Properties

Label 325.10.a.f.1.5
Level $325$
Weight $10$
Character 325.1
Self dual yes
Analytic conductor $167.387$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,10,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(167.386646753\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} - 4134 x^{8} - 3624 x^{7} + 5679966 x^{6} + 22403396 x^{5} - 2851482688 x^{4} + \cdots - 12862990590450 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-12.5874\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-13.5874 q^{2} +160.949 q^{3} -327.382 q^{4} -2186.88 q^{6} +8291.63 q^{7} +11405.0 q^{8} +6221.59 q^{9} -75684.8 q^{11} -52691.8 q^{12} -28561.0 q^{13} -112662. q^{14} +12654.5 q^{16} +316428. q^{17} -84535.3 q^{18} -187425. q^{19} +1.33453e6 q^{21} +1.02836e6 q^{22} +1.56452e6 q^{23} +1.83563e6 q^{24} +388070. q^{26} -2.16660e6 q^{27} -2.71453e6 q^{28} -4.30603e6 q^{29} +7.76007e6 q^{31} -6.01132e6 q^{32} -1.21814e7 q^{33} -4.29944e6 q^{34} -2.03684e6 q^{36} -412536. q^{37} +2.54663e6 q^{38} -4.59687e6 q^{39} -3.08779e7 q^{41} -1.81328e7 q^{42} -2.15517e7 q^{43} +2.47778e7 q^{44} -2.12578e7 q^{46} +2.01133e7 q^{47} +2.03674e6 q^{48} +2.83975e7 q^{49} +5.09287e7 q^{51} +9.35036e6 q^{52} +4.89511e7 q^{53} +2.94385e7 q^{54} +9.45663e7 q^{56} -3.01659e7 q^{57} +5.85079e7 q^{58} -1.02147e8 q^{59} -1.41547e8 q^{61} -1.05439e8 q^{62} +5.15871e7 q^{63} +7.51992e7 q^{64} +1.65514e8 q^{66} -1.07231e8 q^{67} -1.03593e8 q^{68} +2.51808e8 q^{69} +3.31935e8 q^{71} +7.09574e7 q^{72} +3.81069e8 q^{73} +5.60530e6 q^{74} +6.13597e7 q^{76} -6.27550e8 q^{77} +6.24595e7 q^{78} +1.61165e7 q^{79} -4.71172e8 q^{81} +4.19551e8 q^{82} +5.16835e8 q^{83} -4.36901e8 q^{84} +2.92832e8 q^{86} -6.93052e8 q^{87} -8.63187e8 q^{88} -9.01566e8 q^{89} -2.36817e8 q^{91} -5.12195e8 q^{92} +1.24898e9 q^{93} -2.73288e8 q^{94} -9.67516e8 q^{96} -3.05437e8 q^{97} -3.85848e8 q^{98} -4.70879e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8 q^{2} - 170 q^{3} + 3158 q^{4} - 3306 q^{6} - 4796 q^{7} + 19056 q^{8} + 92810 q^{9} - 74950 q^{11} + 51834 q^{12} - 285610 q^{13} + 60672 q^{14} + 1368530 q^{16} - 1066000 q^{17} - 1679076 q^{18}+ \cdots - 2805512690 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −13.5874 −0.600485 −0.300242 0.953863i \(-0.597068\pi\)
−0.300242 + 0.953863i \(0.597068\pi\)
\(3\) 160.949 1.14721 0.573605 0.819132i \(-0.305545\pi\)
0.573605 + 0.819132i \(0.305545\pi\)
\(4\) −327.382 −0.639418
\(5\) 0 0
\(6\) −2186.88 −0.688882
\(7\) 8291.63 1.30526 0.652632 0.757675i \(-0.273665\pi\)
0.652632 + 0.757675i \(0.273665\pi\)
\(8\) 11405.0 0.984446
\(9\) 6221.59 0.316089
\(10\) 0 0
\(11\) −75684.8 −1.55862 −0.779312 0.626636i \(-0.784431\pi\)
