Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3248,1,Mod(1217,3248)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3248, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3248.1217");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3248.k (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 203) |
Projective image: | |
Projective field: | Galois closure of |
Artin image: | |
Artin field: | Galois closure of 4.0.22736.2 |
Stark unit: | Root of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | CM by |
29.b | even | 2 | 1 | RM by |
203.c | odd | 2 | 1 | CM by |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3248.1.k.b | 1 | |
4.b | odd | 2 | 1 | 203.1.c.a | ✓ | 1 | |
7.b | odd | 2 | 1 | CM | 3248.1.k.b | 1 | |
12.b | even | 2 | 1 | 1827.1.b.a | 1 | ||
28.d | even | 2 | 1 | 203.1.c.a | ✓ | 1 | |
28.f | even | 6 | 2 | 1421.1.i.a | 2 | ||
28.g | odd | 6 | 2 | 1421.1.i.a | 2 | ||
29.b | even | 2 | 1 | RM | 3248.1.k.b | 1 | |
84.h | odd | 2 | 1 | 1827.1.b.a | 1 | ||
116.d | odd | 2 | 1 | 203.1.c.a | ✓ | 1 | |
203.c | odd | 2 | 1 | CM | 3248.1.k.b | 1 | |
348.b | even | 2 | 1 | 1827.1.b.a | 1 | ||
812.c | even | 2 | 1 | 203.1.c.a | ✓ | 1 | |
812.n | odd | 6 | 2 | 1421.1.i.a | 2 | ||
812.s | even | 6 | 2 | 1421.1.i.a | 2 | ||
2436.j | odd | 2 | 1 | 1827.1.b.a | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
203.1.c.a | ✓ | 1 | 4.b | odd | 2 | 1 | |
203.1.c.a | ✓ | 1 | 28.d | even | 2 | 1 | |
203.1.c.a | ✓ | 1 | 116.d | odd | 2 | 1 | |
203.1.c.a | ✓ | 1 | 812.c | even | 2 | 1 | |
1421.1.i.a | 2 | 28.f | even | 6 | 2 | ||
1421.1.i.a | 2 | 28.g | odd | 6 | 2 | ||
1421.1.i.a | 2 | 812.n | odd | 6 | 2 | ||
1421.1.i.a | 2 | 812.s | even | 6 | 2 | ||
1827.1.b.a | 1 | 12.b | even | 2 | 1 | ||
1827.1.b.a | 1 | 84.h | odd | 2 | 1 | ||
1827.1.b.a | 1 | 348.b | even | 2 | 1 | ||
1827.1.b.a | 1 | 2436.j | odd | 2 | 1 | ||
3248.1.k.b | 1 | 1.a | even | 1 | 1 | trivial | |
3248.1.k.b | 1 | 7.b | odd | 2 | 1 | CM | |
3248.1.k.b | 1 | 29.b | even | 2 | 1 | RM | |
3248.1.k.b | 1 | 203.c | odd | 2 | 1 | CM |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .