Properties

Label 3240.2.a.g.1.1
Level $3240$
Weight $2$
Character 3240.1
Self dual yes
Analytic conductor $25.872$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.8715302549\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -2.73205 q^{7} +0.267949 q^{11} +1.46410 q^{13} +6.19615 q^{17} +1.00000 q^{19} -7.46410 q^{23} +1.00000 q^{25} +0.267949 q^{29} -2.46410 q^{31} +2.73205 q^{35} -7.26795 q^{37} +7.73205 q^{41} +6.19615 q^{43} -5.26795 q^{47} +0.464102 q^{49} +4.73205 q^{53} -0.267949 q^{55} -1.19615 q^{59} -14.9282 q^{61} -1.46410 q^{65} -0.535898 q^{67} +12.1244 q^{71} -1.26795 q^{73} -0.732051 q^{77} -8.53590 q^{79} -11.1244 q^{83} -6.19615 q^{85} +5.19615 q^{89} -4.00000 q^{91} -1.00000 q^{95} -10.1962 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 2 q^{7} + 4 q^{11} - 4 q^{13} + 2 q^{17} + 2 q^{19} - 8 q^{23} + 2 q^{25} + 4 q^{29} + 2 q^{31} + 2 q^{35} - 18 q^{37} + 12 q^{41} + 2 q^{43} - 14 q^{47} - 6 q^{49} + 6 q^{53} - 4 q^{55}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.267949 0.0807897 0.0403949 0.999184i \(-0.487138\pi\)
0.0403949 + 0.999184i \(0.487138\pi\)
\(12\) 0 0
\(13\) 1.46410 0.406069 0.203034 0.979172i \(-0.434920\pi\)
0.203034 + 0.979172i \(0.434920\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.19615 1.50279 0.751394 0.659854i \(-0.229382\pi\)
0.751394 + 0.659854i \(0.229382\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.46410 −1.55637 −0.778186 0.628033i \(-0.783860\pi\)
−0.778186 + 0.628033i \(0.783860\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.267949 0.0497569 0.0248785 0.999690i \(-0.492080\pi\)
0.0248785 + 0.999690i \(0.492080\pi\)
\(30\) 0 0
\(31\) −2.46410 −0.442566 −0.221283 0.975210i \(-0.571024\pi\)
−0.221283 + 0.975210i \(0.571024\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.73205 0.461801
\(36\) 0 0
\(37\) −7.26795 −1.19484 −0.597422 0.801927i \(-0.703808\pi\)
−0.597422 + 0.801927i \(0.703808\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.73205 1.20754 0.603772 0.797157i \(-0.293664\pi\)
0.603772 + 0.797157i \(0.293664\pi\)
\(42\) 0 0
\(43\) 6.19615 0.944904 0.472452 0.881356i \(-0.343369\pi\)
0.472452 + 0.881356i \(0.343369\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.26795 −0.768409 −0.384205 0.923248i \(-0.625524\pi\)
−0.384205 + 0.923248i \(0.625524\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.73205 0.649997 0.324999 0.945715i \(-0.394636\pi\)
0.324999 + 0.945715i \(0.394636\pi\)
\(54\) 0 0
\(55\) −0.267949 −0.0361303
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.19615 −0.155726 −0.0778629 0.996964i \(-0.524810\pi\)
−0.0778629 + 0.996964i \(0.524810\pi\)
\(60\) 0 0
\(61\) −14.9282 −1.91136 −0.955680 0.294407i \(-0.904878\pi\)
−0.955680 + 0.294407i \(0.904878\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.46410 −0.181599
\(66\) 0 0
\(67\) −0.535898 −0.0654704 −0.0327352 0.999464i \(-0.510422\pi\)
−0.0327352 + 0.999464i \(0.510422\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.1244 1.43890 0.719448 0.694546i \(-0.244395\pi\)
0.719448 + 0.694546i \(0.244395\pi\)
\(72\) 0 0
\(73\) −1.26795 −0.148402 −0.0742011 0.997243i \(-0.523641\pi\)
−0.0742011 + 0.997243i \(0.523641\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.732051 −0.0834249
\(78\) 0 0
\(79\) −8.53590 −0.960364 −0.480182 0.877169i \(-0.659429\pi\)
−0.480182 + 0.877169i \(0.659429\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −11.1244 −1.22106 −0.610528 0.791994i \(-0.709043\pi\)
−0.610528 + 0.791994i \(0.709043\pi\)
\(84\) 0 0
\(85\) −6.19615 −0.672067
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.19615 0.550791 0.275396 0.961331i \(-0.411191\pi\)
0.275396 + 0.961331i \(0.411191\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −10.1962 −1.03526 −0.517631 0.855604i \(-0.673186\pi\)
