Properties

Label 324.9.g.h.53.10
Level $324$
Weight $9$
Character 324.53
Analytic conductor $131.991$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,9,Mod(53,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.53");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 324.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(131.990669660\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.10
Character \(\chi\) \(=\) 324.53
Dual form 324.9.g.h.269.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(341.792 + 197.334i) q^{5} +(-4.04023 - 6.99788i) q^{7} +(-15472.9 + 8933.30i) q^{11} +(-6367.34 + 11028.6i) q^{13} -65225.9i q^{17} -127296. q^{19} +(118747. + 68558.8i) q^{23} +(-117431. - 203397. i) q^{25} +(-131189. + 75741.9i) q^{29} +(343848. - 595563. i) q^{31} -3189.09i q^{35} +2.42635e6 q^{37} +(377176. + 217762. i) q^{41} +(56622.9 + 98073.7i) q^{43} +(-435276. + 251307. i) q^{47} +(2.88237e6 - 4.99241e6i) q^{49} -4.55661e6i q^{53} -7.05137e6 q^{55} +(3.15244e6 + 1.82006e6i) q^{59} +(-4.25161e6 - 7.36400e6i) q^{61} +(-4.35261e6 + 2.51298e6i) q^{65} +(-9.51606e6 + 1.64823e7i) q^{67} +3.34851e6i q^{71} +1.29864e6 q^{73} +(125028. + 72185.1i) q^{77} +(2.26931e7 + 3.93057e7i) q^{79} +(5.40909e7 - 3.12294e7i) q^{83} +(1.28713e7 - 2.22937e7i) q^{85} +1.81886e7i q^{89} +102902. q^{91} +(-4.35087e7 - 2.51198e7i) q^{95} +(1.09949e6 + 1.90438e6i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 3692 q^{7} + 50380 q^{13} + 370216 q^{19} + 1958288 q^{25} + 285568 q^{31} - 5820104 q^{37} + 8122852 q^{43} - 14602560 q^{49} + 76640328 q^{55} + 5700244 q^{61} + 6328540 q^{67} - 103457408 q^{73}+ \cdots + 181751968 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 341.792 + 197.334i 0.546868 + 0.315734i 0.747858 0.663859i \(-0.231083\pi\)
−0.200990 + 0.979593i \(0.564416\pi\)
\(6\) 0 0
\(7\) −4.04023 6.99788i −0.00168273 0.00291457i 0.865183 0.501457i \(-0.167202\pi\)
−0.866866 + 0.498542i \(0.833869\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −15472.9 + 8933.30i −1.05682 + 0.610156i −0.924551 0.381058i \(-0.875560\pi\)
−0.132270 + 0.991214i \(0.542227\pi\)
\(12\) 0 0
\(13\) −6367.34 + 11028.6i −0.222938 + 0.386140i −0.955699 0.294346i \(-0.904898\pi\)
0.732761 + 0.680486i \(0.238231\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 65225.9i 0.780952i −0.920613 0.390476i \(-0.872310\pi\)
0.920613 0.390476i \(-0.127690\pi\)
\(18\) 0 0
\(19\) −127296. −0.976787 −0.488393 0.872624i \(-0.662417\pi\)
−0.488393 + 0.872624i \(0.662417\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 118747. + 68558.8i 0.424339 + 0.244992i 0.696932 0.717137i \(-0.254548\pi\)
−0.272593 + 0.962129i \(0.587881\pi\)
\(24\) 0 0
\(25\) −117431. 203397.i −0.300624 0.520696i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −131189. + 75741.9i −0.185483 + 0.107089i −0.589866 0.807501i \(-0.700820\pi\)
0.404383 + 0.914590i \(0.367486\pi\)
\(30\) 0 0
\(31\) 343848. 595563.i 0.372323 0.644882i −0.617599 0.786493i \(-0.711895\pi\)
0.989922 + 0.141610i \(0.0452280\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3189.09i 0.00212518i
\(36\) 0 0
\(37\) 2.42635e6 1.29463 0.647316 0.762222i \(-0.275891\pi\)
0.647316 + 0.762222i \(0.275891\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 377176. + 217762.i 0.133478 + 0.0770633i 0.565252 0.824918i \(-0.308779\pi\)
−0.431774 + 0.901982i \(0.642112\pi\)
\(42\) 0 0
\(43\) 56622.9 + 98073.7i 0.0165622 + 0.0286866i 0.874188 0.485588i \(-0.161395\pi\)
−0.857626 + 0.514275i \(0.828061\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −435276. + 251307.i −0.0892018 + 0.0515007i −0.543937 0.839126i \(-0.683067\pi\)
0.454736 + 0.890626i \(0.349734\pi\)
\(48\) 0 0
\(49\) 2.88237e6 4.99241e6i 0.499994 0.866016i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.55661e6i 0.577482i −0.957407 0.288741i \(-0.906763\pi\)
0.957407 0.288741i \(-0.0932366\pi\)
\(54\) 0 0
\(55\) −7.05137e6 −0.770588
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.15244e6 + 1.82006e6i 0.260159 + 0.150203i 0.624407 0.781099i \(-0.285341\pi\)
−0.364248 + 0.931302i \(0.618674\pi\)
\(60\) 0 0
\(61\) −4.25161e6 7.36400e6i −0.307068 0.531857i 0.670652 0.741772i \(-0.266014\pi\)
−0.977720 + 0.209916i \(0.932681\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.35261e6 + 2.51298e6i −0.243835 + 0.140778i
\(66\) 0 0
\(67\) −9.51606e6 + 1.64823e7i −0.472235 + 0.817935i −0.999495 0.0317691i \(-0.989886\pi\)
0.527260 + 0.849704i \(0.323219\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.34851e6i 0.131770i 0.997827 + 0.0658852i \(0.0209871\pi\)
−0.997827 + 0.0658852i \(0.979013\pi\)
\(72\) 0 0
\(73\) 1.29864e6 0.0457294 0.0228647 0.999739i \(-0.492721\pi\)
0.0228647 + 0.999739i \(0.492721\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 125028. + 72185.1i 0.00355668 + 0.00205345i