−0.779312 + 0.626636i \(0.784431\pi\)
\(12\) −52691.8 −0.733546
\(13\) −28561.0 −0.277350
\(14\) −112662. −0.783792
\(15\) 0 0
\(16\) 12654.5 0.0482732
\(17\) 316428. 0.918871 0.459435 0.888211i \(-0.348052\pi\)
0.459435 + 0.888211i \(0.348052\pi\)
\(18\) −84535.3 −0.189807
\(19\) −187425. −0.329942 −0.164971 0.986298i \(-0.552753\pi\)
−0.164971 + 0.986298i \(0.552753\pi\)
\(20\) 0 0
\(21\) 1.33453e6 1.49741
\(22\) 1.02836e6 0.935930
\(23\) 1.56452e6 1.16575 0.582875 0.812562i \(-0.301928\pi\)
0.582875 + 0.812562i \(0.301928\pi\)
\(24\) 1.83563e6 1.12937
\(25\) 0 0
\(26\) 388070. 0.166545
\(27\) −2.16660e6 −0.784589
\(28\) −2.71453e6 −0.834610
\(29\) −4.30603e6 −1.13054 −0.565271 0.824905i \(-0.691228\pi\)
−0.565271 + 0.824905i \(0.691228\pi\)
\(30\) 0 0
\(31\) 7.76007e6 1.50917 0.754584 0.656203i \(-0.227839\pi\)
0.754584 + 0.656203i \(0.227839\pi\)
\(32\) −6.01132e6 −1.01343
\(33\) −1.21814e7 −1.78807
\(34\) −4.29944e6 −0.551768
\(35\) 0 0
\(36\) −2.03684e6 −0.202113
\(37\) −412536. −0.0361871 −0.0180936 0.999836i \(-0.505760\pi\)
−0.0180936 + 0.999836i \(0.505760\pi\)
\(38\) 2.54663e6 0.198125
\(39\) −4.59687e6 −0.318179
\(40\) 0 0
\(41\) −3.08779e7 −1.70655 −0.853277 0.521458i \(-0.825388\pi\)
−0.853277 + 0.521458i \(0.825388\pi\)
\(42\) −1.81328e7 −0.899173
\(43\) −2.15517e7 −0.961332 −0.480666 0.876904i \(-0.659605\pi\)
−0.480666 + 0.876904i \(0.659605\pi\)
\(44\) 2.47778e7 0.996612
\(45\) 0 0
\(46\) −2.12578e7 −0.700015
\(47\) 2.01133e7 0.601233 0.300616 0.953745i \(-0.402808\pi\)
0.300616 + 0.953745i \(0.402808\pi\)
\(48\) 2.03674e6 0.0553795
\(49\) 2.83975e7 0.703715
\(50\) 0 0
\(51\) 5.09287e7 1.05414
\(52\) 9.35036e6 0.177343
\(53\) 4.89511e7 0.852159 0.426080 0.904686i \(-0.359894\pi\)
0.426080 + 0.904686i \(0.359894\pi\)
\(54\) 2.94385e7 0.471134
\(55\) 0 0
\(56\) 9.45663e7 1.28496
\(57\) −3.01659e7 −0.378512
\(58\) 5.85079e7 0.678873
\(59\) −1.02147e8 −1.09746 −0.548732 0.835998i \(-0.684889\pi\)
−0.548732 + 0.835998i \(0.684889\pi\)
\(60\) 0 0
\(61\) −1.41547e8 −1.30893 −0.654464 0.756093i \(-0.727106\pi\)
−0.654464 + 0.756093i \(0.727106\pi\)
\(62\) −1.05439e8 −0.906233
\(63\) 5.15871e7 0.412580
\(64\) 7.51992e7 0.560278
\(65\) 0 0
\(66\) 1.65514e8 1.07371
\(67\) −1.07231e8 −0.650108 −0.325054 0.945695i \(-0.605382\pi\)
−0.325054 + 0.945695i \(0.605382\pi\)
\(68\) −1.03593e8 −0.587542
\(69\) 2.51808e8 1.33736
\(70\) 0 0
\(71\) 3.31935e8 1.55021 0.775105 0.631832i \(-0.217697\pi\)
0.775105 + 0.631832i \(0.217697\pi\)
\(72\) 7.09574e7 0.311173
\(73\) 3.81069e8 1.57055 0.785274 0.619148i \(-0.212522\pi\)
0.785274 + 0.619148i \(0.212522\pi\)
\(74\) 5.60530e6 0.0217298
\(75\) 0 0
\(76\) 6.13597e7 0.210971
