Properties

Label 324.9.c.b.161.5
Level $324$
Weight $9$
Character 324.161
Analytic conductor $131.991$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,9,Mod(161,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.161");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 324.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(131.990669660\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 456016 x^{14} + 81688865380 x^{12} + \cdots + 60\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{88} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.5
Root \(-167.188i\) of defining polynomial
Character \(\chi\) \(=\) 324.161
Dual form 324.9.c.b.161.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-501.563i q^{5} -3090.68 q^{7} -11241.7i q^{11} +3930.44 q^{13} +46705.5i q^{17} +131459. q^{19} -384942. i q^{23} +139059. q^{25} -817545. i q^{29} +1.59414e6 q^{31} +1.55017e6i q^{35} -645124. q^{37} -1.32509e6i q^{41} -1.20800e6 q^{43} -453328. i q^{47} +3.78749e6 q^{49} -1.24042e7i q^{53} -5.63843e6 q^{55} +2.58079e6i q^{59} -1.28437e7 q^{61} -1.97136e6i q^{65} -2.98465e7 q^{67} +2.77799e6i q^{71} +7.42060e6 q^{73} +3.47445e7i q^{77} +2.32710e7 q^{79} +1.96704e7i q^{83} +2.34257e7 q^{85} +9.34649e7i q^{89} -1.21477e7 q^{91} -6.59349e7i q^{95} +6.07429e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 3692 q^{7} - 50380 q^{13} + 185108 q^{19} - 1958288 q^{25} - 285568 q^{31} - 2910052 q^{37} - 8122852 q^{43} + 14602560 q^{49} + 38320164 q^{55} - 5700244 q^{61} - 6328540 q^{67} - 51728704 q^{73}+ \cdots - 181751968 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 501.563i − 0.802501i −0.915968 0.401250i \(-0.868576\pi\)
0.915968 0.401250i \(-0.131424\pi\)
\(6\) 0 0
\(7\) −3090.68 −1.28725 −0.643623 0.765343i \(-0.722570\pi\)
−0.643623 + 0.765343i \(0.722570\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 11241.7i − 0.767825i −0.923370 0.383912i \(-0.874576\pi\)
0.923370 0.383912i \(-0.125424\pi\)
\(12\) 0 0
\(13\) 3930.44 0.137616 0.0688078 0.997630i \(-0.478080\pi\)
0.0688078 + 0.997630i \(0.478080\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 46705.5i 0.559206i 0.960116 + 0.279603i \(0.0902029\pi\)
−0.960116 + 0.279603i \(0.909797\pi\)
\(18\) 0 0
\(19\) 131459. 1.00873 0.504365 0.863490i \(-0.331727\pi\)
0.504365 + 0.863490i \(0.331727\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 384942.i − 1.37557i −0.725913 0.687787i \(-0.758582\pi\)
0.725913 0.687787i \(-0.241418\pi\)
\(24\) 0 0
\(25\) 139059. 0.355992
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 817545.i − 1.15590i −0.816073 0.577949i \(-0.803853\pi\)
0.816073 0.577949i \(-0.196147\pi\)
\(30\) 0 0
\(31\) 1.59414e6 1.72615 0.863077 0.505073i \(-0.168534\pi\)
0.863077 + 0.505073i \(0.168534\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.55017e6i 1.03302i
\(36\) 0 0
\(37\) −645124. −0.344220 −0.172110 0.985078i \(-0.555058\pi\)
−0.172110 + 0.985078i \(0.555058\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 1.32509e6i − 0.468931i −0.972124 0.234466i \(-0.924666\pi\)
0.972124 0.234466i \(-0.0753340\pi\)
\(42\) 0 0
\(43\) −1.20800e6 −0.353341 −0.176670 0.984270i \(-0.556533\pi\)
−0.176670 + 0.984270i \(0.556533\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 453328.i − 0.0929011i −0.998921 0.0464505i \(-0.985209\pi\)
0.998921 0.0464505i \(-0.0147910\pi\)
\(48\) 0 0
\(49\) 3.78749e6 0.657002
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 1.24042e7i − 1.57204i −0.618199 0.786022i \(-0.712137\pi\)
0.618199 0.786022i \(-0.287863\pi\)
\(54\) 0 0
\(55\) −5.63843e6 −0.616180
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.58079e6i 0.212983i 0.994314 + 0.106492i \(0.0339617\pi\)
−0.994314 + 0.106492i \(0.966038\pi\)
\(60\) 0 0
\(61\) −1.28437e7 −0.927623 −0.463811 0.885934i \(-0.653518\pi\)
−0.463811 + 0.885934i \(0.653518\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 1.97136e6i − 0.110437i
\(66\) 0 0
\(67\) −2.98465e7 −1.48114 −0.740568 0.671982i \(-0.765443\pi\)
−0.740568 + 0.671982i \(0.765443\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.77799e6i 0.109319i 0.998505 + 0.0546596i \(0.0174074\pi\)
−0.998505 + 0.0546596i \(0.982593\pi\)
