Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3249,1,Mod(1210,3249)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3249, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([6, 5]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3249.1210");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3249.be (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 171) |
Projective image: | |
Projective field: | Galois closure of 4.0.29241.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1210.1 |
|
−0.342020 | + | 0.939693i | 0.342020 | − | 0.939693i | 0 | −0.939693 | − | 0.342020i | 0.766044 | + | 0.642788i | 1.00000 | −0.866025 | + | 0.500000i | −0.766044 | − | 0.642788i | 0.642788 | − | 0.766044i | ||||||||||||||||||||||||||||||||||||||||
1210.2 | 0.342020 | − | 0.939693i | −0.342020 | + | 0.939693i | 0 | −0.939693 | − | 0.342020i | 0.766044 | + | 0.642788i | 1.00000 | 0.866025 | − | 0.500000i | −0.766044 | − | 0.642788i | −0.642788 | + | 0.766044i | |||||||||||||||||||||||||||||||||||||||||
1345.1 | −0.984808 | + | 0.173648i | 0.984808 | − | 0.173648i | 0 | 0.173648 | + | 0.984808i | −0.939693 | + | 0.342020i | 1.00000 | 0.866025 | − | 0.500000i | 0.939693 | − | 0.342020i | −0.342020 | − | 0.939693i | |||||||||||||||||||||||||||||||||||||||||
1345.2 | 0.984808 | − | 0.173648i | −0.984808 | + | 0.173648i | 0 | 0.173648 | + | 0.984808i | −0.939693 | + | 0.342020i | 1.00000 | −0.866025 | + | 0.500000i | 0.939693 | − | 0.342020i | 0.342020 | + | 0.939693i | |||||||||||||||||||||||||||||||||||||||||
1777.1 | −0.642788 | − | 0.766044i | 0.642788 | + | 0.766044i | 0 | 0.766044 | − | 0.642788i | 0.173648 | − | 0.984808i | 1.00000 | −0.866025 | + | 0.500000i | −0.173648 | + | 0.984808i | −0.984808 | − | 0.173648i | |||||||||||||||||||||||||||||||||||||||||
1777.2 | 0.642788 | + | 0.766044i | −0.642788 | − | 0.766044i | 0 | 0.766044 | − | 0.642788i | 0.173648 | − | 0.984808i | 1.00000 | 0.866025 | − | 0.500000i | −0.173648 | + | 0.984808i | 0.984808 | + | 0.173648i | |||||||||||||||||||||||||||||||||||||||||
2104.1 | −0.984808 | − | 0.173648i | 0.984808 | + | 0.173648i | 0 | 0.173648 | − | 0.984808i | −0.939693 | − | 0.342020i | 1.00000 | 0.866025 | + | 0.500000i | 0.939693 | + | 0.342020i | −0.342020 | + | 0.939693i | |||||||||||||||||||||||||||||||||||||||||
2104.2 | 0.984808 | + | 0.173648i | −0.984808 | − | 0.173648i | 0 | 0.173648 | − | 0.984808i | −0.939693 | − | 0.342020i | 1.00000 | −0.866025 | − | 0.500000i | 0.939693 | + | 0.342020i | 0.342020 | − | 0.939693i | |||||||||||||||||||||||||||||||||||||||||
2473.1 | −0.342020 | − | 0.939693i | 0.342020 | + | 0.939693i | 0 | −0.939693 | + | 0.342020i | 0.766044 | − | 0.642788i | 1.00000 | −0.866025 | − | 0.500000i | −0.766044 | + | 0.642788i | 0.642788 | + | 0.766044i | |||||||||||||||||||||||||||||||||||||||||
2473.2 | 0.342020 | + | 0.939693i | −0.342020 | − | 0.939693i | 0 | −0.939693 | + | 0.342020i | 0.766044 | − | 0.642788i | 1.00000 | 0.866025 | + | 0.500000i | −0.766044 | + | 0.642788i | −0.642788 | − | 0.766044i | |||||||||||||||||||||||||||||||||||||||||
3004.1 | −0.642788 | + | 0.766044i | 0.642788 | − | 0.766044i | 0 | 0.766044 | + | 0.642788i | 0.173648 | + | 0.984808i | 1.00000 | −0.866025 | − | 0.500000i | −0.173648 | − | 0.984808i | −0.984808 | + | 0.173648i | |||||||||||||||||||||||||||||||||||||||||
3004.2 | 0.642788 | − | 0.766044i | −0.642788 | + | 0.766044i | 0 | 0.766044 | + | 0.642788i | 0.173648 | + | 0.984808i | 1.00000 | 0.866025 | + | 0.500000i | −0.173648 | − | 0.984808i | 0.984808 | − | 0.173648i | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | inner |
19.c | even | 3 | 2 | inner |
19.d | odd | 6 | 2 | inner |
171.w | even | 9 | 3 | inner |
171.be | odd | 18 | 3 | inner |
Twists
Hecke kernels
This newform subspace is the entire newspace .