Properties

Label 3249.1.be.a
Level 32493249
Weight 11
Character orbit 3249.be
Analytic conductor 1.6211.621
Analytic rank 00
Dimension 1212
Projective image A4A_{4}
CM/RM no
Inner twists 1212

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3249,1,Mod(1210,3249)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3249, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([6, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3249.1210");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3249=32192 3249 = 3^{2} \cdot 19^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3249.be (of order 1818, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.621462226041.62146222604
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: Q(ζ36)\Q(\zeta_{36})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 171)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.29241.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ36q2+ζ36q3ζ3610q5ζ362q6+q7+ζ363q8+ζ362q9+ζ3611q10+ζ366q11ζ365q13++ζ368q99+O(q100) q - \zeta_{36} q^{2} + \zeta_{36} q^{3} - \zeta_{36}^{10} q^{5} - \zeta_{36}^{2} q^{6} + q^{7} + \zeta_{36}^{3} q^{8} + \zeta_{36}^{2} q^{9} + \zeta_{36}^{11} q^{10} + \zeta_{36}^{6} q^{11} - \zeta_{36}^{5} q^{13} + \cdots + \zeta_{36}^{8} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+12q7+6q11+6q266q306q39+6q456q58+6q64+6q7712q83+6q87+O(q100) 12 q + 12 q^{7} + 6 q^{11} + 6 q^{26} - 6 q^{30} - 6 q^{39} + 6 q^{45} - 6 q^{58} + 6 q^{64} + 6 q^{77} - 12 q^{83} + 6 q^{87}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3249Z)×\left(\mathbb{Z}/3249\mathbb{Z}\right)^\times.

