Properties

Label 3248.1.k.b
Level 32483248
Weight 11
Character orbit 3248.k
Self dual yes
Analytic conductor 1.6211.621
Analytic rank 00
Dimension 11
Projective image D2D_{2}
CM/RM discs -7, -203, 29
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3248,1,Mod(1217,3248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3248.1217");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3248=24729 3248 = 2^{4} \cdot 7 \cdot 29
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3248.k (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.620963161031.62096316103
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 203)
Projective image: D2D_{2}
Projective field: Galois closure of Q(7,29)\Q(\sqrt{-7}, \sqrt{29})
Artin image: D4D_4
Artin field: Galois closure of 4.0.22736.2
Stark unit: Root of x430332x3+41734x230332x+1x^{4} - 30332x^{3} + 41734x^{2} - 30332x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q7q9+2q23+q25q29+q49+2q53q63+2q672q71+q81+O(q100) q + q^{7} - q^{9} + 2 q^{23} + q^{25} - q^{29} + q^{49} + 2 q^{53} - q^{63} + 2 q^{67} - 2 q^{71} + q^{81}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3248Z)×\left(\mathbb{Z}/3248\mathbb{Z}\right)^\times.

nn 465465 785785 20312031 24372437
χ(n)\chi(n) 1-1 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1217.1
0
0 0 0 0 0 1.00000 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
29.b even 2 1 RM by Q(29)\Q(\sqrt{29})
203.c odd 2 1 CM by Q(203)\Q(\sqrt{-203})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3248.1.k.b 1
4.b odd 2 1 203.1.c.a 1
7.b odd 2 1 CM 3248.1.k.b 1
12.b even 2 1 1827.1.b.a 1
28.d even 2 1 203.1.c.a 1
28.f even 6 2 1421.1.i.a 2
28.g odd 6 2 1421.1.i.a 2
29.b even 2 1 RM 3248.1.k.b 1
84.h odd 2 1 1827.1.b.a 1
116.d odd 2 1 203.1.c.a 1
203.c odd 2 1 CM 3248.1.k.b 1
348.b even 2 1 1827.1.b.a 1
812.c even 2 1 203.1.c.a 1
812.n odd 6 2 1421.1.i.a 2
812.s even 6 2 1421.1.i.a 2
2436.j odd 2 1 1827.1.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
203.1.c.a 1 4.b odd 2 1
203.1.c.a 1 28.d even 2 1
203.1.c.a 1 116.d odd 2 1
203.1.c.a 1 812.c even 2 1
1421.1.i.a 2 28.f even 6 2
1421.1.i.a 2 28.g odd 6 2
1421.1.i.a 2 812.n odd 6 2
1421.1.i.a 2 812.s even 6 2
1827.1.b.a 1 12.b even 2 1
1827.1.b.a 1 84.h odd 2 1
1827.1.b.a 1 348.b even 2 1
1827.1.b.a 1 2436.j odd 2 1
3248.1.k.b 1 1.a even 1 1 trivial
3248.1.k.b 1 7.b odd 2 1 CM
3248.1.k.b 1 29.b even 2 1 RM
3248.1.k.b 1 203.c odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3 T_{3} acting on S1new(3248,[χ])S_{1}^{\mathrm{new}}(3248, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T1 T - 1 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T2 T - 2 Copy content Toggle raw display
2929 T+1 T + 1 Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T2 T - 2 Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T2 T - 2 Copy content Toggle raw display
7171 T+2 T + 2 Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less