\(77\) −6.27550e8 −2.03442
\(78\) 6.24595e7 0.191061
\(79\) 1.61165e7 0.0465532 0.0232766 0.999729i \(-0.492590\pi\)
0.0232766 + 0.999729i \(0.492590\pi\)
\(80\) 0 0
\(81\) −4.71172e8 −1.21618
\(82\) 4.19551e8 1.02476
\(83\) 5.16835e8 1.19536 0.597682 0.801733i \(-0.296089\pi\)
0.597682 + 0.801733i \(0.296089\pi\)
\(84\) −4.36901e8 −0.957472
\(85\) 0 0
\(86\) 2.92832e8 0.577265
\(87\) −6.93052e8 −1.29697
\(88\) −8.63187e8 −1.53438
\(89\) −9.01566e8 −1.52315 −0.761574 0.648077i \(-0.775573\pi\)
−0.761574 + 0.648077i \(0.775573\pi\)
\(90\) 0 0
\(91\) −2.36817e8 −0.362015
\(92\) −5.12195e8 −0.745401
\(93\) 1.24898e9 1.73133
\(94\) −2.73288e8 −0.361031
\(95\) 0 0
\(96\) −9.67516e8 −1.16262
\(97\) −3.05437e8 −0.350307 −0.175153 0.984541i \(-0.556042\pi\)
−0.175153 + 0.984541i \(0.556042\pi\)
\(98\) −3.85848e8 −0.422570
\(99\) −4.70879e8 −0.492665
\(100\) 0 0
\(101\) −1.91803e9 −1.83404 −0.917020 0.398841i \(-0.869413\pi\)
−0.917020 + 0.398841i \(0.869413\pi\)
\(102\) −6.91990e8 −0.632993
\(103\) 1.00361e9 0.878610 0.439305 0.898338i \(-0.355225\pi\)
0.439305 + 0.898338i \(0.355225\pi\)
\(104\) −3.25739e8 −0.273036
\(105\) 0 0
\(106\) −6.65119e8 −0.511709
\(107\) −1.83445e8 −0.135294 −0.0676471 0.997709i \(-0.521549\pi\)
−0.0676471 + 0.997709i \(0.521549\pi\)
\(108\) 7.09306e8 0.501680
\(109\) −9.57254e8 −0.649543 −0.324771 0.945793i \(-0.605287\pi\)
−0.324771 + 0.945793i \(0.605287\pi\)
\(110\) 0 0
\(111\) −6.63972e7 −0.0415142
\(112\) 1.04927e8 0.0630093
\(113\) 1.10637e9 0.638334 0.319167 0.947698i \(-0.396597\pi\)
0.319167 + 0.947698i \(0.396597\pi\)
\(114\) 4.09877e8 0.227291
\(115\) 0 0
\(116\) 1.40972e9 0.722888
\(117\) −1.77695e8 −0.0876674
\(118\) 1.38791e9 0.659010
\(119\) 2.62370e9 1.19937
\(120\) 0 0
\(121\) 3.37024e9 1.42931
\(122\) 1.92326e9 0.785992
\(123\) −4.96976e9 −1.95777
\(124\) −2.54051e9 −0.964990
\(125\) 0 0
\(126\) −7.00935e8 −0.247748
\(127\) 1.21998e9 0.416136 0.208068 0.978114i \(-0.433282\pi\)
0.208068 + 0.978114i \(0.433282\pi\)
\(128\) 2.05603e9 0.676995
\(129\) −3.46872e9 −1.10285
\(130\) 0 0
\(131\) 5.25104e9 1.55784 0.778922 0.627120i \(-0.215767\pi\)
0.778922 + 0.627120i \(0.215767\pi\)
\(132\) 3.98797e9 1.14332
\(133\) −1.55406e9 −0.430661
\(134\) 1.45700e9 0.390380
\(135\) 0 0
\(136\) 3.60887e9 0.904578
\(137\) −6.07545e9 −1.47345 −0.736726 0.676192i \(-0.763629\pi\)
−0.736726 + 0.676192i \(0.763629\pi\)
\(138\) −3.42141e9 −0.803063
\(139\) 4.17680e9 0.949024 0.474512 0.880249i \(-0.342625\pi\)
0.474512 + 0.880249i \(0.342625\pi\)
\(140\) 0 0
\(141\) 3.23721e9 0.689740
\(142\) −4.51014e9 −0.930878
\(143\) 2.16163e9 0.432285
\(144\) 7.87313e7 0.0152587
\(145\) 0 0
\(146\) −5.17775e9 −0.943090