\(78\) 0 0
\(79\) 2.26931e7 + 3.93057e7i 0.582621 + 1.00913i 0.995167 + 0.0981930i \(0.0313062\pi\)
−0.412546 + 0.910937i \(0.635360\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.40909e7 3.12294e7i 1.13976 0.658039i 0.193386 0.981123i \(-0.438053\pi\)
0.946370 + 0.323084i \(0.104720\pi\)
\(84\) 0 0
\(85\) 1.28713e7 2.22937e7i 0.246573 0.427077i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.81886e7i 0.289894i 0.989439 + 0.144947i \(0.0463011\pi\)
−0.989439 + 0.144947i \(0.953699\pi\)
\(90\) 0 0
\(91\) 102902. 0.00150058
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.35087e7 2.51198e7i −0.534173 0.308405i
\(96\) 0 0
\(97\) 1.09949e6 + 1.90438e6i 0.0124195 + 0.0215113i 0.872168 0.489206i \(-0.162713\pi\)
−0.859749 + 0.510717i \(0.829380\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.21096e7 1.85385e7i 0.308567 0.178151i −0.337718 0.941247i \(-0.609655\pi\)
0.646285 + 0.763096i \(0.276322\pi\)
\(102\) 0 0
\(103\) −1.42038e7 + 2.46016e7i −0.126199 + 0.218582i −0.922201 0.386711i \(-0.873611\pi\)
0.796002 + 0.605294i \(0.206944\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.17957e7i 0.547726i −0.961769 0.273863i \(-0.911699\pi\)
0.961769 0.273863i \(-0.0883015\pi\)
\(108\) 0 0
\(109\) −1.40547e8 −0.995674 −0.497837 0.867271i \(-0.665872\pi\)
−0.497837 + 0.867271i \(0.665872\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.24914e8 + 7.21190e7i 0.766120 + 0.442319i 0.831489 0.555542i \(-0.187489\pi\)
−0.0653689 + 0.997861i \(0.520822\pi\)
\(114\) 0 0
\(115\) 2.70580e7 + 4.68657e7i 0.154705 + 0.267956i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −456443. + 263527.i −0.00227614 + 0.00131413i
\(120\) 0 0
\(121\) 5.24281e7 9.08081e7i 0.244581 0.423627i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.46860e8i 1.01114i
\(126\) 0 0
\(127\) −1.90655e7 −0.0732882 −0.0366441 0.999328i \(-0.511667\pi\)
−0.0366441 + 0.999328i \(0.511667\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.20736e8 + 1.85177e8i 1.08909 + 0.628785i 0.933334 0.359011i \(-0.116886\pi\)
0.155755 + 0.987796i \(0.450219\pi\)
\(132\) 0 0
\(133\) 514304. + 890801.i 0.00164367 + 0.00284691i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.50436e8 3.17794e8i 1.56252 0.902119i 0.565514 0.824738i \(-0.308678\pi\)
0.997002 0.0773805i \(-0.0246556\pi\)
\(138\) 0 0
\(139\) 2.79213e8 4.83611e8i 0.747956 1.29550i −0.200844 0.979623i \(-0.564369\pi\)
0.948801 0.315875i \(-0.102298\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.27525e8i 0.544108i
\(144\) 0 0
\(145\) −5.97857e7 −0.135246
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.64558e8 2.10478e8i −0.739643 0.427033i 0.0822965 0.996608i \(-0.473775\pi\)
−0.821939 + 0.569575i \(0.807108\pi\)
\(150\) 0 0
\(151\) 1.96304e8 + 3.40009e8i 0.377591 + 0.654007i 0.990711 0.135983i \(-0.0434191\pi\)
−0.613120 + 0.789990i \(0.710086\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.35049e8 1.35706e8i 0.407223 0.235110i
\(156\) 0 0
\(157\) 2.05058e8 3.55171e8i 0.337504 0.584574i −0.646459 0.762949i \(-0.723751\pi\)
0.983963 + 0.178375i \(0.0570841\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.10797e6i 0.00164902i
\(162\) 0 0
\(163\) −1.91898e8 −0.271845 −0.135922 0.990719i \(-0.543400\pi\)
−0.135922 + 0.990719i \(0.543400\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.97982e8 + 4.60715e8i 1.02595 + 0.592334i 0.915822 0.401583i \(-0.131540\pi\)
0.110130 + 0.993917i \(0.464873\pi\)
\(168\) 0 0
\(169\) 3.26779e8 + 5.65999e8i 0.400597 + 0.693855i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.26386e9 7.29690e8i 1.41096 0.814618i 0.415482 0.909602i \(-0.363613\pi\)
0.995479 + 0.0949832i \(0.0302797\pi\)
\(174\) 0 0
\(175\) −948898. + 1.64354e6i −0.00101174 + 0.00175238i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.92583e9i 1.87588i −0.346799 0.937940i \(-0.612731\pi\)
0.346799 0.937940i \(-0.387269\pi\)
\(180\) 0 0
\(181\) −1.94288e9 −1.81022 −0.905110 0.425178i \(-0.860211\pi\)
−0.905110 + 0.425178i \(0.860211\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.29307e8 + 4.78801e8i 0.707992 + 0.408760i
\(186\) 0 0
\(187\) 5.82682e8 + 1.00923e9i 0.476503 + 0.825327i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.88923e9 1.09075e9i 1.41955 0.819580i 0.423295 0.905992i \(-0.360873\pi\)
0.996259 + 0.0864120i \(0.0275402\pi\)
\(192\) 0 0
\(193\) −1.65137e7 + 2.86025e7i −0.0119019 + 0.0206146i −0.871915 0.489657i \(-0.837122\pi\)
0.860013 + 0.510272i \(0.170455\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.06649e7i 0.0402784i −0.999797 0.0201392i \(-0.993589\pi\)
0.999797 0.0201392i \(-0.00641095\pi\)
\(198\) 0 0
\(199\) −1.33086e9 −0.848633 −0.424316 0.905514i \(-0.639486\pi\)
−0.424316 + 0.905514i \(0.639486\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.06007e6 + 612029.i 0.000624235 + 0.000360402i
