Properties

Label 3240.1.bj
Level $3240$
Weight $1$
Character orbit 3240.bj
Rep. character $\chi_{3240}(1891,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $0$
Newform subspaces $0$
Sturm bound $648$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3240.bj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 0 \)
Sturm bound: \(648\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3240, [\chi])\).

Total New Old
Modular forms 68 0 68
Cusp forms 20 0 20
Eisenstein series 48 0 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 0

Decomposition of \(S_{1}^{\mathrm{old}}(3240, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3240, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)