128508. q^{19} +230034. i q^{23} +172759. q^{25} -135593. i q^{29} -1.32481e6 q^{31} -736235. i q^{35} -916812. q^{37} +1.28599e6i q^{41} -3.51031e6 q^{43} +4.86808e6i q^{47} -3.27684e6 q^{49} -1.24495e7i q^{53} +5.11339e6 q^{55} +1.04175e7i q^{59} +1.85403e7 q^{61} -9.84016e6i q^{65} -3.42607e7 q^{67} -3.79956e7i q^{71} +4.43751e7 q^{73} +1.72797e7i q^{77} -3.76224e6 q^{79} -1.70100e7i q^{83} -4.96207e7 q^{85} +1.82163e7i q^{89} +3.32529e7 q^{91} +5.99826e7i q^{95} +6.93557e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 1846 q^{7} - 3370 q^{13} + 84518 q^{19} - 911606 q^{25} + 756614 q^{31} - 1671664 q^{37} - 679024 q^{43} + 6052890 q^{49} - 17497638 q^{55} - 34901410 q^{61} + 70053452 q^{67} + 28071218 q^{73} - 61378918 q^{79}+ \cdots + 66842156 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 466.761i 0.746817i 0.927667 + 0.373409i \(0.121811\pi\)
−0.927667 + 0.373409i \(0.878189\pi\)
\(6\) 0 0
\(7\) −1577.33 −0.656946 −0.328473 0.944513i \(-0.606534\pi\)
−0.328473 + 0.944513i \(0.606534\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 10955.1i − 0.748245i −0.927379 0.374122i \(-0.877944\pi\)
0.927379 0.374122i \(-0.122056\pi\)
\(12\) 0 0
\(13\) −21081.8 −0.738133 −0.369066 0.929403i \(-0.620322\pi\)
−0.369066 + 0.929403i \(0.620322\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 106309.i 1.27284i 0.771344 + 0.636419i \(0.219585\pi\)
−0.771344 + 0.636419i \(0.780415\pi\)
\(18\) 0 0
\(19\) 128508. 0.986090 0.493045 0.870004i \(-0.335884\pi\)
0.493045 + 0.870004i \(0.335884\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 230034.i 0.822016i 0.911632 + 0.411008i \(0.134823\pi\)
−0.911632 + 0.411008i \(0.865177\pi\)
\(24\) 0 0
\(25\) 172759. 0.442264
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 135593.i − 0.191710i −0.995395 0.0958549i \(-0.969442\pi\)
0.995395 0.0958549i \(-0.0305585\pi\)
\(30\) 0 0
\(31\) −1.32481e6 −1.43452 −0.717262 0.696804i \(-0.754605\pi\)
−0.717262 + 0.696804i \(0.754605\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 736235.i − 0.490619i
\(36\) 0 0
\(37\) −916812. −0.489185 −0.244593 0.969626i \(-0.578654\pi\)
−0.244593 + 0.969626i \(0.578654\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.28599e6i 0.455094i 0.973767 + 0.227547i \(0.0730706\pi\)
−0.973767 + 0.227547i \(0.926929\pi\)
\(42\) 0 0
\(43\) −3.51031e6 −1.02677 −0.513383 0.858160i \(-0.671608\pi\)
−0.513383 + 0.858160i \(0.671608\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.86808e6i 0.997623i 0.866711 + 0.498811i \(0.166230\pi\)
−0.866711 + 0.498811i \(0.833770\pi\)
\(48\) 0 0
\(49\) −3.27684e6 −0.568421
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 1.24495e7i − 1.57779i −0.614527 0.788895i \(-0.710653\pi\)
0.614527 0.788895i \(-0.289347\pi\)
\(54\) 0 0
\(55\) 5.11339e6 0.558802
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.04175e7i 0.859718i 0.902896 + 0.429859i \(0.141437\pi\)
−0.902896 + 0.429859i \(0.858563\pi\)
\(60\) 0 0
\(61\) 1.85403e7 1.33905 0.669526 0.742789i \(-0.266497\pi\)
0.669526 + 0.742789i \(0.266497\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 9.84016e6i − 0.551250i
\(66\) 0 0
\(67\) −3.42607e7 −1.70019 −0.850095 0.526630i \(-0.823455\pi\)
−0.850095 + 0.526630i \(0.823455\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 3.79956e7i − 1.49520i −0.664148 0.747601i \(-0.731206\pi\)
0.664148 0.747601i \(-0.268794\pi\)
\(72\) 0 0
\(73\) 4.43751e7 1.56260 0.781301 0.624155i \(-0.214556\pi\)
0.781301 + 0.624155i \(0.214556\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.72797e7i 0.491557i
\(78\) 0 0
\(79\) −3.76224e6 −0.0965913 −0.0482957 0.998833i \(-0.515379\pi\)
−0.0482957 + 0.998833i \(0.515379\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 1.70100e7i − 0.358421i −0.983811 0.179210i \(-0.942646\pi\)
0.983811 0.179210i \(-0.0573542\pi\)
\(84\) 0 0
\(85\) −4.96207e7 −0.950577
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.82163e7i 0.290335i 0.989407 + 0.145168i \(0.0463722\pi\)
−0.989407 + 0.145168i \(0.953628\pi\)
\(90\) 0 0
\(91\) 3.32529e7 0.484914
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.99826e7i 0.736429i