\(204\) 0 0
\(205\) 8.59438e7 + 1.48859e8i 0.0486630 + 0.0842868i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.96964e9 1.13717e9i 1.03229 0.595992i
\(210\) 0 0
\(211\) 6.06460e8 1.05042e9i 0.305965 0.529948i −0.671510 0.740995i \(-0.734354\pi\)
0.977476 + 0.211048i \(0.0676875\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.46944e7i 0.0209170i
\(216\) 0 0
\(217\) −5.55690e6 −0.00250607
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.19347e8 + 4.15315e8i 0.301557 + 0.174104i
\(222\) 0 0
\(223\) 1.73268e9 + 3.00108e9i 0.700645 + 1.21355i 0.968240 + 0.250021i \(0.0804374\pi\)
−0.267596 + 0.963531i \(0.586229\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.22439e9 1.86160e9i 1.21435 0.701105i 0.250645 0.968079i \(-0.419357\pi\)
0.963704 + 0.266974i \(0.0860239\pi\)
\(228\) 0 0
\(229\) 2.24392e9 3.88658e9i 0.815952 1.41327i −0.0926902 0.995695i \(-0.529547\pi\)
0.908642 0.417575i \(-0.137120\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.95736e9i 1.68200i −0.541033 0.841001i \(-0.681967\pi\)
0.541033 0.841001i \(-0.318033\pi\)
\(234\) 0 0
\(235\) −1.98365e8 −0.0650421
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.26997e9 + 7.33215e8i 0.389225 + 0.224719i 0.681824 0.731516i \(-0.261187\pi\)
−0.292599 + 0.956235i \(0.594520\pi\)
\(240\) 0 0
\(241\) 6.40342e8 + 1.10910e9i 0.189821 + 0.328779i 0.945190 0.326520i \(-0.105876\pi\)
−0.755370 + 0.655299i \(0.772543\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.97034e9 1.13758e9i 0.546861 0.315731i
\(246\) 0 0
\(247\) 8.10535e8 1.40389e9i 0.217763 0.377177i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.01240e9i 0.507015i −0.967333 0.253507i \(-0.918416\pi\)
0.967333 0.253507i \(-0.0815842\pi\)
\(252\) 0 0
\(253\) −2.44983e9 −0.597934
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.89110e9 + 2.24652e9i 0.891948 + 0.514966i 0.874579 0.484883i \(-0.161138\pi\)
0.0173686 + 0.999849i \(0.494471\pi\)
\(258\) 0 0
\(259\) −9.80301e6 1.69793e7i −0.00217851 0.00377330i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.91060e9 1.68044e9i 0.608358 0.351236i −0.163964 0.986466i \(-0.552428\pi\)
0.772323 + 0.635230i \(0.219095\pi\)
\(264\) 0 0
\(265\) 8.99173e8 1.55741e9i 0.182331 0.315806i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.36691e9i 0.452035i −0.974123 0.226018i \(-0.927429\pi\)
0.974123 0.226018i \(-0.0725707\pi\)
\(270\) 0 0
\(271\) −6.17018e9 −1.14399 −0.571993 0.820259i \(-0.693829\pi\)
−0.571993 + 0.820259i \(0.693829\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.63401e9 + 2.09810e9i 0.635412 + 0.366855i
\(276\) 0 0
\(277\) −1.81714e9 3.14738e9i −0.308652 0.534601i 0.669416 0.742888i \(-0.266545\pi\)
−0.978068 + 0.208287i \(0.933211\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.56704e8 1.48208e8i 0.0411725 0.0237710i −0.479272 0.877666i \(-0.659099\pi\)
0.520445 + 0.853895i \(0.325766\pi\)
\(282\) 0 0
\(283\) 1.47999e8 2.56341e8i 0.0230734 0.0399644i −0.854258 0.519849i \(-0.825988\pi\)
0.877332 + 0.479885i \(0.159322\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.51924e6i 0.000518706i
\(288\) 0 0
\(289\) 2.72134e9 0.390114
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.07208e9 2.35102e9i −0.552517 0.318996i 0.197620 0.980279i \(-0.436679\pi\)
−0.750137 + 0.661283i \(0.770012\pi\)
\(294\) 0 0
\(295\) 7.18320e8 + 1.24417e9i 0.0948484 + 0.164282i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.51221e9 + 8.73074e8i −0.189203 + 0.109236i
\(300\) 0 0
\(301\) 457539. 792480.i 5.57393e−5 9.65434e-5i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.35594e9i 0.387807i
\(306\) 0 0
\(307\) 1.51016e9 0.170008 0.0850042 0.996381i \(-0.472910\pi\)
0.0850042 + 0.996381i \(0.472910\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.88139e9 1.66357e9i −0.308007 0.177828i 0.338027 0.941136i \(-0.390240\pi\)
−0.646034 + 0.763308i \(0.723574\pi\)
\(312\) 0 0
\(313\) 8.61062e9 + 1.49140e10i 0.897133 + 1.55388i 0.831142 + 0.556060i \(0.187688\pi\)
0.0659916 + 0.997820i \(0.478979\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.26336e10 7.29404e9i 1.25110 0.722322i 0.279771 0.960067i \(-0.409742\pi\)
0.971328 + 0.237745i \(0.0764082\pi\)
\(318\) 0 0
\(319\) 1.35325e9 2.34390e9i 0.130682 0.226347i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.30298e9i 0.762823i
\(324\) 0 0
\(325\) 2.99090e9 0.268082
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.51723e6 + 2.03067e6i 0.000300205 + 0.000173323i
\(330\) 0 0
\(331\) −3.74292e9 6.48294e9i −0.311816 0.540082i 0.666939 0.745112i \(-0.267604\pi\)
−0.978756 + 0.205030i \(0.934271\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.50503e9 + 3.75568e9i −0.516500 + 0.298201i
\(336\) 0 0
\(337\) −8.00476e9 + 1.38647e10i −0.620624 + 1.07495i 0.368745 + 0.929531i \(0.379788\pi\)