−0.517631 + 0.855604i \(0.673186\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.66025 −0.264705 −0.132353 0.991203i \(-0.542253\pi\)
−0.132353 + 0.991203i \(0.542253\pi\)
\(102\) 0 0
\(103\) −18.3923 −1.81225 −0.906124 0.423013i \(-0.860973\pi\)
−0.906124 + 0.423013i \(0.860973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.53590 −0.825196 −0.412598 0.910913i \(-0.635379\pi\)
−0.412598 + 0.910913i \(0.635379\pi\)
\(108\) 0 0
\(109\) −7.92820 −0.759384 −0.379692 0.925113i \(-0.623970\pi\)
−0.379692 + 0.925113i \(0.623970\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.19615 −0.206597 −0.103298 0.994650i \(-0.532940\pi\)
−0.103298 + 0.994650i \(0.532940\pi\)
\(114\) 0 0
\(115\) 7.46410 0.696031
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −16.9282 −1.55181
\(120\) 0 0
\(121\) −10.9282 −0.993473
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −5.66025 −0.502266 −0.251133 0.967953i \(-0.580803\pi\)
−0.251133 + 0.967953i \(0.580803\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.26795 −0.372892 −0.186446 0.982465i \(-0.559697\pi\)
−0.186446 + 0.982465i \(0.559697\pi\)
\(132\) 0 0
\(133\) −2.73205 −0.236899
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.46410 −0.125087 −0.0625433 0.998042i \(-0.519921\pi\)
−0.0625433 + 0.998042i \(0.519921\pi\)
\(138\) 0 0
\(139\) −9.00000 −0.763370 −0.381685 0.924292i \(-0.624656\pi\)
−0.381685 + 0.924292i \(0.624656\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.392305 0.0328062
\(144\) 0 0
\(145\) −0.267949 −0.0222520
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.00000 −0.655386 −0.327693 0.944784i \(-0.606271\pi\)
−0.327693 + 0.944784i \(0.606271\pi\)
\(150\) 0 0
\(151\) 12.8564 1.04624 0.523120 0.852259i \(-0.324768\pi\)
0.523120 + 0.852259i \(0.324768\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.46410 0.197921
\(156\) 0 0
\(157\) 20.0526 1.60037 0.800184 0.599754i \(-0.204735\pi\)
0.800184 + 0.599754i \(0.204735\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 20.3923 1.60714
\(162\) 0 0
\(163\) −23.1244 −1.81124 −0.905620 0.424091i \(-0.860594\pi\)
−0.905620 + 0.424091i \(0.860594\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.26795 −0.562411 −0.281205 0.959648i \(-0.590734\pi\)
−0.281205 + 0.959648i \(0.590734\pi\)
\(168\) 0 0
\(169\) −10.8564 −0.835108
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.4641 −0.871600 −0.435800 0.900044i \(-0.643534\pi\)
−0.435800 + 0.900044i \(0.643534\pi\)
\(174\) 0 0
\(175\) −2.73205 −0.206524
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.0526 1.27457 0.637284 0.770629i \(-0.280058\pi\)
0.637284 + 0.770629i \(0.280058\pi\)
\(180\) 0 0
\(181\) 16.3205 1.21309 0.606547 0.795048i \(-0.292554\pi\)
0.606547 + 0.795048i \(0.292554\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.26795 0.534350
\(186\) 0 0
\(187\) 1.66025 0.121410
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.7321 0.848901 0.424451 0.905451i \(-0.360467\pi\)
0.424451 + 0.905451i \(0.360467\pi\)
\(192\) 0 0
\(193\) −5.80385 −0.417770 −0.208885 0.977940i \(-0.566983\pi\)
−0.208885 + 0.977940i \(0.566983\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.8564 1.55720 0.778602 0.627518i \(-0.215929\pi\)
0.778602 + 0.627518i \(0.215929\pi\)
\(198\) 0 0
\(199\) −22.0000 −1.55954 −0.779769 0.626067i \(-0.784664\pi\)
−0.779769 + 0.626067i \(0.784664\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.732051 −0.0513799
\(204\) 0 0
\(205\) −7.73205 −0.540030
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.267949 0.0185344
\(210\) 0 0
\(211\) −12.3205 −0.848179 −0.424089 0.905620i \(-0.639406\pi\)
−0.424089 + 0.905620i \(0.639406\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.19615 −0.422574
\(216\) 0 0
\(217\) 6.73205 0.457001
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.07180 0.610235