\(147\) 4.57054e9 0.807309
\(148\) 1.35057e8 0.0231387
\(149\) 2.90520e8 0.0482878 0.0241439 0.999708i \(-0.492314\pi\)
0.0241439 + 0.999708i \(0.492314\pi\)
\(150\) 0 0
\(151\) −1.03439e10 −1.61915 −0.809577 0.587013i \(-0.800304\pi\)
−0.809577 + 0.587013i \(0.800304\pi\)
\(152\) −2.13759e9 −0.324810
\(153\) 1.96868e9 0.290445
\(154\) 8.52678e9 1.22164
\(155\) 0 0
\(156\) 1.50493e9 0.203449
\(157\) −9.50868e9 −1.24903 −0.624514 0.781014i \(-0.714703\pi\)
−0.624514 + 0.781014i \(0.714703\pi\)
\(158\) −2.18982e8 −0.0279545
\(159\) 7.87863e9 0.977605
\(160\) 0 0
\(161\) 1.29724e10 1.52161
\(162\) 6.40201e9 0.730296
\(163\) 2.22995e9 0.247429 0.123715 0.992318i \(-0.460519\pi\)
0.123715 + 0.992318i \(0.460519\pi\)
\(164\) 1.01089e10 1.09120
\(165\) 0 0
\(166\) −7.02245e9 −0.717798
\(167\) −7.50737e9 −0.746902 −0.373451 0.927650i \(-0.621826\pi\)
−0.373451 + 0.927650i \(0.621826\pi\)
\(168\) 1.52204e10 1.47412
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −1.16608e9 −0.104291
\(172\) 7.05563e9 0.614693
\(173\) −1.58812e10 −1.34795 −0.673977 0.738753i \(-0.735415\pi\)
−0.673977 + 0.738753i \(0.735415\pi\)
\(174\) 9.41679e9 0.778809
\(175\) 0 0
\(176\) −9.57756e8 −0.0752398
\(177\) −1.64404e10 −1.25902
\(178\) 1.22500e10 0.914628
\(179\) −1.14604e10 −0.834372 −0.417186 0.908821i \(-0.636984\pi\)
−0.417186 + 0.908821i \(0.636984\pi\)
\(180\) 0 0
\(181\) −2.40713e9 −0.166704 −0.0833518 0.996520i \(-0.526563\pi\)
−0.0833518 + 0.996520i \(0.526563\pi\)
\(182\) 3.21773e9 0.217385
\(183\) −2.27818e10 −1.50162
\(184\) 1.78434e10 1.14762
\(185\) 0 0
\(186\) −1.69704e10 −1.03964
\(187\) −2.39488e10 −1.43217
\(188\) −6.58473e9 −0.384439
\(189\) −1.79646e10 −1.02410
\(190\) 0 0
\(191\) −1.95693e10 −1.06396 −0.531980 0.846757i \(-0.678552\pi\)
−0.531980 + 0.846757i \(0.678552\pi\)
\(192\) 1.21032e10 0.642756
\(193\) 1.30616e10 0.677626 0.338813 0.940854i \(-0.389975\pi\)
0.338813 + 0.940854i \(0.389975\pi\)
\(194\) 4.15010e9 0.210354
\(195\) 0 0
\(196\) −9.29681e9 −0.449968
\(197\) 5.02009e8 0.0237472 0.0118736 0.999930i \(-0.496220\pi\)
0.0118736 + 0.999930i \(0.496220\pi\)
\(198\) 6.39804e9 0.295838
\(199\) 1.40039e10 0.633012 0.316506 0.948591i \(-0.397490\pi\)
0.316506 + 0.948591i \(0.397490\pi\)
\(200\) 0 0
\(201\) −1.72588e10 −0.745810
\(202\) 2.60611e10 1.10131
\(203\) −3.57040e10 −1.47566
\(204\) −1.66732e10 −0.674034
\(205\) 0 0
\(206\) −1.36364e10 −0.527592
\(207\) 9.73378e9 0.368481
\(208\) −3.61426e8 −0.0133886
\(209\) 1.41853e10 0.514255
\(210\) 0 0
\(211\) −7.33497e9 −0.254758 −0.127379 0.991854i \(-0.540656\pi\)
−0.127379 + 0.991854i \(0.540656\pi\)
\(212\) −1.60257e10 −0.544886
\(213\) 5.34246e10 1.77842
\(214\) 2.49255e9 0.0812421