−0.989370 + 0.145423i \(0.953546\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.22868e10i 0.908701i
\(342\) 0 0
\(343\) −9.31639e7 −0.00673087
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.04024e10 6.00580e9i −0.717487 0.414241i 0.0963402 0.995348i \(-0.469286\pi\)
−0.813827 + 0.581107i \(0.802620\pi\)
\(348\) 0 0
\(349\) −4.93157e9 8.54173e9i −0.332417 0.575764i 0.650568 0.759448i \(-0.274531\pi\)
−0.982985 + 0.183684i \(0.941198\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.38319e10 + 1.37594e10i −1.53483 + 0.886134i −0.535699 + 0.844409i \(0.679952\pi\)
−0.999129 + 0.0417247i \(0.986715\pi\)
\(354\) 0 0
\(355\) −6.60774e8 + 1.14449e9i −0.0416044 + 0.0720610i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.64206e8i 0.0580486i −0.999579 0.0290243i \(-0.990760\pi\)
0.999579 0.0290243i \(-0.00924003\pi\)
\(360\) 0 0
\(361\) −7.79336e8 −0.0458877
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.43864e8 + 2.56265e8i 0.0250079 + 0.0144383i
\(366\) 0 0
\(367\) −1.12446e10 1.94763e10i −0.619843 1.07360i −0.989514 0.144437i \(-0.953863\pi\)
0.369671 0.929163i \(-0.379470\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.18866e7 + 1.84097e7i −0.00168311 + 0.000971745i
\(372\) 0 0
\(373\) −1.05932e10 + 1.83480e10i −0.547260 + 0.947882i 0.451201 + 0.892422i \(0.350996\pi\)
−0.998461 + 0.0554597i \(0.982338\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.92910e9i 0.0954967i
\(378\) 0 0
\(379\) 6.09727e9 0.295514 0.147757 0.989024i \(-0.452795\pi\)
0.147757 + 0.989024i \(0.452795\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.45726e10 + 8.41349e9i 0.677239 + 0.391004i 0.798814 0.601578i \(-0.205461\pi\)
−0.121575 + 0.992582i \(0.538795\pi\)
\(384\) 0 0
\(385\) 2.84891e7 + 4.93446e7i 0.00129669 + 0.00224593i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.46519e10 + 1.42328e10i −1.07660 + 0.621573i −0.929976 0.367620i \(-0.880173\pi\)
−0.146620 + 0.989193i \(0.546839\pi\)
\(390\) 0 0
\(391\) 4.47181e9 7.74540e9i 0.191327 0.331388i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.79125e10i 0.735814i
\(396\) 0 0
\(397\) 1.86725e10 0.751694 0.375847 0.926682i \(-0.377352\pi\)
0.375847 + 0.926682i \(0.377352\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.38689e10 1.37807e10i −0.923111 0.532959i −0.0384850 0.999259i \(-0.512253\pi\)
−0.884626 + 0.466301i \(0.845587\pi\)
\(402\) 0 0
\(403\) 4.37879e9 + 7.58429e9i 0.166010 + 0.287538i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.75427e10 + 2.16753e10i −1.36820 + 0.789928i
\(408\) 0 0
\(409\) 6.26759e8 1.08558e9i 0.0223979 0.0387943i −0.854609 0.519272i \(-0.826203\pi\)
0.877007 + 0.480477i \(0.159537\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.94139e7i 0.00101100i
\(414\) 0 0
\(415\) 2.46505e10 0.831061
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.01663e10 1.16430e10i −0.654291 0.377755i 0.135807 0.990735i \(-0.456637\pi\)
−0.790098 + 0.612980i \(0.789970\pi\)
\(420\) 0 0
\(421\) −2.26268e10 3.91908e10i −0.720270 1.24754i −0.960892 0.276925i \(-0.910685\pi\)
0.240622 0.970619i \(-0.422649\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.32667e10 + 7.65955e9i −0.406638 + 0.234773i
\(426\) 0 0
\(427\) −3.43549e7 + 5.95045e7i −0.00103342 + 0.00178994i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.72462e10i 1.65897i 0.558531 + 0.829484i \(0.311365\pi\)
−0.558531 + 0.829484i \(0.688635\pi\)
\(432\) 0 0
\(433\) 5.31445e10 1.51184 0.755922 0.654662i \(-0.227189\pi\)
0.755922 + 0.654662i \(0.227189\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.51160e10 8.72725e9i −0.414488 0.239305i
\(438\) 0 0
\(439\) −6.31044e9 1.09300e10i −0.169903 0.294281i 0.768482 0.639871i \(-0.221012\pi\)
−0.938386 + 0.345590i \(0.887679\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.05623e10 + 1.76452e10i −0.793545 + 0.458153i −0.841209 0.540710i \(-0.818156\pi\)
0.0476641 + 0.998863i \(0.484822\pi\)
\(444\) 0 0
\(445\) −3.58922e9 + 6.21671e9i −0.0915293 + 0.158533i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.20870e10i 0.297395i −0.988883 0.148698i \(-0.952492\pi\)
0.988883 0.148698i \(-0.0475081\pi\)
\(450\) 0 0
\(451\) −7.78135e9 −0.188083
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.51711e7 + 2.03060e7i 0.000820616 + 0.000473783i
\(456\) 0 0
\(457\) −2.23708e10 3.87474e10i −0.512882 0.888338i −0.999888 0.0149392i \(-0.995245\pi\)
0.487006 0.873398i \(-0.338089\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.84929e10 + 1.06769e10i −0.409451 + 0.236397i −0.690554 0.723281i \(-0.742633\pi\)
0.281103 + 0.959678i \(0.409300\pi\)
\(462\) 0 0
\(463\) −3.52158e10 + 6.09955e10i −0.766326 + 1.32732i 0.173217 + 0.984884i \(0.444584\pi\)