\(96\) 0 0
\(97\) 6.93557e7 0.783421 0.391711 0.920088i \(-0.371883\pi\)
0.391711 + 0.920088i \(0.371883\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.05630e8i 1.01509i 0.861626 + 0.507544i \(0.169446\pi\)
−0.861626 + 0.507544i \(0.830554\pi\)
\(102\) 0 0
\(103\) 1.21627e8 1.08064 0.540319 0.841460i \(-0.318304\pi\)
0.540319 + 0.841460i \(0.318304\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.98700e8i − 1.51587i −0.652330 0.757935i \(-0.726208\pi\)
0.652330 0.757935i \(-0.273792\pi\)
\(108\) 0 0
\(109\) −8.94122e7 −0.633418 −0.316709 0.948523i \(-0.602578\pi\)
−0.316709 + 0.948523i \(0.602578\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 2.04528e8i − 1.25441i −0.778856 0.627203i \(-0.784199\pi\)
0.778856 0.627203i \(-0.215801\pi\)
\(114\) 0 0
\(115\) −1.07371e8 −0.613895
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 1.67684e8i − 0.836186i
\(120\) 0 0
\(121\) 9.43457e7 0.440130
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.62966e8i 1.07711i
\(126\) 0 0
\(127\) −2.19577e8 −0.844058 −0.422029 0.906582i \(-0.638682\pi\)
−0.422029 + 0.906582i \(0.638682\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 3.51599e8i − 1.19388i −0.802285 0.596942i \(-0.796382\pi\)
0.802285 0.596942i \(-0.203618\pi\)
\(132\) 0 0
\(133\) −2.02700e8 −0.647808
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 5.49676e8i − 1.56036i −0.625555 0.780180i \(-0.715128\pi\)
0.625555 0.780180i \(-0.284872\pi\)
\(138\) 0 0
\(139\) −1.15593e8 −0.309650 −0.154825 0.987942i \(-0.549481\pi\)
−0.154825 + 0.987942i \(0.549481\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.30952e8i 0.552304i
\(144\) 0 0
\(145\) 6.32894e7 0.143172
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 5.24849e8i − 1.06485i −0.846477 0.532426i \(-0.821280\pi\)
0.846477 0.532426i \(-0.178720\pi\)
\(150\) 0 0
\(151\) 1.60088e7 0.0307929 0.0153965 0.999881i \(-0.495099\pi\)
0.0153965 + 0.999881i \(0.495099\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 6.18370e8i − 1.07133i
\(156\) 0 0
\(157\) 7.75730e8 1.27677 0.638384 0.769718i \(-0.279603\pi\)
0.638384 + 0.769718i \(0.279603\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 3.62839e8i − 0.540020i
\(162\) 0 0
\(163\) −8.44040e8 −1.19567 −0.597837 0.801618i \(-0.703973\pi\)
−0.597837 + 0.801618i \(0.703973\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 7.04198e8i − 0.905375i −0.891669 0.452688i \(-0.850465\pi\)
0.891669 0.452688i \(-0.149535\pi\)
\(168\) 0 0
\(169\) −3.71288e8 −0.455160
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.00284e8i 1.00507i 0.864558 + 0.502533i \(0.167599\pi\)
−0.864558 + 0.502533i \(0.832401\pi\)
\(174\) 0 0
\(175\) −2.72498e8 −0.290544
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 4.93044e8i − 0.480257i −0.970741 0.240128i \(-0.922810\pi\)
0.970741 0.240128i \(-0.0771895\pi\)
\(180\) 0 0
\(181\) 2.98103e8 0.277749 0.138874 0.990310i \(-0.455652\pi\)
0.138874 + 0.990310i \(0.455652\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 4.27932e8i − 0.365332i
\(186\) 0 0
\(187\) 1.16462e9 0.952394
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 1.57061e9i − 1.18014i −0.807350 0.590072i \(-0.799099\pi\)
0.807350 0.590072i \(-0.200901\pi\)
\(192\) 0 0
\(193\) 1.90271e9 1.37133 0.685666 0.727916i \(-0.259511\pi\)
0.685666 + 0.727916i \(0.259511\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2.70298e9i − 1.79464i −0.441378 0.897321i \(-0.645510\pi\)
0.441378 0.897321i \(-0.354490\pi\)
\(198\) 0 0
\(199\) 1.73691e9 1.10755 0.553777 0.832665i \(-0.313186\pi\)
0.553777 + 0.832665i \(0.313186\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.13874e8i 0.125943i
\(204\) 0 0
\(205\) −6.00249e8 −0.339872
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 1.40781e9i − 0.737837i
\(210\) 0 0
\(211\) −3.53379e9 −1.78283 −0.891416 0.453186i \(-0.850288\pi\)
−0.891416 + 0.453186i \(0.850288\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 1.63847e9i − 0.766806i
\(216\) 0 0
\(217\) 2.08966e9 0.942405
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 2.24118e9i − 0.939523i