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.6603 −0.773918 −0.386959 0.922097i \(-0.626475\pi\)
−0.386959 + 0.922097i \(0.626475\pi\)
\(228\) 0 0
\(229\) 17.8564 1.17998 0.589992 0.807409i \(-0.299131\pi\)
0.589992 + 0.807409i \(0.299131\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.26795 −0.0830661 −0.0415331 0.999137i \(-0.513224\pi\)
−0.0415331 + 0.999137i \(0.513224\pi\)
\(234\) 0 0
\(235\) 5.26795 0.343643
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.4641 −1.00029 −0.500145 0.865942i \(-0.666720\pi\)
−0.500145 + 0.865942i \(0.666720\pi\)
\(240\) 0 0
\(241\) −3.53590 −0.227767 −0.113884 0.993494i \(-0.536329\pi\)
−0.113884 + 0.993494i \(0.536329\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.464102 −0.0296504
\(246\) 0 0
\(247\) 1.46410 0.0931586
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.5359 1.29621 0.648107 0.761549i \(-0.275561\pi\)
0.648107 + 0.761549i \(0.275561\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −29.3205 −1.82896 −0.914482 0.404628i \(-0.867401\pi\)
−0.914482 + 0.404628i \(0.867401\pi\)
\(258\) 0 0
\(259\) 19.8564 1.23382
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.53590 −0.526346 −0.263173 0.964749i \(-0.584769\pi\)
−0.263173 + 0.964749i \(0.584769\pi\)
\(264\) 0 0
\(265\) −4.73205 −0.290688
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.267949 −0.0163372 −0.00816858 0.999967i \(-0.502600\pi\)
−0.00816858 + 0.999967i \(0.502600\pi\)
\(270\) 0 0
\(271\) 27.7128 1.68343 0.841717 0.539919i \(-0.181545\pi\)
0.841717 + 0.539919i \(0.181545\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.267949 0.0161579
\(276\) 0 0
\(277\) −15.6603 −0.940933 −0.470467 0.882418i \(-0.655914\pi\)
−0.470467 + 0.882418i \(0.655914\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.3923 1.09719 0.548596 0.836087i \(-0.315162\pi\)
0.548596 + 0.836087i \(0.315162\pi\)
\(282\) 0 0
\(283\) 11.4641 0.681470 0.340735 0.940159i \(-0.389324\pi\)
0.340735 + 0.940159i \(0.389324\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −21.1244 −1.24693
\(288\) 0 0
\(289\) 21.3923 1.25837
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.73205 0.393291 0.196645 0.980475i \(-0.436995\pi\)
0.196645 + 0.980475i \(0.436995\pi\)
\(294\) 0 0
\(295\) 1.19615 0.0696427
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.9282 −0.631994
\(300\) 0 0
\(301\) −16.9282 −0.975725
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 14.9282 0.854786
\(306\) 0 0
\(307\) −28.4449 −1.62343 −0.811717 0.584051i \(-0.801467\pi\)
−0.811717 + 0.584051i \(0.801467\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.0526 −0.853552 −0.426776 0.904357i \(-0.640351\pi\)
−0.426776 + 0.904357i \(0.640351\pi\)
\(312\) 0 0
\(313\) −12.7846 −0.722629 −0.361314 0.932444i \(-0.617672\pi\)
−0.361314 + 0.932444i \(0.617672\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −19.5167 −1.09616 −0.548082 0.836424i \(-0.684642\pi\)
−0.548082 + 0.836424i \(0.684642\pi\)
\(318\) 0 0
\(319\) 0.0717968 0.00401985
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.19615 0.344763
\(324\) 0 0
\(325\) 1.46410 0.0812137
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 14.3923 0.793473
\(330\) 0 0
\(331\) 11.7846 0.647741 0.323870 0.946101i \(-0.395016\pi\)
0.323870 + 0.946101i \(0.395016\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.535898 0.0292793
\(336\) 0 0
\(337\) 3.32051 0.180880 0.0904398 0.995902i \(-0.471173\pi\)
0.0904398 + 0.995902i \(0.471173\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.660254 −0.0357548
\(342\) 0 0
\(343\) 17.8564 0.964155
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.5885 0.568418 0.284209 0.958762i \(-0.408269\pi\)
0.284209 + 0.958762i \(0.408269\pi\)
\(348\) 0 0
\(349\) −17.7846 −0.951988 −0.475994 0.879448i \(-0.657912\pi\)