−0.939543 + 0.342431i \(0.888750\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.76789e10i 1.00244i 0.865319 + 0.501221i \(0.167116\pi\)
−0.865319 + 0.501221i \(0.832884\pi\)
\(468\) 0 0
\(469\) 1.53788e8 0.00317857
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.75224e9 1.01166e9i −0.0350066 0.0202111i
\(474\) 0 0
\(475\) 1.49485e10 + 2.58916e10i 0.293645 + 0.508609i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.23202e10 + 2.44336e10i −0.803907 + 0.464136i −0.844835 0.535026i \(-0.820302\pi\)
0.0409287 + 0.999162i \(0.486968\pi\)
\(480\) 0 0
\(481\) −1.54494e10 + 2.67591e10i −0.288623 + 0.499910i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.67868e8i 0.0156851i
\(486\) 0 0
\(487\) −5.24487e10 −0.932435 −0.466218 0.884670i \(-0.654384\pi\)
−0.466218 + 0.884670i \(0.654384\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.12422e9 + 1.22642e9i 0.0365488 + 0.0211015i 0.518163 0.855282i \(-0.326616\pi\)
−0.481614 + 0.876383i \(0.659949\pi\)
\(492\) 0 0
\(493\) 4.94033e9 + 8.55690e9i 0.0836312 + 0.144853i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.34325e7 1.35287e7i 0.000384054 0.000221734i
\(498\) 0 0
\(499\) −1.93400e10 + 3.34978e10i −0.311927 + 0.540274i −0.978780 0.204916i \(-0.934308\pi\)
0.666852 + 0.745190i \(0.267641\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.00804e10i 0.626123i −0.949733 0.313062i \(-0.898645\pi\)
0.949733 0.313062i \(-0.101355\pi\)
\(504\) 0 0
\(505\) 1.46331e10 0.224994
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.33363e10 1.92467e10i −0.496645 0.286738i 0.230682 0.973029i \(-0.425904\pi\)
−0.727327 + 0.686291i \(0.759238\pi\)
\(510\) 0 0
\(511\) −5.24679e6 9.08770e6i −7.69502e−5 0.000133282i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.70947e9 + 5.60577e9i −0.138028 + 0.0796904i
\(516\) 0 0
\(517\) 4.49000e9 7.77690e9i 0.0628469 0.108854i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.63244e10i 0.764443i 0.924071 + 0.382222i \(0.124841\pi\)
−0.924071 + 0.382222i \(0.875159\pi\)
\(522\) 0 0
\(523\) 6.62177e10 0.885049 0.442525 0.896756i \(-0.354083\pi\)
0.442525 + 0.896756i \(0.354083\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.88461e10 2.24278e10i −0.503622 0.290766i
\(528\) 0 0
\(529\) −2.97549e10 5.15369e10i −0.379958 0.658106i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.80321e9 + 2.77313e9i −0.0595145 + 0.0343607i
\(534\) 0 0
\(535\) 1.41677e10 2.45392e10i 0.172936 0.299534i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.02996e11i 1.22030i
\(540\) 0 0
\(541\) 1.36192e10 0.158987 0.0794934 0.996835i \(-0.474670\pi\)
0.0794934 + 0.996835i \(0.474670\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.80380e10 2.77348e10i −0.544502 0.314368i
\(546\) 0 0
\(547\) 1.79231e10 + 3.10436e10i 0.200199 + 0.346755i 0.948593 0.316500i \(-0.102508\pi\)
−0.748393 + 0.663255i \(0.769174\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.66998e10 9.64162e9i 0.181178 0.104603i
\(552\) 0 0
\(553\) 1.83371e8 3.17608e8i 0.00196079 0.00339618i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.07472e11i 1.11654i −0.829658 0.558272i \(-0.811465\pi\)
0.829658 0.558272i \(-0.188535\pi\)
\(558\) 0 0
\(559\) −1.44215e9 −0.0147694
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.27547e11 + 7.36395e10i 1.26951 + 0.732955i 0.974896 0.222660i \(-0.0714741\pi\)
0.294619 + 0.955615i \(0.404807\pi\)
\(564\) 0 0
\(565\) 2.84630e10 + 4.92994e10i 0.279311 + 0.483780i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.48144e11 8.55309e10i 1.41330 0.815970i 0.417603 0.908630i \(-0.362870\pi\)
0.995698 + 0.0926600i \(0.0295370\pi\)
\(570\) 0 0
\(571\) 9.03252e10 1.56448e11i 0.849698 1.47172i −0.0317799 0.999495i \(-0.510118\pi\)
0.881478 0.472225i \(-0.156549\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.22038e10i 0.294602i
\(576\) 0 0
\(577\) −7.69345e10 −0.694093 −0.347047 0.937848i \(-0.612815\pi\)
−0.347047 + 0.937848i \(0.612815\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.37080e8 2.52348e8i −0.00383580 0.00221460i
\(582\) 0 0
\(583\) 4.07055e10 + 7.05041e10i 0.352354 + 0.610295i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.45190e10 + 2.57031e10i −0.374967 + 0.216487i −0.675626 0.737244i \(-0.736127\pi\)
0.300659 + 0.953732i \(0.402793\pi\)
\(588\) 0 0
\(589\) −4.37704e10 + 7.58126e10i −0.363680 + 0.629913i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.68949e11i 1.36627i −0.730292 0.683135i \(-0.760616\pi\)
0.730292 0.683135i \(-0.239384\pi\)
\(594\) 0 0
\(595\) −2.08011e8 −0.00165966
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.77314e11 + 1.02372e11i 1.37732 + 0.795199i 0.991837 0.127514i \(-0.0406998\pi\)
0.385488 + 0.922713i \(0.374033\pi\)
\(600\) 0 0
\(601\) −8.57845e10 1.48583e11i −0.657523 1.13886i −0.981255 0.192714i \(-0.938271\pi\)