\(215\) 0 0
\(216\) −2.47102e10 −0.772385
\(217\) 6.43436e10 1.96986
\(218\) 1.30066e10 0.390041
\(219\) 6.13328e10 1.80175
\(220\) 0 0
\(221\) −9.03749e9 −0.254849
\(222\) 9.02167e8 0.0249286
\(223\) −3.50187e10 −0.948261 −0.474130 0.880455i \(-0.657237\pi\)
−0.474130 + 0.880455i \(0.657237\pi\)
\(224\) −4.98436e10 −1.32280
\(225\) 0 0
\(226\) −1.50327e10 −0.383310
\(227\) −7.31720e10 −1.82906 −0.914531 0.404515i \(-0.867440\pi\)
−0.914531 + 0.404515i \(0.867440\pi\)
\(228\) 9.87579e9 0.242028
\(229\) −3.39268e10 −0.815235 −0.407618 0.913153i \(-0.633640\pi\)
−0.407618 + 0.913153i \(0.633640\pi\)
\(230\) 0 0
\(231\) −1.01004e11 −2.33390
\(232\) −4.91105e10 −1.11296
\(233\) −2.11791e10 −0.470767 −0.235383 0.971903i \(-0.575635\pi\)
−0.235383 + 0.971903i \(0.575635\pi\)
\(234\) 2.41441e9 0.0526430
\(235\) 0 0
\(236\) 3.34410e10 0.701738
\(237\) 2.59394e9 0.0534062
\(238\) −3.56493e10 −0.720203
\(239\) −5.47243e10 −1.08490 −0.542450 0.840088i \(-0.682503\pi\)
−0.542450 + 0.840088i \(0.682503\pi\)
\(240\) 0 0
\(241\) −4.62069e9 −0.0882328 −0.0441164 0.999026i \(-0.514047\pi\)
−0.0441164 + 0.999026i \(0.514047\pi\)
\(242\) −4.57928e10 −0.858278
\(243\) −3.31894e10 −0.610621
\(244\) 4.63399e10 0.836953
\(245\) 0 0
\(246\) 6.75263e10 1.17561
\(247\) 5.35306e9 0.0915094
\(248\) 8.85038e10 1.48569
\(249\) 8.31840e10 1.37133
\(250\) 0 0
\(251\) −7.06512e10 −1.12354 −0.561769 0.827294i \(-0.689879\pi\)
−0.561769 + 0.827294i \(0.689879\pi\)
\(252\) −1.68887e10 −0.263811
\(253\) −1.18410e11 −1.81696
\(254\) −1.65764e10 −0.249884
\(255\) 0 0
\(256\) −6.64382e10 −0.966803
\(257\) −7.82149e10 −1.11838 −0.559191 0.829039i \(-0.688888\pi\)
−0.559191 + 0.829039i \(0.688888\pi\)
\(258\) 4.71310e10 0.662244
\(259\) −3.42059e9 −0.0472337
\(260\) 0 0
\(261\) −2.67904e10 −0.357352
\(262\) −7.13480e10 −0.935462
\(263\) −2.65738e10 −0.342494 −0.171247 0.985228i \(-0.554780\pi\)
−0.171247 + 0.985228i \(0.554780\pi\)
\(264\) −1.38929e11 −1.76026
\(265\) 0 0
\(266\) 2.11157e10 0.258606
\(267\) −1.45106e11 −1.74737
\(268\) 3.51056e10 0.415691
\(269\) −4.78271e10 −0.556915 −0.278458 0.960449i \(-0.589823\pi\)
−0.278458 + 0.960449i \(0.589823\pi\)
\(270\) 0 0
\(271\) 1.60370e10 0.180618 0.0903092 0.995914i \(-0.471214\pi\)
0.0903092 + 0.995914i \(0.471214\pi\)
\(272\) 4.00425e9 0.0443569
\(273\) −3.81155e10 −0.415307
\(274\) 8.25497e10 0.884785
\(275\) 0 0
\(276\) −8.24372e10 −0.855131
\(277\) 1.13361e10 0.115692 0.0578462 0.998326i \(-0.481577\pi\)
0.0578462 + 0.998326i \(0.481577\pi\)
\(278\) −5.67520e10 −0.569875
\(279\) 4.82799e10 0.477032
\(280\) 0 0
\(281\) 1.04524e10 0.100009 0.0500044 0.998749i \(-0.484076\pi\)
0.0500044 + 0.998749i \(0.484076\pi\)