\(72\) 0 0
\(73\) 7.42060e6 0.261305 0.130652 0.991428i \(-0.458293\pi\)
0.130652 + 0.991428i \(0.458293\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.47445e7i 0.988379i
\(78\) 0 0
\(79\) 2.32710e7 0.597457 0.298729 0.954338i \(-0.403437\pi\)
0.298729 + 0.954338i \(0.403437\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.96704e7i 0.414477i 0.978290 + 0.207239i \(0.0664477\pi\)
−0.978290 + 0.207239i \(0.933552\pi\)
\(84\) 0 0
\(85\) 2.34257e7 0.448764
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.34649e7i 1.48966i 0.667252 + 0.744832i \(0.267471\pi\)
−0.667252 + 0.744832i \(0.732529\pi\)
\(90\) 0 0
\(91\) −1.21477e7 −0.177145
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 6.59349e7i − 0.809507i
\(96\) 0 0
\(97\) 6.07429e7 0.686133 0.343067 0.939311i \(-0.388534\pi\)
0.343067 + 0.939311i \(0.388534\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1.32284e8i − 1.27122i −0.772011 0.635610i \(-0.780749\pi\)
0.772011 0.635610i \(-0.219251\pi\)
\(102\) 0 0
\(103\) −1.15239e8 −1.02388 −0.511942 0.859020i \(-0.671074\pi\)
−0.511942 + 0.859020i \(0.671074\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.24901e8i 0.952865i 0.879211 + 0.476432i \(0.158070\pi\)
−0.879211 + 0.476432i \(0.841930\pi\)
\(108\) 0 0
\(109\) 7.75512e7 0.549392 0.274696 0.961531i \(-0.411423\pi\)
0.274696 + 0.961531i \(0.411423\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.54869e8i 0.949839i 0.880029 + 0.474919i \(0.157523\pi\)
−0.880029 + 0.474919i \(0.842477\pi\)
\(114\) 0 0
\(115\) −1.93073e8 −1.10390
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 1.44352e8i − 0.719836i
\(120\) 0 0
\(121\) 8.79825e7 0.410445
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 2.65670e8i − 1.08819i
\(126\) 0 0
\(127\) −3.72217e8 −1.43081 −0.715404 0.698711i \(-0.753757\pi\)
−0.715404 + 0.698711i \(0.753757\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 1.54228e8i − 0.523695i −0.965109 0.261848i \(-0.915668\pi\)
0.965109 0.261848i \(-0.0843318\pi\)
\(132\) 0 0
\(133\) −4.06297e8 −1.29848
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2.74558e8i − 0.779385i −0.920945 0.389692i \(-0.872581\pi\)
0.920945 0.389692i \(-0.127419\pi\)
\(138\) 0 0
\(139\) −1.67621e8 −0.449023 −0.224511 0.974471i \(-0.572079\pi\)
−0.224511 + 0.974471i \(0.572079\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 4.41849e7i − 0.105665i
\(144\) 0 0
\(145\) −4.10050e8 −0.927609
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.25112e8i 1.87693i 0.345368 + 0.938467i \(0.387754\pi\)
−0.345368 + 0.938467i \(0.612246\pi\)
\(150\) 0 0
\(151\) −6.59348e7 −0.126826 −0.0634128 0.997987i \(-0.520198\pi\)
−0.0634128 + 0.997987i \(0.520198\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 7.99561e8i − 1.38524i
\(156\) 0 0
\(157\) −4.25762e8 −0.700758 −0.350379 0.936608i \(-0.613947\pi\)
−0.350379 + 0.936608i \(0.613947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.18973e9i 1.77070i
\(162\) 0 0
\(163\) −8.70098e8 −1.23259 −0.616294 0.787516i \(-0.711367\pi\)
−0.616294 + 0.787516i \(0.711367\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3.97837e8i − 0.511492i −0.966744 0.255746i \(-0.917679\pi\)
0.966744 0.255746i \(-0.0823211\pi\)
\(168\) 0 0
\(169\) −8.00282e8 −0.981062
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1.06311e9i − 1.18685i −0.804891 0.593423i \(-0.797776\pi\)
0.804891 0.593423i \(-0.202224\pi\)
\(174\) 0 0
\(175\) −4.29788e8 −0.458249
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.73761e8i 0.948507i 0.880388 + 0.474253i \(0.157282\pi\)
−0.880388 + 0.474253i \(0.842718\pi\)
\(180\) 0 0
\(181\) 1.59538e9 1.48644 0.743222 0.669045i \(-0.233297\pi\)
0.743222 + 0.669045i \(0.233297\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.23570e8i 0.276237i
\(186\) 0 0
\(187\) 5.25050e8 0.429373
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 2.28553e9i − 1.71733i −0.512538 0.858665i \(-0.671295\pi\)
0.512538 0.858665i \(-0.328705\pi\)
\(192\) 0 0
\(193\) −1.44122e9 −1.03873 −0.519363 0.854554i \(-0.673831\pi\)
−0.519363 + 0.854554i \(0.673831\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.62973e9i 1.74601i 0.487710 + 0.873006i \(0.337832\pi\)