0.323732 0.946149i \(-0.395062\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.58390e10 2.06917e10i 0.267507 0.154445i
\(606\) 0 0
\(607\) 4.16767e10 7.21861e10i 0.307000 0.531740i −0.670705 0.741725i \(-0.734008\pi\)
0.977705 + 0.209985i \(0.0673415\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.40062e9i 0.0459259i
\(612\) 0 0
\(613\) 6.83395e9 0.0483983 0.0241991 0.999707i \(-0.492296\pi\)
0.0241991 + 0.999707i \(0.492296\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.76348e10 1.01815e10i −0.121683 0.0702539i 0.437923 0.899013i \(-0.355714\pi\)
−0.559606 + 0.828759i \(0.689048\pi\)
\(618\) 0 0
\(619\) 4.13501e10 + 7.16205e10i 0.281653 + 0.487837i 0.971792 0.235840i \(-0.0757840\pi\)
−0.690139 + 0.723677i \(0.742451\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.27281e8 7.34860e7i 0.000844915 0.000487812i
\(624\) 0 0
\(625\) 2.84219e9 4.92281e9i 0.0186266 0.0322621i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.58261e11i 1.01105i
\(630\) 0 0
\(631\) −2.84224e11 −1.79284 −0.896422 0.443201i \(-0.853843\pi\)
−0.896422 + 0.443201i \(0.853843\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.51645e9 3.76227e9i −0.0400789 0.0231396i
\(636\) 0 0
\(637\) 3.67060e10 + 6.35767e10i 0.222936 + 0.386136i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.64904e11 9.52074e10i 0.976785 0.563947i 0.0754874 0.997147i \(-0.475949\pi\)
0.901298 + 0.433199i \(0.142615\pi\)
\(642\) 0 0
\(643\) 1.10690e11 1.91720e11i 0.647534 1.12156i −0.336176 0.941799i \(-0.609134\pi\)
0.983710 0.179763i \(-0.0575331\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.25057e10i 0.0713660i 0.999363 + 0.0356830i \(0.0113607\pi\)
−0.999363 + 0.0356830i \(0.988639\pi\)
\(648\) 0 0
\(649\) −6.50367e10 −0.366589
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.21783e10 3.01251e10i −0.286970 0.165682i 0.349604 0.936897i \(-0.386316\pi\)
−0.636575 + 0.771215i \(0.719649\pi\)
\(654\) 0 0
\(655\) 7.30835e10 + 1.26584e11i 0.397058 + 0.687724i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.23470e11 1.29020e11i 1.18489 0.684096i 0.227748 0.973720i \(-0.426864\pi\)
0.957140 + 0.289624i \(0.0935303\pi\)
\(660\) 0 0
\(661\) 1.10021e10 1.90562e10i 0.0576327 0.0998228i −0.835770 0.549080i \(-0.814978\pi\)
0.893402 + 0.449258i \(0.148311\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.05958e8i 0.00207585i
\(666\) 0 0
\(667\) −2.07711e10 −0.104944
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.31570e11 + 7.59617e10i 0.649031 + 0.374718i
\(672\) 0 0
\(673\) 6.11542e10 + 1.05922e11i 0.298103 + 0.516329i 0.975702 0.219102i \(-0.0703129\pi\)
−0.677599 + 0.735431i \(0.736980\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.98067e11 1.72089e11i 1.41892 0.819216i 0.422719 0.906261i \(-0.361076\pi\)
0.996204 + 0.0870453i \(0.0277425\pi\)
\(678\) 0 0
\(679\) 8.88440e6 1.53882e7i 4.17974e−5 7.23952e-5i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.83943e10i 0.222388i 0.993799 + 0.111194i \(0.0354675\pi\)
−0.993799 + 0.111194i \(0.964532\pi\)
\(684\) 0 0
\(685\) 2.50846e11 1.13932
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.02528e10 + 2.90135e10i 0.222989 + 0.128743i
\(690\) 0 0
\(691\) 1.10913e11 + 1.92107e11i 0.486486 + 0.842619i 0.999879 0.0155347i \(-0.00494504\pi\)
−0.513393 + 0.858154i \(0.671612\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.90866e11 1.10196e11i 0.818066 0.472311i
\(696\) 0 0
\(697\) 1.42037e10 2.46016e10i 0.0601827 0.104240i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.62432e11i 1.91503i −0.288380 0.957516i \(-0.593117\pi\)
0.288380 0.957516i \(-0.406883\pi\)
\(702\) 0 0
\(703\) −3.08864e11 −1.26458
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.59460e8 1.49799e8i −0.00103847 0.000599560i
\(708\) 0 0
\(709\) 7.09038e10 + 1.22809e11i 0.280598 + 0.486010i 0.971532 0.236908i \(-0.0761340\pi\)
−0.690934 + 0.722918i \(0.742801\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.16621e10 4.71477e10i 0.315982 0.182432i
\(714\) 0 0
\(715\) 4.48984e10 7.77663e10i 0.171794 0.297555i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.42588e11i 1.28191i 0.767579 + 0.640954i \(0.221461\pi\)
−0.767579 + 0.640954i \(0.778539\pi\)
\(720\) 0 0
\(721\) 2.29546e8 0.000849432
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.08113e10 + 1.77889e10i 0.111521 + 0.0643869i
\(726\) 0 0
\(727\) 9.30839e9 + 1.61226e10i 0.0333225 + 0.0577162i 0.882206 0.470864i \(-0.156058\pi\)
−0.848883 + 0.528580i \(0.822725\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.39694e9 3.69328e9i 0.0224028 0.0129343i
\(732\) 0 0
\(733\) −3.76770e10 + 6.52585e10i −0.130515 + 0.226059i −0.923875 0.382694i \(-0.874996\pi\)
0.793360 + 0.608753i \(0.208330\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.40039e11i 1.15255i
\(738\) 0 0
\(739\) −3.72658e11 −1.24949 −0.624746 0.780828i \(-0.714797\pi\)
