Defining parameters
Level: | \( N \) | \(=\) | \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3240.bj (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(648\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3240, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 68 | 0 | 68 |
Cusp forms | 20 | 0 | 20 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 0 |
Decomposition of \(S_{1}^{\mathrm{old}}(3240, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3240, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)