−0.475994 + 0.879448i \(0.657912\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.7321 1.42280 0.711402 0.702786i \(-0.248061\pi\)
0.711402 + 0.702786i \(0.248061\pi\)
\(354\) 0 0
\(355\) −12.1244 −0.643494
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.1962 −1.54091 −0.770457 0.637492i \(-0.779972\pi\)
−0.770457 + 0.637492i \(0.779972\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.26795 0.0663675
\(366\) 0 0
\(367\) 2.67949 0.139868 0.0699342 0.997552i \(-0.477721\pi\)
0.0699342 + 0.997552i \(0.477721\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.9282 −0.671199
\(372\) 0 0
\(373\) 26.7321 1.38413 0.692067 0.721834i \(-0.256700\pi\)
0.692067 + 0.721834i \(0.256700\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.392305 0.0202047
\(378\) 0 0
\(379\) −20.2487 −1.04011 −0.520053 0.854134i \(-0.674088\pi\)
−0.520053 + 0.854134i \(0.674088\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.3205 0.578451 0.289225 0.957261i \(-0.406602\pi\)
0.289225 + 0.957261i \(0.406602\pi\)
\(384\) 0 0
\(385\) 0.732051 0.0373088
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 36.2487 1.83788 0.918941 0.394394i \(-0.129046\pi\)
0.918941 + 0.394394i \(0.129046\pi\)
\(390\) 0 0
\(391\) −46.2487 −2.33890
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.53590 0.429488
\(396\) 0 0
\(397\) −20.2487 −1.01625 −0.508127 0.861282i \(-0.669662\pi\)
−0.508127 + 0.861282i \(0.669662\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.8564 1.59083 0.795417 0.606063i \(-0.207252\pi\)
0.795417 + 0.606063i \(0.207252\pi\)
\(402\) 0 0
\(403\) −3.60770 −0.179712
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.94744 −0.0965311
\(408\) 0 0
\(409\) 36.7846 1.81888 0.909441 0.415833i \(-0.136510\pi\)
0.909441 + 0.415833i \(0.136510\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.26795 0.160805
\(414\) 0 0
\(415\) 11.1244 0.546073
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.3205 0.553043 0.276522 0.961008i \(-0.410818\pi\)
0.276522 + 0.961008i \(0.410818\pi\)
\(420\) 0 0
\(421\) 26.0718 1.27066 0.635331 0.772240i \(-0.280864\pi\)
0.635331 + 0.772240i \(0.280864\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.19615 0.300558
\(426\) 0 0
\(427\) 40.7846 1.97371
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.2679 −0.879936 −0.439968 0.898013i \(-0.645010\pi\)
−0.439968 + 0.898013i \(0.645010\pi\)
\(432\) 0 0
\(433\) 11.4641 0.550930 0.275465 0.961311i \(-0.411168\pi\)
0.275465 + 0.961311i \(0.411168\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.46410 −0.357056
\(438\) 0 0
\(439\) −6.85641 −0.327238 −0.163619 0.986524i \(-0.552317\pi\)
−0.163619 + 0.986524i \(0.552317\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.1244 0.718580 0.359290 0.933226i \(-0.383019\pi\)
0.359290 + 0.933226i \(0.383019\pi\)
\(444\) 0 0
\(445\) −5.19615 −0.246321
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.4449 −0.823274 −0.411637 0.911348i \(-0.635043\pi\)
−0.411637 + 0.911348i \(0.635043\pi\)
\(450\) 0 0
\(451\) 2.07180 0.0975571
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −26.5885 −1.24376 −0.621878 0.783114i \(-0.713630\pi\)
−0.621878 + 0.783114i \(0.713630\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.6603 0.682796 0.341398 0.939919i \(-0.389100\pi\)
0.341398 + 0.939919i \(0.389100\pi\)
\(462\) 0 0
\(463\) −1.60770 −0.0747159 −0.0373580 0.999302i \(-0.511894\pi\)
−0.0373580 + 0.999302i \(0.511894\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −33.5167 −1.55097 −0.775483 0.631368i \(-0.782494\pi\)
−0.775483 + 0.631368i \(0.782494\pi\)
\(468\) 0 0
\(469\) 1.46410 0.0676059
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.66025 0.0763386
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −18.6603 −0.852609 −0.426304 0.904580i \(-0.640185\pi\)
−0.426304 + 0.904580i \(0.640185\pi\)
\(480\) 0 0
\(481\) −10.6410 −0.485189