−0.624746 + 0.780828i \(0.714797\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.49606e11 + 1.44110e11i 0.819029 + 0.472867i 0.850082 0.526651i \(-0.176553\pi\)
−0.0310525 + 0.999518i \(0.509886\pi\)
\(744\) 0 0
\(745\) −8.30688e10 1.43879e11i −0.269658 0.467061i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.02418e8 + 2.90071e8i −0.00159639 + 0.000921674i
\(750\) 0 0
\(751\) −7.52005e10 + 1.30251e11i −0.236407 + 0.409470i −0.959681 0.281092i \(-0.909303\pi\)
0.723273 + 0.690562i \(0.242637\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.54950e11i 0.476874i
\(756\) 0 0
\(757\) −7.41765e10 −0.225883 −0.112941 0.993602i \(-0.536027\pi\)
−0.112941 + 0.993602i \(0.536027\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.79569e11 1.03674e11i −0.535417 0.309123i 0.207803 0.978171i \(-0.433369\pi\)
−0.743219 + 0.669048i \(0.766702\pi\)
\(762\) 0 0
\(763\) 5.67844e8 + 9.83535e8i 0.00167545 + 0.00290196i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.01453e10 + 2.31779e10i −0.115999 + 0.0669720i
\(768\) 0 0
\(769\) 8.44424e10 1.46259e11i 0.241466 0.418231i −0.719666 0.694320i \(-0.755705\pi\)
0.961132 + 0.276089i \(0.0890386\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.24840e11i 0.629731i −0.949136 0.314866i \(-0.898041\pi\)
0.949136 0.314866i \(-0.101959\pi\)
\(774\) 0 0
\(775\) −1.61514e11 −0.447717
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.80129e10 2.77203e10i −0.130379 0.0752744i
\(780\) 0 0
\(781\) −2.99132e10 5.18112e10i −0.0804005 0.139258i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.40175e11 8.09298e10i 0.369140 0.213123i
\(786\) 0 0
\(787\) 1.89324e11 3.27919e11i 0.493523 0.854807i −0.506449 0.862270i \(-0.669042\pi\)
0.999972 + 0.00746264i \(0.00237545\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.16551e9i 0.00297721i
\(792\) 0 0
\(793\) 1.08286e11 0.273828
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.46999e11 + 2.00340e11i 0.859992 + 0.496517i 0.864010 0.503475i \(-0.167946\pi\)
−0.00401764 + 0.999992i \(0.501279\pi\)
\(798\) 0 0
\(799\) 1.63917e10 + 2.83913e10i 0.0402195 + 0.0696623i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.00937e10 + 1.16011e10i −0.0483279 + 0.0279021i
\(804\) 0 0
\(805\) 2.18641e8 3.78697e8i 0.000520652 0.000901795i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.78516e11i 1.58404i −0.610495 0.792020i \(-0.709030\pi\)
0.610495 0.792020i \(-0.290970\pi\)
\(810\) 0 0
\(811\) 4.45203e11 1.02914 0.514570 0.857448i \(-0.327951\pi\)
0.514570 + 0.857448i \(0.327951\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.55894e10 3.78680e10i −0.148663 0.0858306i
\(816\) 0 0
\(817\) −7.20786e9 1.24844e10i −0.0161777 0.0280207i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.69000e10 1.55307e10i 0.0592078 0.0341836i −0.470104 0.882611i \(-0.655784\pi\)
0.529312 + 0.848427i \(0.322450\pi\)
\(822\) 0 0
\(823\) 2.01664e11 3.49292e11i 0.439570 0.761358i −0.558086 0.829783i \(-0.688464\pi\)
0.997656 + 0.0684249i \(0.0217974\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.30509e11i 1.77551i 0.460319 + 0.887754i \(0.347735\pi\)
−0.460319 + 0.887754i \(0.652265\pi\)
\(828\) 0 0
\(829\) 5.27954e11 1.11784 0.558918 0.829223i \(-0.311217\pi\)
0.558918 + 0.829223i \(0.311217\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.25634e11 1.88005e11i −0.676316 0.390471i
\(834\) 0 0
\(835\) 1.81829e11 + 3.14938e11i 0.374040 + 0.647856i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6.75268e11 + 3.89866e11i −1.36279 + 0.786806i −0.989994 0.141109i \(-0.954933\pi\)
−0.372793 + 0.927914i \(0.621600\pi\)
\(840\) 0 0
\(841\) −2.38650e11 + 4.13353e11i −0.477064 + 0.826299i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.57939e11i 0.505929i
\(846\) 0 0
\(847\) −8.47286e8 −0.00164625
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.88123e11 + 1.66348e11i 0.549363 + 0.317175i
\(852\) 0 0
\(853\) −4.29865e11 7.44549e11i −0.811963 1.40636i −0.911488 0.411327i \(-0.865066\pi\)
0.0995248 0.995035i \(-0.468268\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.57962e11 + 1.48934e11i −0.478225 + 0.276103i −0.719677 0.694309i \(-0.755710\pi\)
0.241451 + 0.970413i \(0.422377\pi\)
\(858\) 0 0
\(859\) −4.28589e9 + 7.42339e9i −0.00787170 + 0.0136342i −0.869934 0.493167i \(-0.835839\pi\)
0.862063 + 0.506802i \(0.169172\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.98002e11i 1.25838i 0.777250 + 0.629192i \(0.216614\pi\)
−0.777250 + 0.629192i \(0.783386\pi\)
\(864\) 0 0
\(865\) 5.75970e11 1.02881
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.02259e11 4.05449e11i −1.23145 0.710980i
\(870\) 0 0
\(871\) −1.21184e11 2.09897e11i −0.210558 0.364698i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.72749e9 + 9.97369e8i −0.00294703 + 0.00170147i
\(876\) 0 0