\(222\) 0 0
\(223\) 2.80290e9 1.13341 0.566706 0.823920i \(-0.308218\pi\)
0.566706 + 0.823920i \(0.308218\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 1.87240e9i − 0.705174i −0.935779 0.352587i \(-0.885302\pi\)
0.935779 0.352587i \(-0.114698\pi\)
\(228\) 0 0
\(229\) −4.56368e9 −1.65948 −0.829742 0.558148i \(-0.811512\pi\)
−0.829742 + 0.558148i \(0.811512\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 3.37063e9i − 1.14364i −0.820381 0.571818i \(-0.806238\pi\)
0.820381 0.571818i \(-0.193762\pi\)
\(234\) 0 0
\(235\) −2.27223e9 −0.745042
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.97567e9i 1.21848i 0.792986 + 0.609240i \(0.208526\pi\)
−0.792986 + 0.609240i \(0.791474\pi\)
\(240\) 0 0
\(241\) −3.27327e9 −0.970316 −0.485158 0.874426i \(-0.661238\pi\)
−0.485158 + 0.874426i \(0.661238\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1.52950e9i − 0.424507i
\(246\) 0 0
\(247\) −2.70919e9 −0.727865
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 6.04583e9i − 1.52321i −0.648039 0.761607i \(-0.724410\pi\)
0.648039 0.761607i \(-0.275590\pi\)
\(252\) 0 0
\(253\) 2.52003e9 0.615069
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 5.54259e9i − 1.27052i −0.772300 0.635258i \(-0.780894\pi\)
0.772300 0.635258i \(-0.219106\pi\)
\(258\) 0 0
\(259\) 1.44611e9 0.321369
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 2.88296e9i − 0.602581i −0.953532 0.301291i \(-0.902583\pi\)
0.953532 0.301291i \(-0.0974175\pi\)
\(264\) 0 0
\(265\) 5.81095e9 1.17832
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.93406e9i 0.560350i 0.959949 + 0.280175i \(0.0903925\pi\)
−0.959949 + 0.280175i \(0.909608\pi\)
\(270\) 0 0
\(271\) −1.52216e9 −0.282217 −0.141109 0.989994i \(-0.545067\pi\)
−0.141109 + 0.989994i \(0.545067\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.89259e9i − 0.330922i
\(276\) 0 0
\(277\) −5.35390e8 −0.0909393 −0.0454696 0.998966i \(-0.514478\pi\)
−0.0454696 + 0.998966i \(0.514478\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.79146e9i 0.768497i 0.923230 + 0.384248i \(0.125539\pi\)
−0.923230 + 0.384248i \(0.874461\pi\)
\(282\) 0 0
\(283\) 4.63044e9 0.721899 0.360949 0.932585i \(-0.382453\pi\)
0.360949 + 0.932585i \(0.382453\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 2.02842e9i − 0.298973i
\(288\) 0 0
\(289\) −4.32577e9 −0.620115
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 1.08308e10i − 1.46957i −0.678299 0.734786i \(-0.737283\pi\)
0.678299 0.734786i \(-0.262717\pi\)
\(294\) 0 0
\(295\) −4.86249e9 −0.642052
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 4.84953e9i − 0.606757i
\(300\) 0 0
\(301\) 5.53691e9 0.674530
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.65388e9i 1.00003i
\(306\) 0 0
\(307\) −5.45595e9 −0.614210 −0.307105 0.951676i \(-0.599360\pi\)
−0.307105 + 0.951676i \(0.599360\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.45863e10i 1.55921i 0.626272 + 0.779605i \(0.284580\pi\)
−0.626272 + 0.779605i \(0.715420\pi\)
\(312\) 0 0
\(313\) −1.96679e9 −0.204918 −0.102459 0.994737i \(-0.532671\pi\)
−0.102459 + 0.994737i \(0.532671\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.92492e9i 0.685769i 0.939378 + 0.342885i \(0.111404\pi\)
−0.939378 + 0.342885i \(0.888596\pi\)
\(318\) 0 0
\(319\) −1.48543e9 −0.143446
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.36615e10i 1.25513i
\(324\) 0 0
\(325\) −3.64208e9 −0.326450
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 7.67856e9i − 0.655385i
\(330\) 0 0
\(331\) 1.75109e10 1.45880 0.729401 0.684086i \(-0.239799\pi\)
0.729401 + 0.684086i \(0.239799\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 1.59916e10i − 1.26973i
\(336\) 0 0
\(337\) 3.25944e9 0.252711 0.126355 0.991985i \(-0.459672\pi\)
0.126355 + 0.991985i \(0.459672\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.45134e10i 1.07337i
\(342\) 0 0
\(343\) 1.42616e10 1.03037
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.34912e10i − 1.62027i −0.586243 0.810135i \(-0.699394\pi\)
0.586243 0.810135i \(-0.300606\pi\)
\(348\) 0 0
\(349\) −1.84032e10 −1.24048 −0.620242 0.784410i \(-0.712966\pi\)
