Properties

Label 3248.1.k.b
Level $3248$
Weight $1$
Character orbit 3248.k
Self dual yes
Analytic conductor $1.621$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -7, -203, 29
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3248,1,Mod(1217,3248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3248.1217");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3248 = 2^{4} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3248.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.62096316103\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 203)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-7}, \sqrt{29})\)
Artin image: $D_4$
Artin field: Galois closure of 4.0.22736.2
Stark unit: Root of $x^{4} - 30332x^{3} + 41734x^{2} - 30332x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{7} - q^{9} + 2 q^{23} + q^{25} - q^{29} + q^{49} + 2 q^{53} - q^{63} + 2 q^{67} - 2 q^{71} + q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3248\mathbb{Z}\right)^\times\).

\(n\) \(465\) \(785\) \(2031\) \(2437\)
\(\chi(n)\) \(1\) \(1\) \(0\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1217.1
0
0 0 0 0 0 1.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
29.b even 2 1 RM by \(\Q(\sqrt{29}) \)
203.c odd 2 1 CM by \(\Q(\sqrt{-203}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3248.1.k.b 1
4.b odd 2 1 203.1.c.a 1
7.b odd 2 1 CM 3248.1.k.b 1
12.b even 2 1 1827.1.b.a 1
28.d even 2 1 203.1.c.a 1
28.f even 6 2 1421.1.i.a 2
28.g odd 6 2 1421.1.i.a 2
29.b even 2 1 RM 3248.1.k.b 1
84.h odd 2 1 1827.1.b.a 1
116.d odd 2 1 203.1.c.a 1
203.c odd 2 1 CM 3248.1.k.b 1
348.b even 2 1 1827.1.b.a 1
812.c even 2 1 203.1.c.a 1
812.n odd 6 2 1421.1.i.a 2
812.s even 6 2 1421.1.i.a 2
2436.j odd 2 1 1827.1.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
203.1.c.a 1 4.b odd 2 1
203.1.c.a 1 28.d even 2 1
203.1.c.a 1 116.d odd 2 1
203.1.c.a 1 812.c even 2 1
1421.1.i.a 2 28.f even 6 2
1421.1.i.a 2 28.g odd 6 2
1421.1.i.a 2 812.n odd 6 2
1421.1.i.a 2 812.s even 6 2
1827.1.b.a 1 12.b even 2 1
1827.1.b.a 1 84.h odd 2 1
1827.1.b.a 1 348.b even 2 1
1827.1.b.a 1 2436.j odd 2 1
3248.1.k.b 1 1.a even 1 1 trivial
3248.1.k.b 1 7.b odd 2 1 CM
3248.1.k.b 1 29.b even 2 1 RM
3248.1.k.b 1 203.c odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{1}^{\mathrm{new}}(3248, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 2 \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 2 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 2 \) Copy content Toggle raw display
$71$ \( T + 2 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less