\(877\) −4.92366e11 + 8.52802e11i −0.832318 + 1.44162i 0.0638771 + 0.997958i \(0.479653\pi\)
−0.896195 + 0.443660i \(0.853680\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3.95599e11i 0.656677i −0.944560 0.328338i \(-0.893511\pi\)
0.944560 0.328338i \(-0.106489\pi\)
\(882\) 0 0
\(883\) −4.59500e11 −0.755863 −0.377932 0.925834i \(-0.623365\pi\)
−0.377932 + 0.925834i \(0.623365\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.06335e11 + 2.34598e11i 0.656433 + 0.378992i 0.790916 0.611924i \(-0.209604\pi\)
−0.134484 + 0.990916i \(0.542938\pi\)
\(888\) 0 0
\(889\) 7.70291e7 + 1.33418e8i 0.000123324 + 0.000213603i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.54088e10 3.19903e10i 0.0871311 0.0503052i
\(894\) 0 0
\(895\) 3.80031e11 6.58232e11i 0.592279 1.02586i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.04175e11i 0.159487i
\(900\) 0 0
\(901\) −2.97209e11 −0.450986
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.64061e11 3.83396e11i −0.989950 0.571548i
\(906\) 0 0
\(907\) −2.37393e10 4.11177e10i −0.0350783 0.0607574i 0.847953 0.530071i \(-0.177835\pi\)
−0.883032 + 0.469314i \(0.844501\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.85584e11 + 5.69027e11i −1.43094 + 0.826151i −0.997192 0.0748848i \(-0.976141\pi\)
−0.433744 + 0.901036i \(0.642808\pi\)
\(912\) 0 0
\(913\) −5.57963e11 + 9.66421e11i −0.803013 + 1.39086i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.99263e9i 0.00423230i
\(918\) 0 0
\(919\) −6.52263e11 −0.914452 −0.457226 0.889350i \(-0.651157\pi\)
−0.457226 + 0.889350i \(0.651157\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.69292e10 2.13211e10i −0.0508819 0.0293767i
\(924\) 0 0
\(925\) −2.84929e11 4.93512e11i −0.389197 0.674110i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5.04709e11 + 2.91394e11i −0.677608 + 0.391217i −0.798953 0.601393i \(-0.794613\pi\)
0.121345 + 0.992610i \(0.461279\pi\)
\(930\) 0 0
\(931\) −3.66913e11 + 6.35513e11i −0.488388 + 0.845913i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.59931e11i 0.601792i
\(936\) 0 0
\(937\) 8.72906e11 1.13242 0.566212 0.824259i \(-0.308408\pi\)
0.566212 + 0.824259i \(0.308408\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.09406e11 2.36370e11i −0.522150 0.301463i 0.215664 0.976468i \(-0.430808\pi\)
−0.737814 + 0.675004i \(0.764142\pi\)
\(942\) 0 0
\(943\) 2.98591e10 + 5.17174e10i 0.0377598 + 0.0654019i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.41756e11 + 4.28253e11i −0.922277 + 0.532477i −0.884361 0.466804i \(-0.845405\pi\)
−0.0379160 + 0.999281i \(0.512072\pi\)
\(948\) 0 0
\(949\) −8.26885e9 + 1.43221e10i −0.0101948 + 0.0176580i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7.57655e11i 0.918544i 0.888296 + 0.459272i \(0.151890\pi\)
−0.888296 + 0.459272i \(0.848110\pi\)
\(954\) 0 0
\(955\) 8.60967e11 1.03508
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.44777e9 2.56792e9i −0.00525858 0.00303604i
\(960\) 0 0
\(961\) 1.89982e11 + 3.29059e11i 0.222751 + 0.385816i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.12885e10 + 6.51741e9i −0.0130175 + 0.00751564i
\(966\) 0 0
\(967\) −4.81667e11 + 8.34271e11i −0.550859 + 0.954116i 0.447354 + 0.894357i \(0.352367\pi\)
−0.998213 + 0.0597591i \(0.980967\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.04836e12i 1.17932i 0.807650 + 0.589662i \(0.200739\pi\)
−0.807650 + 0.589662i \(0.799261\pi\)
\(972\) 0 0
\(973\) −4.51233e9 −0.00503443
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.42076e10 1.97498e10i −0.0375444 0.0216762i 0.481110 0.876660i \(-0.340234\pi\)
−0.518655 + 0.854984i \(0.673567\pi\)
\(978\) 0 0
\(979\) −1.62484e11 2.81430e11i −0.176880 0.306366i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.01120e11 + 2.31587e11i −0.429596 + 0.248027i −0.699175 0.714951i \(-0.746449\pi\)
0.269578 + 0.962978i \(0.413116\pi\)
\(984\) 0 0
\(985\) 1.19712e10 2.07348e10i 0.0127173 0.0220270i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.55280e10i 0.0162304i
\(990\) 0 0
\(991\) 1.38294e12 1.43386 0.716932 0.697143i \(-0.245546\pi\)
0.716932 + 0.697143i \(0.245546\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.54877e11 2.62624e11i −0.464090 0.267942i
\(996\) 0 0
\(997\) −4.12488e11 7.14450e11i −0.417475 0.723088i 0.578209 0.815888i \(-0.303752\pi\)
−0.995685 + 0.0927999i \(0.970418\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.9.g.h.53.10 32
3.2 odd 2 inner 324.9.g.h.53.7 32
9.2 odd 6 inner 324.9.g.h.269.10 32
9.4 even 3 324.9.c.b.161.7 16
9.5 odd 6 324.9.c.b.161.10 yes 16
9.7 even 3 inner 324.9.g.h.269.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.9.c.b.161.7 16 9.4 even 3
324.9.c.b.161.10 yes 16 9.5 odd 6
324.9.g.h.53.7 32 3.2 odd 2 inner
324.9.g.h.53.10 32 1.1 even 1 trivial
324.9.g.h.269.7 32 9.7 even 3 inner
324.9.g.h.269.10 32 9.2 odd 6 inner