−0.487710 + 0.873006i \(0.662168\pi\)
\(198\) 0 0
\(199\) −9.92440e8 −0.632837 −0.316419 0.948620i \(-0.602480\pi\)
−0.316419 + 0.948620i \(0.602480\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.52677e9i 1.48793i
\(204\) 0 0
\(205\) −6.64615e8 −0.376318
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 1.47782e9i − 0.774528i
\(210\) 0 0
\(211\) −3.49959e9 −1.76558 −0.882790 0.469769i \(-0.844337\pi\)
−0.882790 + 0.469769i \(0.844337\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.05890e8i 0.283557i
\(216\) 0 0
\(217\) −4.92697e9 −2.22198
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.83573e8i 0.0769555i
\(222\) 0 0
\(223\) −3.13526e9 −1.26781 −0.633904 0.773411i \(-0.718549\pi\)
−0.633904 + 0.773411i \(0.718549\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 3.28088e9i − 1.23562i −0.786325 0.617812i \(-0.788019\pi\)
0.786325 0.617812i \(-0.211981\pi\)
\(228\) 0 0
\(229\) 1.06424e9 0.386989 0.193494 0.981101i \(-0.438018\pi\)
0.193494 + 0.981101i \(0.438018\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 1.01877e9i − 0.345663i −0.984951 0.172832i \(-0.944708\pi\)
0.984951 0.172832i \(-0.0552917\pi\)
\(234\) 0 0
\(235\) −2.27372e8 −0.0745532
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.66078e9i 1.42846i 0.699913 + 0.714228i \(0.253222\pi\)
−0.699913 + 0.714228i \(0.746778\pi\)
\(240\) 0 0
\(241\) −5.17328e9 −1.53355 −0.766775 0.641916i \(-0.778140\pi\)
−0.766775 + 0.641916i \(0.778140\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1.89966e9i − 0.527245i
\(246\) 0 0
\(247\) 5.16690e8 0.138817
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 5.93933e8i − 0.149638i −0.997197 0.0748191i \(-0.976162\pi\)
0.997197 0.0748191i \(-0.0238379\pi\)
\(252\) 0 0
\(253\) −4.32741e9 −1.05620
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 2.14652e9i − 0.492043i −0.969264 0.246022i \(-0.920877\pi\)
0.969264 0.246022i \(-0.0791234\pi\)
\(258\) 0 0
\(259\) 1.99387e9 0.443096
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 5.23736e9i − 1.09469i −0.836908 0.547343i \(-0.815639\pi\)
0.836908 0.547343i \(-0.184361\pi\)
\(264\) 0 0
\(265\) −6.22148e9 −1.26157
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.63768e9i 0.885710i 0.896593 + 0.442855i \(0.146034\pi\)
−0.896593 + 0.442855i \(0.853966\pi\)
\(270\) 0 0
\(271\) 8.80767e7 0.0163299 0.00816496 0.999967i \(-0.497401\pi\)
0.00816496 + 0.999967i \(0.497401\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.56327e9i − 0.273340i
\(276\) 0 0
\(277\) −5.67482e9 −0.963903 −0.481951 0.876198i \(-0.660072\pi\)
−0.481951 + 0.876198i \(0.660072\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 1.05405e10i − 1.69059i −0.534303 0.845293i \(-0.679426\pi\)
0.534303 0.845293i \(-0.320574\pi\)
\(282\) 0 0
\(283\) 5.52106e9 0.860749 0.430375 0.902650i \(-0.358381\pi\)
0.430375 + 0.902650i \(0.358381\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.09542e9i 0.603630i
\(288\) 0 0
\(289\) 4.79436e9 0.687288
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 1.28590e9i − 0.174476i −0.996188 0.0872379i \(-0.972196\pi\)
0.996188 0.0872379i \(-0.0278040\pi\)
\(294\) 0 0
\(295\) 1.29443e9 0.170919
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 1.51299e9i − 0.189300i
\(300\) 0 0
\(301\) 3.73355e9 0.454837
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.44193e9i 0.744418i
\(306\) 0 0
\(307\) −2.84077e9 −0.319804 −0.159902 0.987133i \(-0.551118\pi\)
−0.159902 + 0.987133i \(0.551118\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.67624e9i 0.392973i 0.980507 + 0.196486i \(0.0629531\pi\)
−0.980507 + 0.196486i \(0.937047\pi\)
\(312\) 0 0
\(313\) 1.68833e10 1.75906 0.879530 0.475844i \(-0.157857\pi\)
0.879530 + 0.475844i \(0.157857\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.82921e10i 1.81145i 0.423866 + 0.905725i \(0.360673\pi\)
−0.423866 + 0.905725i \(0.639327\pi\)
\(318\) 0 0
\(319\) −9.19061e9 −0.887527
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.13984e9i 0.564089i
\(324\) 0 0
\(325\) 5.46565e8 0.0489901
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.40109e9i 0.119587i
\(330\) 0 0
\(331\) −1.40053e10 −1.16676 −0.583379 0.812200i \(-0.698270\pi\)