nn 362362 28902890
χ(n)\chi(n) ζ366-\zeta_{36}^{6} ζ3614\zeta_{36}^{14}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1210.1
0.342020 0.939693i
−0.342020 + 0.939693i
0.984808 0.173648i
−0.984808 + 0.173648i
0.642788 + 0.766044i
−0.642788 0.766044i
0.984808 + 0.173648i
−0.984808 0.173648i
0.342020 + 0.939693i
−0.342020 0.939693i
0.642788 0.766044i
−0.642788 + 0.766044i
−0.342020 + 0.939693i 0.342020 0.939693i 0 −0.939693 0.342020i 0.766044 + 0.642788i 1.00000 −0.866025 + 0.500000i −0.766044 0.642788i 0.642788 0.766044i
1210.2 0.342020 0.939693i −0.342020 + 0.939693i 0 −0.939693 0.342020i 0.766044 + 0.642788i 1.00000 0.866025 0.500000i −0.766044 0.642788i −0.642788 + 0.766044i
1345.1 −0.984808 + 0.173648i 0.984808 0.173648i 0 0.173648 + 0.984808i −0.939693 + 0.342020i 1.00000 0.866025 0.500000i 0.939693 0.342020i −0.342020 0.939693i
1345.2 0.984808 0.173648i −0.984808 + 0.173648i 0 0.173648 + 0.984808i −0.939693 + 0.342020i 1.00000 −0.866025 + 0.500000i 0.939693 0.342020i 0.342020 + 0.939693i
1777.1 −0.642788 0.766044i 0.642788 + 0.766044i 0 0.766044 0.642788i 0.173648 0.984808i 1.00000 −0.866025 + 0.500000i −0.173648 + 0.984808i −0.984808 0.173648i
1777.2 0.642788 + 0.766044i −0.642788 0.766044i 0 0.766044 0.642788i 0.173648 0.984808i 1.00000 0.866025 0.500000i −0.173648 + 0.984808i 0.984808 + 0.173648i
2104.1 −0.984808 0.173648i 0.984808 + 0.173648i 0 0.173648 0.984808i −0.939693 0.342020i 1.00000 0.866025 + 0.500000i 0.939693 + 0.342020i −0.342020 + 0.939693i
2104.2 0.984808 + 0.173648i −0.984808 0.173648i 0 0.173648 0.984808i −0.939693 0.342020i 1.00000 −0.866025 0.500000i 0.939693 + 0.342020i 0.342020 0.939693i
2473.1 −0.342020 0.939693i 0.342020 + 0.939693i 0 −0.939693 + 0.342020i 0.766044 0.642788i 1.00000 −0.866025 0.500000i −0.766044 + 0.642788i 0.642788 + 0.766044i
2473.2 0.342020 + 0.939693i −0.342020 0.939693i 0 −0.939693 + 0.342020i 0.766044 0.642788i 1.00000 0.866025 + 0.500000i −0.766044 + 0.642788i −0.642788 0.766044i
3004.1 −0.642788 + 0.766044i 0.642788 0.766044i 0 0.766044 + 0.642788i 0.173648 + 0.984808i 1.00000 −0.866025 0.500000i −0.173648 0.984808i −0.984808 + 0.173648i
3004.2 0.642788 0.766044i −0.642788 + 0.766044i 0 0.766044 + 0.642788i 0.173648 + 0.984808i 1.00000 0.866025 + 0.500000i −0.173648 0.984808i 0.984808 0.173648i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1210.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 inner
19.c even 3 2 inner
19.d odd 6 2 inner
171.w even 9 3 inner
171.be odd 18 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3249.1.be.a 12
9.c even 3 1 3249.1.bc.a 12
19.b odd 2 1 inner 3249.1.be.a 12
19.c even 3 2 inner 3249.1.be.a 12
19.d odd 6 2 inner 3249.1.be.a 12
19.e even 9 1 171.1.o.a 4
19.e even 9 1 3249.1.i.a 4
19.e even 9 1 3249.1.s.a 4
19.e even 9 3 3249.1.bc.a 12
19.f odd 18 1 171.1.o.a 4
19.f odd 18 1 3249.1.i.a 4
19.f odd 18 1 3249.1.s.a 4
19.f odd 18 3 3249.1.bc.a 12
57.j even 18 1 513.1.o.a 4
57.l odd 18 1 513.1.o.a 4
76.k even 18 1 2736.1.bs.a 4
76.l odd 18 1 2736.1.bs.a 4
171.g even 3 1 3249.1.bc.a 12
171.h even 3 1 3249.1.bc.a 12
171.i odd 6 1 3249.1.bc.a 12
171.o odd 6 1 3249.1.bc.a 12
171.s odd 6 1 3249.1.bc.a 12
171.v even 9 1 171.1.o.a 4
171.v even 9 1 3249.1.i.a 4
171.v even 9 1 3249.1.s.a 4
171.w even 9 1 1539.1.c.d 2
171.w even 9 3 inner 3249.1.be.a 12
171.x even 18 1 513.1.o.a 4
171.z odd 18 1 513.1.o.a 4
171.bc odd 18 1 171.1.o.a 4
171.bc odd 18 1 3249.1.i.a 4
171.bc odd 18 1 3249.1.s.a 4
171.bd even 18 1 1539.1.c.c 2
171.be odd 18 1 1539.1.c.d 2
171.be odd 18 3 inner 3249.1.be.a 12
171.bf odd 18 1 1539.1.c.c 2
684.cb odd 18 1 2736.1.bs.a 4
684.cc even 18 1 2736.1.bs.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
171.1.o.a 4 19.e even 9 1
171.1.o.a 4 19.f odd 18 1
171.1.o.a 4 171.v even 9 1
171.1.o.a 4 171.bc odd 18 1
513.1.o.a 4 57.j even 18 1
513.1.o.a 4 57.l odd 18 1
513.1.o.a 4 171.x even 18 1
513.1.o.a 4 171.z odd 18 1
1539.1.c.c 2 171.bd even 18 1
1539.1.c.c 2 171.bf odd 18 1
1539.1.c.d 2 171.w even 9 1
1539.1.c.d 2 171.be odd 18 1
2736.1.bs.a 4 76.k even 18 1
2736.1.bs.a 4 76.l odd 18 1
2736.1.bs.a 4 684.cb odd 18 1
2736.1.bs.a 4 684.cc even 18 1
3249.1.i.a 4 19.e even 9 1
3249.1.i.a 4 19.f odd 18 1
3249.1.i.a 4 171.v even 9 1
3249.1.i.a 4 171.bc odd 18 1
3249.1.s.a 4 19.e even 9 1
3249.1.s.a 4 19.f odd 18 1
3249.1.s.a 4 171.v even 9 1
3249.1.s.a 4 171.bc odd 18 1
3249.1.bc.a 12 9.c even 3 1
3249.1.bc.a 12 19.e even 9 3
3249.1.bc.a 12 19.f odd 18 3
3249.1.bc.a 12 171.g even 3 1
3249.1.bc.a 12 171.h even 3 1
3249.1.bc.a 12 171.i odd 6 1
3249.1.bc.a 12 171.o odd 6 1
3249.1.bc.a 12 171.s odd 6 1
3249.1.be.a 12 1.a even 1 1 trivial
3249.1.be.a 12 19.b odd 2 1 inner
3249.1.be.a 12 19.c even 3 2 inner
3249.1.be.a 12 19.d odd 6 2 inner
3249.1.be.a 12 171.w even 9 3 inner
3249.1.be.a 12 171.be odd 18 3 inner

Hecke kernels

This newform subspace is the entire newspace S1new(3249,[χ])S_{1}^{\mathrm{new}}(3249, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
33 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
55 (T6+T3+1)2 (T^{6} + T^{3} + 1)^{2} Copy content Toggle raw display
77 (T1)12 (T - 1)^{12} Copy content Toggle raw display
1111 (T2T+1)6 (T^{2} - T + 1)^{6} Copy content Toggle raw display
1313 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 (T6T3+1)2 (T^{6} - T^{3} + 1)^{2} Copy content Toggle raw display
2929 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
3131 (T4T2+1)3 (T^{4} - T^{2} + 1)^{3} Copy content Toggle raw display
3737 T12 T^{12} Copy content Toggle raw display
4141 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
4343 (T6+T3+1)2 (T^{6} + T^{3} + 1)^{2} Copy content Toggle raw display
4747 (T6+T3+1)2 (T^{6} + T^{3} + 1)^{2} Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
6161 (T6T3+1)2 (T^{6} - T^{3} + 1)^{2} Copy content Toggle raw display
6767 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 T12 T^{12} Copy content Toggle raw display
7979 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
8383 (T+1)12 (T + 1)^{12} Copy content Toggle raw display
8989 T12 T^{12} Copy content Toggle raw display
9797 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
show more
show less