−0.620242 + 0.784410i \(0.712966\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 5.46001e9i − 0.351637i −0.984423 0.175818i \(-0.943743\pi\)
0.984423 0.175818i \(-0.0562572\pi\)
\(354\) 0 0
\(355\) 1.77349e10 1.11664
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 1.20718e10i − 0.726763i −0.931640 0.363382i \(-0.881622\pi\)
0.931640 0.363382i \(-0.118378\pi\)
\(360\) 0 0
\(361\) −4.69191e8 −0.0276262
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.07126e10i 1.16698i
\(366\) 0 0
\(367\) 4.61047e9 0.254145 0.127072 0.991893i \(-0.459442\pi\)
0.127072 + 0.991893i \(0.459442\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.96370e10i 1.03652i
\(372\) 0 0
\(373\) 3.24556e9 0.167670 0.0838348 0.996480i \(-0.473283\pi\)
0.0838348 + 0.996480i \(0.473283\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.85854e9i 0.141507i
\(378\) 0 0
\(379\) −7.63733e9 −0.370156 −0.185078 0.982724i \(-0.559254\pi\)
−0.185078 + 0.982724i \(0.559254\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.08424e10i 0.968619i 0.874897 + 0.484309i \(0.160929\pi\)
−0.874897 + 0.484309i \(0.839071\pi\)
\(384\) 0 0
\(385\) −8.06549e9 −0.367103
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.33164e10i 1.89171i 0.324596 + 0.945853i \(0.394772\pi\)
−0.324596 + 0.945853i \(0.605228\pi\)
\(390\) 0 0
\(391\) −2.44546e10 −1.04629
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 1.75607e9i − 0.0721361i
\(396\) 0 0
\(397\) −1.75923e10 −0.708206 −0.354103 0.935206i \(-0.615214\pi\)
−0.354103 + 0.935206i \(0.615214\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.51012e10i 0.970770i 0.874301 + 0.485385i \(0.161321\pi\)
−0.874301 + 0.485385i \(0.838679\pi\)
\(402\) 0 0
\(403\) 2.79294e10 1.05887
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.00437e10i 0.366030i
\(408\) 0 0
\(409\) −2.91003e10 −1.03993 −0.519964 0.854188i \(-0.674055\pi\)
−0.519964 + 0.854188i \(0.674055\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 1.64318e10i − 0.564789i
\(414\) 0 0
\(415\) 7.93962e9 0.267675
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.02874e10i 1.30711i 0.756877 + 0.653557i \(0.226724\pi\)
−0.756877 + 0.653557i \(0.773276\pi\)
\(420\) 0 0
\(421\) −1.82772e10 −0.581812 −0.290906 0.956752i \(-0.593957\pi\)
−0.290906 + 0.956752i \(0.593957\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.83658e10i 0.562930i
\(426\) 0 0
\(427\) −2.92441e10 −0.879685
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.30045e10i 0.956454i 0.878236 + 0.478227i \(0.158720\pi\)
−0.878236 + 0.478227i \(0.841280\pi\)
\(432\) 0 0
\(433\) 4.27716e10 1.21676 0.608379 0.793647i \(-0.291820\pi\)
0.608379 + 0.793647i \(0.291820\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.95612e10i 0.810582i
\(438\) 0 0
\(439\) −3.71875e10 −1.00124 −0.500620 0.865667i \(-0.666895\pi\)
−0.500620 + 0.865667i \(0.666895\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.12526e9i 0.159041i 0.996833 + 0.0795205i \(0.0253389\pi\)
−0.996833 + 0.0795205i \(0.974661\pi\)
\(444\) 0 0
\(445\) −8.50265e9 −0.216827
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.21732e10i 0.299516i 0.988723 + 0.149758i \(0.0478494\pi\)
−0.988723 + 0.149758i \(0.952151\pi\)
\(450\) 0 0
\(451\) 1.40881e10 0.340522
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.55212e10i 0.362142i
\(456\) 0 0
\(457\) 6.39080e10 1.46518 0.732589 0.680671i \(-0.238312\pi\)
0.732589 + 0.680671i \(0.238312\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 1.19193e10i − 0.263905i −0.991256 0.131952i \(-0.957875\pi\)
0.991256 0.131952i \(-0.0421246\pi\)
\(462\) 0 0
\(463\) −3.87770e10 −0.843820 −0.421910 0.906638i \(-0.638640\pi\)
−0.421910 + 0.906638i \(0.638640\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 8.53122e8i − 0.0179367i −0.999960 0.00896837i \(-0.997145\pi\)
0.999960 0.00896837i \(-0.00285476\pi\)
\(468\) 0 0
\(469\) 5.40404e10 1.11693
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.84556e10i 0.768272i
\(474\) 0 0
\(475\) 2.22010e10 0.436112
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 1.01215e10i − 0.192266i −0.995369 0.0961329i \(-0.969353\pi\)