−0.583379 + 0.812200i \(0.698270\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.49699e10i 1.18861i
\(336\) 0 0
\(337\) −8.30186e9 −0.643659 −0.321829 0.946798i \(-0.604298\pi\)
−0.321829 + 0.946798i \(0.604298\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 1.79209e10i − 1.32538i
\(342\) 0 0
\(343\) 6.11124e9 0.441522
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.96363e9i 0.618252i 0.951021 + 0.309126i \(0.100037\pi\)
−0.951021 + 0.309126i \(0.899963\pi\)
\(348\) 0 0
\(349\) 1.57508e10 1.06170 0.530848 0.847467i \(-0.321873\pi\)
0.530848 + 0.847467i \(0.321873\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 2.26808e10i − 1.46069i −0.683077 0.730347i \(-0.739358\pi\)
0.683077 0.730347i \(-0.260642\pi\)
\(354\) 0 0
\(355\) 1.39334e9 0.0877288
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 2.70853e10i − 1.63063i −0.579015 0.815317i \(-0.696563\pi\)
0.579015 0.815317i \(-0.303437\pi\)
\(360\) 0 0
\(361\) 2.97840e8 0.0175369
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 3.72190e9i − 0.209697i
\(366\) 0 0
\(367\) −1.46499e10 −0.807550 −0.403775 0.914858i \(-0.632302\pi\)
−0.403775 + 0.914858i \(0.632302\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.83373e10i 2.02361i
\(372\) 0 0
\(373\) 1.16112e10 0.599851 0.299925 0.953963i \(-0.403038\pi\)
0.299925 + 0.953963i \(0.403038\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 3.21331e9i − 0.159070i
\(378\) 0 0
\(379\) 2.42458e9 0.117511 0.0587556 0.998272i \(-0.481287\pi\)
0.0587556 + 0.998272i \(0.481287\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 3.58404e10i − 1.66562i −0.553555 0.832812i \(-0.686729\pi\)
0.553555 0.832812i \(-0.313271\pi\)
\(384\) 0 0
\(385\) 1.74266e10 0.793175
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.02212e10i 1.31982i 0.751346 + 0.659909i \(0.229405\pi\)
−0.751346 + 0.659909i \(0.770595\pi\)
\(390\) 0 0
\(391\) 1.79789e10 0.769230
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 1.16719e10i − 0.479460i
\(396\) 0 0
\(397\) 3.21443e10 1.29402 0.647011 0.762481i \(-0.276019\pi\)
0.647011 + 0.762481i \(0.276019\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.58108e9i 0.215844i 0.994159 + 0.107922i \(0.0344197\pi\)
−0.994159 + 0.107922i \(0.965580\pi\)
\(402\) 0 0
\(403\) 6.26566e9 0.237546
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.25230e9i 0.264301i
\(408\) 0 0
\(409\) 4.02008e10 1.43662 0.718310 0.695724i \(-0.244916\pi\)
0.718310 + 0.695724i \(0.244916\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 7.97640e9i − 0.274162i
\(414\) 0 0
\(415\) 9.86595e9 0.332618
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 2.71804e10i − 0.881860i −0.897541 0.440930i \(-0.854649\pi\)
0.897541 0.440930i \(-0.145351\pi\)
\(420\) 0 0
\(421\) 2.37614e10 0.756386 0.378193 0.925727i \(-0.376546\pi\)
0.378193 + 0.925727i \(0.376546\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.49484e9i 0.199073i
\(426\) 0 0
\(427\) 3.96958e10 1.19408
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.31683e10i 0.381610i 0.981628 + 0.190805i \(0.0611099\pi\)
−0.981628 + 0.190805i \(0.938890\pi\)
\(432\) 0 0
\(433\) −4.82332e9 −0.137213 −0.0686064 0.997644i \(-0.521855\pi\)
−0.0686064 + 0.997644i \(0.521855\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.06040e10i − 1.38758i
\(438\) 0 0
\(439\) 4.36207e10 1.17445 0.587225 0.809424i \(-0.300220\pi\)
0.587225 + 0.809424i \(0.300220\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.56683e10i 0.406824i 0.979093 + 0.203412i \(0.0652031\pi\)
−0.979093 + 0.203412i \(0.934797\pi\)
\(444\) 0 0
\(445\) 4.68785e10 1.19546
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 1.28411e10i − 0.315948i −0.987443 0.157974i \(-0.949504\pi\)
0.987443 0.157974i \(-0.0504962\pi\)
\(450\) 0 0
\(451\) −1.48963e10 −0.360057
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.09285e9i 0.142159i
\(456\) 0 0
\(457\) −1.43273e10 −0.328473 −0.164236 0.986421i \(-0.552516\pi\)
−0.164236 + 0.986421i \(0.552516\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.25362e10i 1.38461i 0.721604 + 0.692306i \(0.243405\pi\)
−0.721604 + 0.692306i \(0.756595\pi\)
\(462\) 0 0