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.1962 0.462983
\(486\) 0 0
\(487\) 13.4641 0.610117 0.305058 0.952334i \(-0.401324\pi\)
0.305058 + 0.952334i \(0.401324\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 29.1962 1.31760 0.658802 0.752316i \(-0.271064\pi\)
0.658802 + 0.752316i \(0.271064\pi\)
\(492\) 0 0
\(493\) 1.66025 0.0747741
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −33.1244 −1.48583
\(498\) 0 0
\(499\) −18.0718 −0.809005 −0.404502 0.914537i \(-0.632555\pi\)
−0.404502 + 0.914537i \(0.632555\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.39230 −0.195843 −0.0979216 0.995194i \(-0.531219\pi\)
−0.0979216 + 0.995194i \(0.531219\pi\)
\(504\) 0 0
\(505\) 2.66025 0.118380
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.143594 0.00636467 0.00318234 0.999995i \(-0.498987\pi\)
0.00318234 + 0.999995i \(0.498987\pi\)
\(510\) 0 0
\(511\) 3.46410 0.153243
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.3923 0.810462
\(516\) 0 0
\(517\) −1.41154 −0.0620796
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.2487 −0.711869 −0.355934 0.934511i \(-0.615837\pi\)
−0.355934 + 0.934511i \(0.615837\pi\)
\(522\) 0 0
\(523\) −0.392305 −0.0171543 −0.00857715 0.999963i \(-0.502730\pi\)
−0.00857715 + 0.999963i \(0.502730\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.2679 −0.665082
\(528\) 0 0
\(529\) 32.7128 1.42230
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.3205 0.490346
\(534\) 0 0
\(535\) 8.53590 0.369039
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.124356 0.00535638
\(540\) 0 0
\(541\) 24.3205 1.04562 0.522810 0.852449i \(-0.324884\pi\)
0.522810 + 0.852449i \(0.324884\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.92820 0.339607
\(546\) 0 0
\(547\) 40.7846 1.74382 0.871912 0.489663i \(-0.162880\pi\)
0.871912 + 0.489663i \(0.162880\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.267949 0.0114150
\(552\) 0 0
\(553\) 23.3205 0.991689
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.5359 −0.954877 −0.477438 0.878665i \(-0.658435\pi\)
−0.477438 + 0.878665i \(0.658435\pi\)
\(558\) 0 0
\(559\) 9.07180 0.383696
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −39.9090 −1.68196 −0.840981 0.541064i \(-0.818022\pi\)
−0.840981 + 0.541064i \(0.818022\pi\)
\(564\) 0 0
\(565\) 2.19615 0.0923928
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −42.2679 −1.77196 −0.885982 0.463719i \(-0.846515\pi\)
−0.885982 + 0.463719i \(0.846515\pi\)
\(570\) 0 0
\(571\) −30.1769 −1.26286 −0.631432 0.775431i \(-0.717533\pi\)
−0.631432 + 0.775431i \(0.717533\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.46410 −0.311275
\(576\) 0 0
\(577\) −31.1244 −1.29572 −0.647862 0.761758i \(-0.724337\pi\)
−0.647862 + 0.761758i \(0.724337\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 30.3923 1.26089
\(582\) 0 0
\(583\) 1.26795 0.0525131
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.4449 1.09150 0.545748 0.837949i \(-0.316246\pi\)
0.545748 + 0.837949i \(0.316246\pi\)
\(588\) 0 0
\(589\) −2.46410 −0.101532
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.71281 −0.398857 −0.199429 0.979912i \(-0.563909\pi\)
−0.199429 + 0.979912i \(0.563909\pi\)
\(594\) 0 0
\(595\) 16.9282 0.693989
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −46.5167 −1.90062 −0.950310 0.311306i \(-0.899233\pi\)
−0.950310 + 0.311306i \(0.899233\pi\)
\(600\) 0 0
\(601\) 30.3205 1.23680 0.618400 0.785864i \(-0.287781\pi\)
0.618400 + 0.785864i \(0.287781\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.9282 0.444295
\(606\) 0 0
\(607\) 21.8038 0.884991 0.442495 0.896771i \(-0.354093\pi\)
0.442495 + 0.896771i \(0.354093\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.71281 −0.312027
\(612\) 0 0
\(613\) 26.5359 1.07177 0.535887 0.844289i \(-0.319977\pi\)