0.995369 0.0961329i \(-0.0306474\pi\)
\(480\) 0 0
\(481\) 1.93281e10 0.361084
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.23725e10i 0.585072i
\(486\) 0 0
\(487\) −5.42141e10 −0.963821 −0.481911 0.876220i \(-0.660057\pi\)
−0.481911 + 0.876220i \(0.660057\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 6.61539e10i − 1.13823i −0.822258 0.569115i \(-0.807286\pi\)
0.822258 0.569115i \(-0.192714\pi\)
\(492\) 0 0
\(493\) 1.44147e10 0.244015
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.99315e10i 0.982268i
\(498\) 0 0
\(499\) 9.22923e10 1.48855 0.744275 0.667873i \(-0.232795\pi\)
0.744275 + 0.667873i \(0.232795\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 2.93013e10i − 0.457736i −0.973457 0.228868i \(-0.926498\pi\)
0.973457 0.228868i \(-0.0735024\pi\)
\(504\) 0 0
\(505\) −4.93041e10 −0.758085
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.86993e10i 1.17246i 0.810143 + 0.586232i \(0.199389\pi\)
−0.810143 + 0.586232i \(0.800611\pi\)
\(510\) 0 0
\(511\) −6.99942e10 −1.02655
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.67706e10i 0.807039i
\(516\) 0 0
\(517\) 5.33301e10 0.746466
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.59283e10i 0.487625i 0.969822 + 0.243812i \(0.0783981\pi\)
−0.969822 + 0.243812i \(0.921602\pi\)
\(522\) 0 0
\(523\) −1.73999e10 −0.232562 −0.116281 0.993216i \(-0.537097\pi\)
−0.116281 + 0.993216i \(0.537097\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1.40839e11i − 1.82592i
\(528\) 0 0
\(529\) 2.53955e10 0.324290
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 2.71109e10i − 0.335920i
\(534\) 0 0
\(535\) 9.27452e10 1.13208
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.58979e10i 0.425318i
\(540\) 0 0
\(541\) −4.58718e10 −0.535497 −0.267748 0.963489i \(-0.586280\pi\)
−0.267748 + 0.963489i \(0.586280\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 4.17341e10i − 0.473048i
\(546\) 0 0
\(547\) −1.03482e11 −1.15589 −0.577946 0.816075i \(-0.696146\pi\)
−0.577946 + 0.816075i \(0.696146\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1.74248e10i − 0.189043i
\(552\) 0 0
\(553\) 5.93429e9 0.0634553
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.33768e11i 1.38973i 0.719139 + 0.694867i \(0.244537\pi\)
−0.719139 + 0.694867i \(0.755463\pi\)
\(558\) 0 0
\(559\) 7.40036e10 0.757889
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 2.95704e10i − 0.294323i −0.989112 0.147162i \(-0.952986\pi\)
0.989112 0.147162i \(-0.0470137\pi\)
\(564\) 0 0
\(565\) 9.54655e10 0.936812
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 1.92259e11i − 1.83416i −0.398699 0.917082i \(-0.630538\pi\)
0.398699 0.917082i \(-0.369462\pi\)
\(570\) 0 0
\(571\) −1.11124e10 −0.104535 −0.0522677 0.998633i \(-0.516645\pi\)
−0.0522677 + 0.998633i \(0.516645\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.97405e10i 0.363548i
\(576\) 0 0
\(577\) −2.11777e11 −1.91063 −0.955314 0.295594i \(-0.904482\pi\)
−0.955314 + 0.295594i \(0.904482\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.68304e10i 0.235463i
\(582\) 0 0
\(583\) −1.36385e11 −1.18057
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.83784e10i 0.154794i 0.997000 + 0.0773970i \(0.0246609\pi\)
−0.997000 + 0.0773970i \(0.975339\pi\)
\(588\) 0 0
\(589\) −1.70249e11 −1.41457
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 5.18489e10i − 0.419296i −0.977777 0.209648i \(-0.932768\pi\)
0.977777 0.209648i \(-0.0672318\pi\)
\(594\) 0 0
\(595\) 7.82681e10 0.624478
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 2.40425e10i − 0.186755i −0.995631 0.0933775i \(-0.970234\pi\)
0.995631 0.0933775i \(-0.0297664\pi\)
\(600\) 0 0
\(601\) 7.21267e10 0.552838 0.276419 0.961037i \(-0.410852\pi\)
0.276419 + 0.961037i \(0.410852\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.40369e10i 0.328696i
\(606\) 0 0
\(607\) 6.59221e10 0.485597 0.242799 0.970077i \(-0.421935\pi\)
0.242799 + 0.970077i \(0.421935\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.02628e11i − 0.736378i
\(612\) 0 0
\(613\) 1.10453e11 0.782234 0.391117 0.920341i \(-0.372089\pi\)