\(463\) −6.77591e10 −1.47450 −0.737248 0.675622i \(-0.763875\pi\)
−0.737248 + 0.675622i \(0.763875\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 4.69195e10i − 0.986474i −0.869895 0.493237i \(-0.835814\pi\)
0.869895 0.493237i \(-0.164186\pi\)
\(468\) 0 0
\(469\) 9.22460e10 1.90659
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.35800e10i 0.271304i
\(474\) 0 0
\(475\) 1.82806e10 0.359100
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.68411e10i 1.64962i 0.565411 + 0.824809i \(0.308717\pi\)
−0.565411 + 0.824809i \(0.691283\pi\)
\(480\) 0 0
\(481\) −2.53562e9 −0.0473700
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 3.04664e10i − 0.550622i
\(486\) 0 0
\(487\) 6.69006e10 1.18936 0.594681 0.803962i \(-0.297278\pi\)
0.594681 + 0.803962i \(0.297278\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.31276e10i 0.914100i 0.889441 + 0.457050i \(0.151094\pi\)
−0.889441 + 0.457050i \(0.848906\pi\)
\(492\) 0 0
\(493\) 3.81838e10 0.646386
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 8.58586e9i − 0.140721i
\(498\) 0 0
\(499\) −4.38611e10 −0.707420 −0.353710 0.935355i \(-0.615080\pi\)
−0.353710 + 0.935355i \(0.615080\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 1.12677e11i − 1.76021i −0.474780 0.880105i \(-0.657472\pi\)
0.474780 0.880105i \(-0.342528\pi\)
\(504\) 0 0
\(505\) −6.63486e10 −1.02015
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 6.63733e10i − 0.988832i −0.869225 0.494416i \(-0.835382\pi\)
0.869225 0.494416i \(-0.164618\pi\)
\(510\) 0 0
\(511\) −2.29347e10 −0.336364
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.77996e10i 0.821668i
\(516\) 0 0
\(517\) −5.09618e9 −0.0713317
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.35296e11i 1.83625i 0.396286 + 0.918127i \(0.370299\pi\)
−0.396286 + 0.918127i \(0.629701\pi\)
\(522\) 0 0
\(523\) −8.95612e10 −1.19705 −0.598526 0.801103i \(-0.704247\pi\)
−0.598526 + 0.801103i \(0.704247\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.44550e10i 0.965276i
\(528\) 0 0
\(529\) −6.98693e10 −0.892203
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 5.20818e9i − 0.0645322i
\(534\) 0 0
\(535\) 6.26458e10 0.764675
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 4.25779e10i − 0.504463i
\(540\) 0 0
\(541\) 4.88612e10 0.570395 0.285197 0.958469i \(-0.407941\pi\)
0.285197 + 0.958469i \(0.407941\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 3.88968e10i − 0.440888i
\(546\) 0 0
\(547\) 1.05883e11 1.18270 0.591352 0.806413i \(-0.298594\pi\)
0.591352 + 0.806413i \(0.298594\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1.07473e11i − 1.16599i
\(552\) 0 0
\(553\) −7.19232e10 −0.769075
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.35207e10i 0.971599i 0.874070 + 0.485799i \(0.161471\pi\)
−0.874070 + 0.485799i \(0.838529\pi\)
\(558\) 0 0
\(559\) −4.74798e9 −0.0486252
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.79666e10i 0.278359i 0.990267 + 0.139180i \(0.0444466\pi\)
−0.990267 + 0.139180i \(0.955553\pi\)
\(564\) 0 0
\(565\) 7.76764e10 0.762246
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.12009e10i 0.106858i 0.998572 + 0.0534288i \(0.0170150\pi\)
−0.998572 + 0.0534288i \(0.982985\pi\)
\(570\) 0 0
\(571\) 5.88813e10 0.553902 0.276951 0.960884i \(-0.410676\pi\)
0.276951 + 0.960884i \(0.410676\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 5.35298e10i − 0.489693i
\(576\) 0 0
\(577\) 6.31803e10 0.570005 0.285003 0.958527i \(-0.408006\pi\)
0.285003 + 0.958527i \(0.408006\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 6.07949e10i − 0.533534i
\(582\) 0 0
\(583\) −1.39444e11 −1.20705
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.68634e11i − 1.42034i −0.704031 0.710169i \(-0.748618\pi\)
0.704031 0.710169i \(-0.251382\pi\)
\(588\) 0 0
\(589\) 2.09563e11 1.74122
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.23251e11i 1.80541i 0.430263 + 0.902703i \(0.358421\pi\)
−0.430263 + 0.902703i \(0.641579\pi\)
\(594\) 0 0
\(595\) −7.24014e10 −0.577669
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 8.61787e10i − 0.669411i −0.942323 0.334705i \(-0.891363\pi\)
0.942323 0.334705i \(-0.108637\pi\)
\(600\) 0 0