0.535887 + 0.844289i \(0.319977\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.78461 0.353655 0.176828 0.984242i \(-0.443417\pi\)
0.176828 + 0.984242i \(0.443417\pi\)
\(618\) 0 0
\(619\) −15.0718 −0.605787 −0.302893 0.953024i \(-0.597953\pi\)
−0.302893 + 0.953024i \(0.597953\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.1962 −0.568757
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −45.0333 −1.79560
\(630\) 0 0
\(631\) 38.1769 1.51980 0.759899 0.650041i \(-0.225248\pi\)
0.759899 + 0.650041i \(0.225248\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.66025 0.224620
\(636\) 0 0
\(637\) 0.679492 0.0269225
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 40.2679 1.59049 0.795244 0.606289i \(-0.207343\pi\)
0.795244 + 0.606289i \(0.207343\pi\)
\(642\) 0 0
\(643\) 35.6603 1.40630 0.703152 0.711040i \(-0.251776\pi\)
0.703152 + 0.711040i \(0.251776\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −50.1051 −1.96984 −0.984918 0.173023i \(-0.944646\pi\)
−0.984918 + 0.173023i \(0.944646\pi\)
\(648\) 0 0
\(649\) −0.320508 −0.0125810
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.2487 0.401063 0.200532 0.979687i \(-0.435733\pi\)
0.200532 + 0.979687i \(0.435733\pi\)
\(654\) 0 0
\(655\) 4.26795 0.166763
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26.5359 1.03369 0.516846 0.856078i \(-0.327106\pi\)
0.516846 + 0.856078i \(0.327106\pi\)
\(660\) 0 0
\(661\) −29.1051 −1.13206 −0.566029 0.824385i \(-0.691521\pi\)
−0.566029 + 0.824385i \(0.691521\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.73205 0.105944
\(666\) 0 0
\(667\) −2.00000 −0.0774403
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) −24.2487 −0.934719 −0.467360 0.884067i \(-0.654795\pi\)
−0.467360 + 0.884067i \(0.654795\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.7128 0.680759 0.340379 0.940288i \(-0.389445\pi\)
0.340379 + 0.940288i \(0.389445\pi\)
\(678\) 0 0
\(679\) 27.8564 1.06903
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.3205 0.433167 0.216584 0.976264i \(-0.430509\pi\)
0.216584 + 0.976264i \(0.430509\pi\)
\(684\) 0 0
\(685\) 1.46410 0.0559404
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.92820 0.263944
\(690\) 0 0
\(691\) 46.7846 1.77977 0.889885 0.456185i \(-0.150784\pi\)
0.889885 + 0.456185i \(0.150784\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.00000 0.341389
\(696\) 0 0
\(697\) 47.9090 1.81468
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.2679 1.21874 0.609372 0.792885i \(-0.291422\pi\)
0.609372 + 0.792885i \(0.291422\pi\)
\(702\) 0 0
\(703\) −7.26795 −0.274116
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.26795 0.273339
\(708\) 0 0
\(709\) 10.5359 0.395684 0.197842 0.980234i \(-0.436607\pi\)
0.197842 + 0.980234i \(0.436607\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.3923 0.688797
\(714\) 0 0
\(715\) −0.392305 −0.0146714
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 51.9808 1.93856 0.969278 0.245969i \(-0.0791062\pi\)
0.969278 + 0.245969i \(0.0791062\pi\)
\(720\) 0 0
\(721\) 50.2487 1.87136
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.267949 0.00995138
\(726\) 0 0
\(727\) 10.5359 0.390755 0.195377 0.980728i \(-0.437407\pi\)
0.195377 + 0.980728i \(0.437407\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 38.3923 1.41999
\(732\) 0 0
\(733\) 6.00000 0.221615 0.110808 0.993842i \(-0.464656\pi\)
0.110808 + 0.993842i \(0.464656\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.143594 −0.00528934
\(738\) 0 0
\(739\) −22.8564 −0.840787 −0.420393 0.907342i \(-0.638108\pi\)
−0.420393 + 0.907342i \(0.638108\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 32.4449 1.19029 0.595143 0.803620i \(-0.297095\pi\)
0.595143 + 0.803620i \(0.297095\pi\)
\(744\) 0 0
\(745\) 8.00000 0.293097
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 23.3205 0.852113
\(750\) 0 0