0.391117 + 0.920341i \(0.372089\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 6.08425e10i − 0.419823i −0.977720 0.209912i \(-0.932682\pi\)
0.977720 0.209912i \(-0.0673177\pi\)
\(618\) 0 0
\(619\) −3.52013e10 −0.239771 −0.119885 0.992788i \(-0.538253\pi\)
−0.119885 + 0.992788i \(0.538253\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 2.87331e10i − 0.190735i
\(624\) 0 0
\(625\) −5.52579e10 −0.362138
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 9.74651e10i − 0.622653i
\(630\) 0 0
\(631\) −9.36211e10 −0.590549 −0.295275 0.955412i \(-0.595411\pi\)
−0.295275 + 0.955412i \(0.595411\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1.02490e11i − 0.630357i
\(636\) 0 0
\(637\) 6.90816e10 0.419570
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 1.33852e11i − 0.792850i −0.918067 0.396425i \(-0.870251\pi\)
0.918067 0.396425i \(-0.129749\pi\)
\(642\) 0 0
\(643\) 2.74043e10 0.160316 0.0801578 0.996782i \(-0.474458\pi\)
0.0801578 + 0.996782i \(0.474458\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 3.10935e11i − 1.77440i −0.461381 0.887202i \(-0.652646\pi\)
0.461381 0.887202i \(-0.347354\pi\)
\(648\) 0 0
\(649\) 1.14124e11 0.643280
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.52563e10i 0.523891i 0.965083 + 0.261945i \(0.0843641\pi\)
−0.965083 + 0.261945i \(0.915636\pi\)
\(654\) 0 0
\(655\) 1.64112e11 0.891612
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 2.16953e11i − 1.15034i −0.818036 0.575168i \(-0.804937\pi\)
0.818036 0.575168i \(-0.195063\pi\)
\(660\) 0 0
\(661\) −1.28088e10 −0.0670968 −0.0335484 0.999437i \(-0.510681\pi\)
−0.0335484 + 0.999437i \(0.510681\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 9.46123e10i − 0.483794i
\(666\) 0 0
\(667\) 3.11909e10 0.157589
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 2.03110e11i − 1.00194i
\(672\) 0 0
\(673\) −1.15334e11 −0.562208 −0.281104 0.959677i \(-0.590701\pi\)
−0.281104 + 0.959677i \(0.590701\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.31800e11i 1.57951i 0.613424 + 0.789754i \(0.289792\pi\)
−0.613424 + 0.789754i \(0.710208\pi\)
\(678\) 0 0
\(679\) −1.09397e11 −0.514666
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 2.28809e11i − 1.05145i −0.850653 0.525727i \(-0.823793\pi\)
0.850653 0.525727i \(-0.176207\pi\)
\(684\) 0 0
\(685\) 2.56567e11 1.16530
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.62459e11i 1.16462i
\(690\) 0 0
\(691\) −6.81289e10 −0.298827 −0.149413 0.988775i \(-0.547738\pi\)
−0.149413 + 0.988775i \(0.547738\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 5.39541e10i − 0.231252i
\(696\) 0 0
\(697\) −1.36712e11 −0.579261
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 3.51559e11i − 1.45588i −0.685640 0.727941i \(-0.740477\pi\)
0.685640 0.727941i \(-0.259523\pi\)
\(702\) 0 0
\(703\) −1.17818e11 −0.482381
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1.66614e11i − 0.666858i
\(708\) 0 0
\(709\) −5.60206e10 −0.221698 −0.110849 0.993837i \(-0.535357\pi\)
−0.110849 + 0.993837i \(0.535357\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 3.04752e11i − 1.17920i
\(714\) 0 0
\(715\) −1.07799e11 −0.412470
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 1.91675e11i − 0.717216i −0.933488 0.358608i \(-0.883252\pi\)
0.933488 0.358608i \(-0.116748\pi\)
\(720\) 0 0
\(721\) −1.91845e11 −0.709921
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 2.34249e10i − 0.0847864i
\(726\) 0 0
\(727\) 3.32166e11 1.18910 0.594549 0.804059i \(-0.297330\pi\)
0.594549 + 0.804059i \(0.297330\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 3.73176e11i − 1.30691i
\(732\) 0 0
\(733\) 3.56926e10 0.123641 0.0618205 0.998087i \(-0.480309\pi\)
0.0618205 + 0.998087i \(0.480309\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.75328e11i 1.27216i
\(738\) 0 0
\(739\) 5.37492e11 1.80216 0.901081 0.433650i \(-0.142775\pi\)
0.901081 + 0.433650i \(0.142775\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 4.07427e11i − 1.33689i −0.743764 0.668443i \(-0.766961\pi\)
0.743764 0.668443i \(-0.233039\pi\)
\(744\) 0 0
\(745\) 2.44979e11 0.795250