\(601\) −1.48549e11 −1.13860 −0.569302 0.822128i \(-0.692787\pi\)
−0.569302 + 0.822128i \(0.692787\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 4.41288e10i − 0.329383i
\(606\) 0 0
\(607\) −1.30829e11 −0.963719 −0.481860 0.876248i \(-0.660038\pi\)
−0.481860 + 0.876248i \(0.660038\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.78178e9i − 0.0127846i
\(612\) 0 0
\(613\) −9.29664e10 −0.658391 −0.329196 0.944262i \(-0.606778\pi\)
−0.329196 + 0.944262i \(0.606778\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.07823e10i 0.0743997i 0.999308 + 0.0371999i \(0.0118438\pi\)
−0.999308 + 0.0371999i \(0.988156\pi\)
\(618\) 0 0
\(619\) −1.00598e11 −0.685216 −0.342608 0.939478i \(-0.611310\pi\)
−0.342608 + 0.939478i \(0.611310\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 2.88870e11i − 1.91756i
\(624\) 0 0
\(625\) −7.89303e10 −0.517277
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 3.01308e10i − 0.192490i
\(630\) 0 0
\(631\) −9.04320e10 −0.570433 −0.285216 0.958463i \(-0.592065\pi\)
−0.285216 + 0.958463i \(0.592065\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.86690e11i 1.14822i
\(636\) 0 0
\(637\) 1.48865e10 0.0904137
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 2.96556e11i − 1.75661i −0.478101 0.878305i \(-0.658675\pi\)
0.478101 0.878305i \(-0.341325\pi\)
\(642\) 0 0
\(643\) −2.26677e11 −1.32606 −0.663031 0.748592i \(-0.730730\pi\)
−0.663031 + 0.748592i \(0.730730\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 1.26102e11i − 0.719620i −0.933026 0.359810i \(-0.882841\pi\)
0.933026 0.359810i \(-0.117159\pi\)
\(648\) 0 0
\(649\) 2.90126e10 0.163534
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.12723e11i 1.16993i 0.811057 + 0.584967i \(0.198892\pi\)
−0.811057 + 0.584967i \(0.801108\pi\)
\(654\) 0 0
\(655\) −7.73552e10 −0.420266
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.53272e11i 1.87313i 0.350498 + 0.936564i \(0.386012\pi\)
−0.350498 + 0.936564i \(0.613988\pi\)
\(660\) 0 0
\(661\) −1.75821e11 −0.921011 −0.460505 0.887657i \(-0.652332\pi\)
−0.460505 + 0.887657i \(0.652332\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.03783e11i 1.04203i
\(666\) 0 0
\(667\) −3.14707e11 −1.59002
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.44385e11i 0.712252i
\(672\) 0 0
\(673\) −3.39934e10 −0.165704 −0.0828522 0.996562i \(-0.526403\pi\)
−0.0828522 + 0.996562i \(0.526403\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 1.27996e11i − 0.609313i −0.952462 0.304657i \(-0.901458\pi\)
0.952462 0.304657i \(-0.0985417\pi\)
\(678\) 0 0
\(679\) −1.87737e11 −0.883222
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.35606e11i 0.623154i 0.950221 + 0.311577i \(0.100857\pi\)
−0.950221 + 0.311577i \(0.899143\pi\)
\(684\) 0 0
\(685\) −1.37708e11 −0.625457
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 4.87539e10i − 0.216338i
\(690\) 0 0
\(691\) −2.39232e11 −1.04932 −0.524660 0.851312i \(-0.675807\pi\)
−0.524660 + 0.851312i \(0.675807\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.40724e10i 0.360341i
\(696\) 0 0
\(697\) 6.18889e10 0.262229
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.15359e11i 0.477728i 0.971053 + 0.238864i \(0.0767751\pi\)
−0.971053 + 0.238864i \(0.923225\pi\)
\(702\) 0 0
\(703\) −8.48072e10 −0.347225
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.08846e11i 1.63637i
\(708\) 0 0
\(709\) 2.69218e11 1.06542 0.532708 0.846299i \(-0.321174\pi\)
0.532708 + 0.846299i \(0.321174\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 6.13651e11i − 2.37445i
\(714\) 0 0
\(715\) −2.21615e10 −0.0847960
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.59958e10i 0.134690i 0.997730 + 0.0673452i \(0.0214529\pi\)
−0.997730 + 0.0673452i \(0.978547\pi\)
\(720\) 0 0
\(721\) 3.56167e11 1.31799
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 1.13687e11i − 0.411491i
\(726\) 0 0
\(727\) −4.48988e11 −1.60730 −0.803651 0.595101i \(-0.797112\pi\)
−0.803651 + 0.595101i \(0.797112\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 5.64203e10i − 0.197591i
\(732\) 0 0
\(733\) −1.82966e11 −0.633804 −0.316902 0.948458i \(-0.602643\pi\)
−0.316902 + 0.948458i \(0.602643\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.35527e11i 1.13725i