\(751\) −3.71281 −0.135482 −0.0677412 0.997703i \(-0.521579\pi\)
−0.0677412 + 0.997703i \(0.521579\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −12.8564 −0.467893
\(756\) 0 0
\(757\) −6.53590 −0.237551 −0.118776 0.992921i \(-0.537897\pi\)
−0.118776 + 0.992921i \(0.537897\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −49.0526 −1.77815 −0.889077 0.457758i \(-0.848653\pi\)
−0.889077 + 0.457758i \(0.848653\pi\)
\(762\) 0 0
\(763\) 21.6603 0.784154
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.75129 −0.0632354
\(768\) 0 0
\(769\) 10.4641 0.377345 0.188673 0.982040i \(-0.439582\pi\)
0.188673 + 0.982040i \(0.439582\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −32.1962 −1.15802 −0.579008 0.815322i \(-0.696560\pi\)
−0.579008 + 0.815322i \(0.696560\pi\)
\(774\) 0 0
\(775\) −2.46410 −0.0885131
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.73205 0.277029
\(780\) 0 0
\(781\) 3.24871 0.116248
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −20.0526 −0.715707
\(786\) 0 0
\(787\) 41.3731 1.47479 0.737395 0.675461i \(-0.236056\pi\)
0.737395 + 0.675461i \(0.236056\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) −21.8564 −0.776144
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.4641 −0.760297 −0.380149 0.924925i \(-0.624127\pi\)
−0.380149 + 0.924925i \(0.624127\pi\)
\(798\) 0 0
\(799\) −32.6410 −1.15476
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.339746 −0.0119894
\(804\) 0 0
\(805\) −20.3923 −0.718734
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −49.9808 −1.75723 −0.878615 0.477531i \(-0.841532\pi\)
−0.878615 + 0.477531i \(0.841532\pi\)
\(810\) 0 0
\(811\) −27.7846 −0.975650 −0.487825 0.872942i \(-0.662210\pi\)
−0.487825 + 0.872942i \(0.662210\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.1244 0.810011
\(816\) 0 0
\(817\) 6.19615 0.216776
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.58846 −0.264839 −0.132419 0.991194i \(-0.542275\pi\)
−0.132419 + 0.991194i \(0.542275\pi\)
\(822\) 0 0
\(823\) −39.8564 −1.38931 −0.694653 0.719345i \(-0.744442\pi\)
−0.694653 + 0.719345i \(0.744442\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.1051 −1.11640 −0.558202 0.829705i \(-0.688509\pi\)
−0.558202 + 0.829705i \(0.688509\pi\)
\(828\) 0 0
\(829\) 4.21539 0.146407 0.0732033 0.997317i \(-0.476678\pi\)
0.0732033 + 0.997317i \(0.476678\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.87564 0.0996352
\(834\) 0 0
\(835\) 7.26795 0.251518
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −20.8038 −0.718229 −0.359114 0.933294i \(-0.616921\pi\)
−0.359114 + 0.933294i \(0.616921\pi\)
\(840\) 0 0
\(841\) −28.9282 −0.997524
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.8564 0.373472
\(846\) 0 0
\(847\) 29.8564 1.02588
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 54.2487 1.85962
\(852\) 0 0
\(853\) 32.5885 1.11581 0.557904 0.829906i \(-0.311606\pi\)
0.557904 + 0.829906i \(0.311606\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5.07180 −0.173249 −0.0866246 0.996241i \(-0.527608\pi\)
−0.0866246 + 0.996241i \(0.527608\pi\)
\(858\) 0 0
\(859\) 56.9615 1.94350 0.971751 0.236008i \(-0.0758392\pi\)
0.971751 + 0.236008i \(0.0758392\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −25.5167 −0.868597 −0.434299 0.900769i \(-0.643004\pi\)
−0.434299 + 0.900769i \(0.643004\pi\)
\(864\) 0 0
\(865\) 11.4641 0.389791
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.28719 −0.0775875
\(870\) 0 0
\(871\) −0.784610 −0.0265855
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.73205 0.0923602
\(876\) 0 0
\(877\) −1.75129 −0.0591368 −0.0295684 0.999563i \(-0.509413\pi\)
−0.0295684 + 0.999563i \(0.509413\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.33975 −0.112519 −0.0562595 0.998416i \(-0.517917\pi\)
−0.0562595 + 0.998416i \(0.517917\pi\)
\(882\) 0 0