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.13415e11i 0.995846i
\(750\) 0 0
\(751\) −2.17032e11 −0.682281 −0.341141 0.940012i \(-0.610813\pi\)
−0.341141 + 0.940012i \(0.610813\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.47228e9i 0.0229967i
\(756\) 0 0
\(757\) 1.61808e11 0.492739 0.246370 0.969176i \(-0.420762\pi\)
0.246370 + 0.969176i \(0.420762\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.27348e11i 1.57238i 0.617983 + 0.786192i \(0.287950\pi\)
−0.617983 + 0.786192i \(0.712050\pi\)
\(762\) 0 0
\(763\) 1.41032e11 0.416122
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 2.19620e11i − 0.634586i
\(768\) 0 0
\(769\) 3.01064e11 0.860902 0.430451 0.902614i \(-0.358355\pi\)
0.430451 + 0.902614i \(0.358355\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.50947e10i 0.210325i 0.994455 + 0.105163i \(0.0335363\pi\)
−0.994455 + 0.105163i \(0.966464\pi\)
\(774\) 0 0
\(775\) −2.28874e11 −0.634438
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.65260e11i 0.448764i
\(780\) 0 0
\(781\) −4.16244e11 −1.11878
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.62080e11i 0.953512i
\(786\) 0 0
\(787\) 2.27263e11 0.592419 0.296210 0.955123i \(-0.404277\pi\)
0.296210 + 0.955123i \(0.404277\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.22607e11i 0.824078i
\(792\) 0 0
\(793\) −3.90863e11 −0.988398
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 4.79744e11i − 1.18899i −0.804101 0.594493i \(-0.797353\pi\)
0.804101 0.594493i \(-0.202647\pi\)
\(798\) 0 0
\(799\) −5.17519e11 −1.26981
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 4.86132e11i − 1.16921i
\(804\) 0 0
\(805\) 1.69359e11 0.403296
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.81491e11i 1.82444i 0.409700 + 0.912220i \(0.365633\pi\)
−0.409700 + 0.912220i \(0.634367\pi\)
\(810\) 0 0
\(811\) −4.47395e11 −1.03421 −0.517103 0.855923i \(-0.672990\pi\)
−0.517103 + 0.855923i \(0.672990\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 3.93965e11i − 0.892950i
\(816\) 0 0
\(817\) −4.51104e11 −1.01248
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.85764e11i 0.408872i 0.978880 + 0.204436i \(0.0655361\pi\)
−0.978880 + 0.204436i \(0.934464\pi\)
\(822\) 0 0
\(823\) −4.54477e10 −0.0990632 −0.0495316 0.998773i \(-0.515773\pi\)
−0.0495316 + 0.998773i \(0.515773\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 4.80346e11i − 1.02691i −0.858117 0.513454i \(-0.828366\pi\)
0.858117 0.513454i \(-0.171634\pi\)
\(828\) 0 0
\(829\) −4.62670e11 −0.979610 −0.489805 0.871832i \(-0.662932\pi\)
−0.489805 + 0.871832i \(0.662932\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 3.48356e11i − 0.723508i
\(834\) 0 0
\(835\) 3.28692e11 0.676150
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.08581e11i 1.02639i 0.858272 + 0.513195i \(0.171538\pi\)
−0.858272 + 0.513195i \(0.828462\pi\)
\(840\) 0 0
\(841\) 4.81861e11 0.963247
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 1.73303e11i − 0.339922i
\(846\) 0 0
\(847\) −1.48814e11 −0.289142
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 2.10898e11i − 0.402118i
\(852\) 0 0
\(853\) −5.24179e11 −0.990110 −0.495055 0.868862i \(-0.664852\pi\)
−0.495055 + 0.868862i \(0.664852\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.30185e10i 0.135366i 0.997707 + 0.0676830i \(0.0215607\pi\)
−0.997707 + 0.0676830i \(0.978439\pi\)
\(858\) 0 0
\(859\) 4.44067e11 0.815598 0.407799 0.913072i \(-0.366296\pi\)
0.407799 + 0.913072i \(0.366296\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 4.99140e10i − 0.0899868i −0.998987 0.0449934i \(-0.985673\pi\)
0.998987 0.0449934i \(-0.0143267\pi\)
\(864\) 0 0
\(865\) −4.20217e11 −0.750601
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.12155e10i 0.0722740i
\(870\) 0 0
\(871\) 7.22278e11 1.25497
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 4.14783e11i − 0.707602i
\(876\) 0 0
\(877\) −2.27533e11 −0.384632 −0.192316 0.981333i \(-0.561600\pi\)
−0.192316 + 0.981333i \(0.561600\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8.85209e11i 1.46941i 0.678388 + 0.734704i \(0.262679\pi\)
−0.678388 + 0.734704i \(0.737321\pi\)
\(882\) 0 0