\(738\) 0 0
\(739\) −1.01363e11 −0.339860 −0.169930 0.985456i \(-0.554354\pi\)
−0.169930 + 0.985456i \(0.554354\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1.38026e11i − 0.452903i −0.974022 0.226451i \(-0.927288\pi\)
0.974022 0.226451i \(-0.0727124\pi\)
\(744\) 0 0
\(745\) 4.64002e11 1.50624
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 3.86029e11i − 1.22657i
\(750\) 0 0
\(751\) −5.88823e11 −1.85108 −0.925540 0.378650i \(-0.876388\pi\)
−0.925540 + 0.378650i \(0.876388\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.30705e10i 0.101778i
\(756\) 0 0
\(757\) −7.69827e10 −0.234428 −0.117214 0.993107i \(-0.537396\pi\)
−0.117214 + 0.993107i \(0.537396\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 5.08457e10i − 0.151606i −0.997123 0.0758029i \(-0.975848\pi\)
0.997123 0.0758029i \(-0.0241520\pi\)
\(762\) 0 0
\(763\) −2.39686e11 −0.707203
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.01436e10i 0.0293098i
\(768\) 0 0
\(769\) 6.47421e11 1.85132 0.925660 0.378356i \(-0.123510\pi\)
0.925660 + 0.378356i \(0.123510\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.58110e11i 1.84324i 0.388099 + 0.921618i \(0.373132\pi\)
−0.388099 + 0.921618i \(0.626868\pi\)
\(774\) 0 0
\(775\) 2.21680e11 0.614497
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 1.74194e11i − 0.473025i
\(780\) 0 0
\(781\) 3.12293e10 0.0839380
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.13546e11i 0.562359i
\(786\) 0 0
\(787\) 1.27466e11 0.332273 0.166137 0.986103i \(-0.446871\pi\)
0.166137 + 0.986103i \(0.446871\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 4.78649e11i − 1.22268i
\(792\) 0 0
\(793\) −5.04814e10 −0.127655
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 4.88186e11i − 1.20991i −0.796261 0.604953i \(-0.793192\pi\)
0.796261 0.604953i \(-0.206808\pi\)
\(798\) 0 0
\(799\) 2.11729e10 0.0519509
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 8.34203e10i − 0.200636i
\(804\) 0 0
\(805\) 5.96725e11 1.42099
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 6.80814e11i − 1.58940i −0.606999 0.794702i \(-0.707627\pi\)
0.606999 0.794702i \(-0.292373\pi\)
\(810\) 0 0
\(811\) −5.81532e11 −1.34428 −0.672141 0.740423i \(-0.734625\pi\)
−0.672141 + 0.740423i \(0.734625\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.36409e11i 0.989153i
\(816\) 0 0
\(817\) −1.58803e11 −0.356426
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 3.35193e11i − 0.737773i −0.929475 0.368886i \(-0.879739\pi\)
0.929475 0.368886i \(-0.120261\pi\)
\(822\) 0 0
\(823\) 1.19433e11 0.260330 0.130165 0.991492i \(-0.458449\pi\)
0.130165 + 0.991492i \(0.458449\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 2.40606e11i − 0.514380i −0.966361 0.257190i \(-0.917203\pi\)
0.966361 0.257190i \(-0.0827966\pi\)
\(828\) 0 0
\(829\) 4.85810e11 1.02860 0.514302 0.857609i \(-0.328051\pi\)
0.514302 + 0.857609i \(0.328051\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.76896e11i 0.367400i
\(834\) 0 0
\(835\) −1.99540e11 −0.410473
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.68559e11i 1.34925i 0.738161 + 0.674625i \(0.235694\pi\)
−0.738161 + 0.674625i \(0.764306\pi\)
\(840\) 0 0
\(841\) −1.68133e11 −0.336101
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.01392e11i 0.787303i
\(846\) 0 0
\(847\) −2.71926e11 −0.528344
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.48335e11i 0.473500i
\(852\) 0 0
\(853\) −4.93071e10 −0.0931350 −0.0465675 0.998915i \(-0.514828\pi\)
−0.0465675 + 0.998915i \(0.514828\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.49130e11i 1.01801i 0.860764 + 0.509005i \(0.169986\pi\)
−0.860764 + 0.509005i \(0.830014\pi\)
\(858\) 0 0
\(859\) −1.91345e11 −0.351434 −0.175717 0.984441i \(-0.556224\pi\)
−0.175717 + 0.984441i \(0.556224\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 7.76668e11i − 1.40021i −0.714042 0.700103i \(-0.753137\pi\)
0.714042 0.700103i \(-0.246863\pi\)
\(864\) 0 0
\(865\) −5.33217e11 −0.952445
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 2.61606e11i − 0.458743i
\(870\) 0 0
\(871\) −1.17310e11 −0.203827
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.21101e11i 1.40076i