\(883\) 4.87564 0.164078 0.0820392 0.996629i \(-0.473857\pi\)
0.0820392 + 0.996629i \(0.473857\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −31.8038 −1.06787 −0.533934 0.845526i \(-0.679287\pi\)
−0.533934 + 0.845526i \(0.679287\pi\)
\(888\) 0 0
\(889\) 15.4641 0.518649
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.26795 −0.176285
\(894\) 0 0
\(895\) −17.0526 −0.570004
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.660254 −0.0220207
\(900\) 0 0
\(901\) 29.3205 0.976808
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.3205 −0.542512
\(906\) 0 0
\(907\) 4.14359 0.137586 0.0687929 0.997631i \(-0.478085\pi\)
0.0687929 + 0.997631i \(0.478085\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 10.6603 0.353190 0.176595 0.984284i \(-0.443492\pi\)
0.176595 + 0.984284i \(0.443492\pi\)
\(912\) 0 0
\(913\) −2.98076 −0.0986488
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11.6603 0.385056
\(918\) 0 0
\(919\) 38.7128 1.27702 0.638509 0.769614i \(-0.279552\pi\)
0.638509 + 0.769614i \(0.279552\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17.7513 0.584291
\(924\) 0 0
\(925\) −7.26795 −0.238969
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.9808 0.721165 0.360583 0.932727i \(-0.382578\pi\)
0.360583 + 0.932727i \(0.382578\pi\)
\(930\) 0 0
\(931\) 0.464102 0.0152103
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.66025 −0.0542961
\(936\) 0 0
\(937\) −36.6410 −1.19701 −0.598505 0.801119i \(-0.704238\pi\)
−0.598505 + 0.801119i \(0.704238\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.535898 −0.0174698 −0.00873489 0.999962i \(-0.502780\pi\)
−0.00873489 + 0.999962i \(0.502780\pi\)
\(942\) 0 0
\(943\) −57.7128 −1.87939
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.9282 1.07002 0.535011 0.844845i \(-0.320307\pi\)
0.535011 + 0.844845i \(0.320307\pi\)
\(948\) 0 0
\(949\) −1.85641 −0.0602615
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −51.0333 −1.65313 −0.826566 0.562840i \(-0.809709\pi\)
−0.826566 + 0.562840i \(0.809709\pi\)
\(954\) 0 0
\(955\) −11.7321 −0.379640
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.00000 0.129167
\(960\) 0 0
\(961\) −24.9282 −0.804136
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.80385 0.186832
\(966\) 0 0
\(967\) 52.9808 1.70375 0.851873 0.523748i \(-0.175467\pi\)
0.851873 + 0.523748i \(0.175467\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.8038 0.924359 0.462180 0.886786i \(-0.347067\pi\)
0.462180 + 0.886786i \(0.347067\pi\)
\(972\) 0 0
\(973\) 24.5885 0.788270
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.392305 −0.0125509 −0.00627547 0.999980i \(-0.501998\pi\)
−0.00627547 + 0.999980i \(0.501998\pi\)
\(978\) 0 0
\(979\) 1.39230 0.0444983
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −11.6603 −0.371904 −0.185952 0.982559i \(-0.559537\pi\)
−0.185952 + 0.982559i \(0.559537\pi\)
\(984\) 0 0
\(985\) −21.8564 −0.696403
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −46.2487 −1.47062
\(990\) 0 0
\(991\) 43.1051 1.36928 0.684640 0.728882i \(-0.259960\pi\)
0.684640 + 0.728882i \(0.259960\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22.0000 0.697447
\(996\) 0 0
\(997\) −46.7321 −1.48002 −0.740009 0.672596i \(-0.765179\pi\)
−0.740009 + 0.672596i \(0.765179\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3240.2.a.g.1.1 2
3.2 odd 2 3240.2.a.l.1.1 yes 2
4.3 odd 2 6480.2.a.bg.1.2 2
9.2 odd 6 3240.2.q.bb.1081.2 4
9.4 even 3 3240.2.q.bf.2161.2 4
9.5 odd 6 3240.2.q.bb.2161.2 4
9.7 even 3 3240.2.q.bf.1081.2 4
12.11 even 2 6480.2.a.bq.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3240.2.a.g.1.1 2 1.1 even 1 trivial
3240.2.a.l.1.1 yes 2 3.2 odd 2
3240.2.q.bb.1081.2 4 9.2 odd 6
3240.2.q.bb.2161.2 4 9.5 odd 6
3240.2.q.bf.1081.2 4 9.7 even 3
3240.2.q.bf.2161.2 4 9.4 even 3
6480.2.a.bg.1.2 2 4.3 odd 2
6480.2.a.bq.1.2 2 12.11 even 2