\(883\) 3.77081e11 0.620286 0.310143 0.950690i \(-0.399623\pi\)
0.310143 + 0.950690i \(0.399623\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.08596e12i 1.75436i 0.480160 + 0.877181i \(0.340579\pi\)
−0.480160 + 0.877181i \(0.659421\pi\)
\(888\) 0 0
\(889\) 3.46345e11 0.554501
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.25589e11i 0.983746i
\(894\) 0 0
\(895\) 2.30133e11 0.358664
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.79635e11i 0.275012i
\(900\) 0 0
\(901\) 1.32349e12 2.00827
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.39143e11i 0.207427i
\(906\) 0 0
\(907\) 1.07960e11 0.159527 0.0797634 0.996814i \(-0.474584\pi\)
0.0797634 + 0.996814i \(0.474584\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 5.51004e11i − 0.799984i −0.916519 0.399992i \(-0.869013\pi\)
0.916519 0.399992i \(-0.130987\pi\)
\(912\) 0 0
\(913\) −1.86346e11 −0.268186
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.54586e11i 0.784317i
\(918\) 0 0
\(919\) −4.32195e11 −0.605923 −0.302961 0.953003i \(-0.597975\pi\)
−0.302961 + 0.953003i \(0.597975\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.01016e11i 1.10366i
\(924\) 0 0
\(925\) −1.58388e11 −0.216349
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.56563e11i 1.15000i 0.818155 + 0.574998i \(0.194997\pi\)
−0.818155 + 0.574998i \(0.805003\pi\)
\(930\) 0 0
\(931\) −4.21101e11 −0.560515
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.43597e11i 0.711264i
\(936\) 0 0
\(937\) 6.13380e11 0.795740 0.397870 0.917442i \(-0.369750\pi\)
0.397870 + 0.917442i \(0.369750\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1.16251e11i − 0.148265i −0.997248 0.0741327i \(-0.976381\pi\)
0.997248 0.0741327i \(-0.0236189\pi\)
\(942\) 0 0
\(943\) −2.95821e11 −0.374095
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.24509e11i 0.154811i 0.997000 + 0.0774054i \(0.0246636\pi\)
−0.997000 + 0.0774054i \(0.975336\pi\)
\(948\) 0 0
\(949\) −9.35508e11 −1.15341
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7.28266e11i 0.882914i 0.897283 + 0.441457i \(0.145538\pi\)
−0.897283 + 0.441457i \(0.854462\pi\)
\(954\) 0 0
\(955\) 7.33100e11 0.881352
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.67020e11i 1.02507i
\(960\) 0 0
\(961\) 9.02238e11 1.05786
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.88109e11i 1.02413i
\(966\) 0 0
\(967\) −7.77539e11 −0.889235 −0.444617 0.895721i \(-0.646660\pi\)
−0.444617 + 0.895721i \(0.646660\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 1.23280e12i − 1.38681i −0.720549 0.693404i \(-0.756110\pi\)
0.720549 0.693404i \(-0.243890\pi\)
\(972\) 0 0
\(973\) 1.82327e11 0.203423
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.10332e11i 0.779620i 0.920895 + 0.389810i \(0.127459\pi\)
−0.920895 + 0.389810i \(0.872541\pi\)
\(978\) 0 0
\(979\) 1.99560e11 0.217242
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.03756e11i 0.539519i 0.962928 + 0.269759i \(0.0869442\pi\)
−0.962928 + 0.269759i \(0.913056\pi\)
\(984\) 0 0
\(985\) 1.26164e12 1.34027
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 8.07489e11i − 0.844018i
\(990\) 0 0
\(991\) −7.14718e11 −0.741038 −0.370519 0.928825i \(-0.620820\pi\)
−0.370519 + 0.928825i \(0.620820\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.10721e11i 0.827140i
\(996\) 0 0
\(997\) −8.23742e11 −0.833702 −0.416851 0.908975i \(-0.636866\pi\)
−0.416851 + 0.908975i \(0.636866\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.9.c.a.161.12 16
3.2 odd 2 inner 324.9.c.a.161.5 16
9.2 odd 6 36.9.g.a.5.3 16
9.4 even 3 36.9.g.a.29.3 yes 16
9.5 odd 6 108.9.g.a.89.3 16
9.7 even 3 108.9.g.a.17.3 16
36.7 odd 6 432.9.q.b.17.3 16
36.11 even 6 144.9.q.c.113.6 16
36.23 even 6 432.9.q.b.305.3 16
36.31 odd 6 144.9.q.c.65.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.9.g.a.5.3 16 9.2 odd 6
36.9.g.a.29.3 yes 16 9.4 even 3
108.9.g.a.17.3 16 9.7 even 3
108.9.g.a.89.3 16 9.5 odd 6
144.9.q.c.65.6 16 36.31 odd 6
144.9.q.c.113.6 16 36.11 even 6
324.9.c.a.161.5 16 3.2 odd 2 inner
324.9.c.a.161.12 16 1.1 even 1 trivial
432.9.q.b.17.3 16 36.7 odd 6
432.9.q.b.305.3 16 36.23 even 6