\(876\) 0 0
\(877\) −4.31657e11 −0.729694 −0.364847 0.931068i \(-0.618879\pi\)
−0.364847 + 0.931068i \(0.618879\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.30763e10i 0.104704i 0.998629 + 0.0523519i \(0.0166718\pi\)
−0.998629 + 0.0523519i \(0.983328\pi\)
\(882\) 0 0
\(883\) 5.31035e11 0.873535 0.436767 0.899575i \(-0.356123\pi\)
0.436767 + 0.899575i \(0.356123\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.66644e9i 0.00753860i 0.999993 + 0.00376930i \(0.00119981\pi\)
−0.999993 + 0.00376930i \(0.998800\pi\)
\(888\) 0 0
\(889\) 1.15040e12 1.84180
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 5.95939e10i − 0.0937121i
\(894\) 0 0
\(895\) 4.88403e11 0.761178
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 1.30328e12i − 1.99526i
\(900\) 0 0
\(901\) 5.79343e11 0.879097
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 8.00181e11i − 1.19287i
\(906\) 0 0
\(907\) 5.94481e11 0.878433 0.439216 0.898381i \(-0.355256\pi\)
0.439216 + 0.898381i \(0.355256\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 6.84082e10i − 0.0993195i −0.998766 0.0496597i \(-0.984186\pi\)
0.998766 0.0496597i \(-0.0158137\pi\)
\(912\) 0 0
\(913\) 2.21129e11 0.318246
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.76670e11i 0.674125i
\(918\) 0 0
\(919\) 1.12042e12 1.57080 0.785400 0.618989i \(-0.212457\pi\)
0.785400 + 0.618989i \(0.212457\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.09187e10i 0.0150440i
\(924\) 0 0
\(925\) −8.97106e10 −0.122540
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.44778e12i 1.94374i 0.235508 + 0.971872i \(0.424325\pi\)
−0.235508 + 0.971872i \(0.575675\pi\)
\(930\) 0 0
\(931\) 4.97898e11 0.662738
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 2.63346e11i − 0.344572i
\(936\) 0 0
\(937\) 1.47839e12 1.91793 0.958963 0.283531i \(-0.0915060\pi\)
0.958963 + 0.283531i \(0.0915060\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 9.07930e11i − 1.15796i −0.815341 0.578981i \(-0.803451\pi\)
0.815341 0.578981i \(-0.196549\pi\)
\(942\) 0 0
\(943\) −5.10082e11 −0.645049
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.50346e11i 0.559946i 0.960008 + 0.279973i \(0.0903256\pi\)
−0.960008 + 0.279973i \(0.909674\pi\)
\(948\) 0 0
\(949\) 2.91662e10 0.0359596
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.18835e12i 1.44069i 0.693614 + 0.720347i \(0.256017\pi\)
−0.693614 + 0.720347i \(0.743983\pi\)
\(954\) 0 0
\(955\) −1.14634e12 −1.37816
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.48571e11i 1.00326i
\(960\) 0 0
\(961\) 1.68839e12 1.97960
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.22863e11i 0.833579i
\(966\) 0 0
\(967\) −4.85818e11 −0.555607 −0.277804 0.960638i \(-0.589606\pi\)
−0.277804 + 0.960638i \(0.589606\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.02451e11i 0.115249i 0.998338 + 0.0576246i \(0.0183526\pi\)
−0.998338 + 0.0576246i \(0.981647\pi\)
\(972\) 0 0
\(973\) 5.18062e11 0.578003
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.39842e12i − 1.53483i −0.641153 0.767413i \(-0.721544\pi\)
0.641153 0.767413i \(-0.278456\pi\)
\(978\) 0 0
\(979\) 1.05071e12 1.14380
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.77559e11i 0.297264i 0.988893 + 0.148632i \(0.0474869\pi\)
−0.988893 + 0.148632i \(0.952513\pi\)
\(984\) 0 0
\(985\) 1.31898e12 1.40118
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.65011e11i 0.486047i
\(990\) 0 0
\(991\) −2.27286e11 −0.235656 −0.117828 0.993034i \(-0.537593\pi\)
−0.117828 + 0.993034i \(0.537593\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.97772e11i 0.507853i
\(996\) 0 0
\(997\) −5.71256e11 −0.578163 −0.289082 0.957304i \(-0.593350\pi\)
−0.289082 + 0.957304i \(0.593350\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.9.c.b.161.5 16
3.2 odd 2 inner 324.9.c.b.161.12 yes 16
9.2 odd 6 324.9.g.h.53.5 32
9.4 even 3 324.9.g.h.269.5 32
9.5 odd 6 324.9.g.h.269.12 32
9.7 even 3 324.9.g.h.53.12 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.9.c.b.161.5 16 1.1 even 1 trivial
324.9.c.b.161.12 yes 16 3.2 odd 2 inner
324.9.g.h.53.5 32 9.2 odd 6
324.9.g.h.53.12 32 9.7 even 3
324.9.g.h.269.5 32 9.4 even 3
324.9.g.h.269.12 32 9.5 odd 6