\(282\) −4.39854e10 −0.414178
\(283\) 8.30382e10 0.769554 0.384777 0.923010i \(-0.374278\pi\)
0.384777 + 0.923010i \(0.374278\pi\)
\(284\) −1.08670e11 −0.991232
\(285\) 0 0
\(286\) −2.93710e10 −0.259580
\(287\) −2.56028e11 −2.22750
\(288\) −3.74000e10 −0.320335
\(289\) −1.84614e10 −0.155677
\(290\) 0 0
\(291\) −4.91597e10 −0.401875
\(292\) −1.24755e11 −1.00424
\(293\) 1.54023e11 1.22090 0.610450 0.792055i \(-0.290989\pi\)
0.610450 + 0.792055i \(0.290989\pi\)
\(294\) −6.21019e10 −0.484777
\(295\) 0 0
\(296\) −4.70499e9 −0.0356242
\(297\) 1.63979e11 1.22288
\(298\) −3.94741e9 −0.0289961
\(299\) −4.46842e10 −0.323321
\(300\) 0 0
\(301\) −1.78699e11 −1.25479
\(302\) 1.40547e11 0.972278
\(303\) −3.08705e11 −2.10403
\(304\) −2.37178e9 −0.0159274
\(305\) 0 0
\(306\) −2.67493e10 −0.174408
\(307\) 1.27480e11 0.819070 0.409535 0.912294i \(-0.365691\pi\)
0.409535 + 0.912294i \(0.365691\pi\)
\(308\) 2.05448e11 1.30084
\(309\) 1.61530e11 1.00795
\(310\) 0 0
\(311\) 9.31763e10 0.564785 0.282393 0.959299i \(-0.408872\pi\)
0.282393 + 0.959299i \(0.408872\pi\)
\(312\) −5.24274e10 −0.313230
\(313\) −2.16180e11 −1.27311 −0.636556 0.771231i \(-0.719641\pi\)
−0.636556 + 0.771231i \(0.719641\pi\)
\(314\) 1.29198e11 0.750022
\(315\) 0 0
\(316\) −5.27626e9 −0.0297669
\(317\) 6.07946e10 0.338141 0.169071 0.985604i \(-0.445923\pi\)
0.169071 + 0.985604i \(0.445923\pi\)
\(318\) −1.07050e11 −0.587037
\(319\) 3.25901e11 1.76209
\(320\) 0 0
\(321\) −2.95253e10 −0.155211
\(322\) −1.76261e11 −0.913704
\(323\) −5.93066e10 −0.303174
\(324\) 1.54253e11 0.777645
\(325\) 0 0
\(326\) −3.02993e10 −0.148577
\(327\) −1.54069e11 −0.745162
\(328\) −3.52163e11 −1.68001
\(329\) 1.66772e11 0.784768
\(330\) 0 0
\(331\) −4.08289e11 −1.86957 −0.934786 0.355212i \(-0.884409\pi\)
−0.934786 + 0.355212i \(0.884409\pi\)
\(332\) −1.69202e11 −0.764337
\(333\) −2.56663e9 −0.0114384
\(334\) 1.02006e11 0.448503
\(335\) 0 0
\(336\) 1.68879e10 0.0722849
\(337\) −1.75555e10 −0.0741443 −0.0370721 0.999313i \(-0.511803\pi\)
−0.0370721 + 0.999313i \(0.511803\pi\)
\(338\) −1.10837e10 −0.0461911
\(339\) 1.78069e11 0.732303
\(340\) 0 0
\(341\) −5.87319e11 −2.35223
\(342\) 1.58441e10 0.0626252
\(343\) −9.91360e10 −0.386730
\(344\) −2.45798e11 −0.946379
\(345\) 0 0
\(346\) 2.15784e11 0.809425
\(347\) 1.95585e11 0.724190 0.362095 0.932141i \(-0.382062\pi\)
0.362095 + 0.932141i \(0.382062\pi\)
\(348\) 2.26893e11 0.829304
\(349\) −2.28568e11 −0.824708 −0.412354 0.911024i \(-0.635293\pi\)
−0.412354 + 0.911024i \(0.635293\pi\)
\(350\) 0 0
\(351\) 6.18803e10 0.217606
\(352\) 4.54965e11 1.57956
\(353\) 5.20913e11 1.78558 0.892790 0.450474i \(-0.148745\pi\)
0.892790 + 0.450474i \(0.148745\pi\)
\(354\) 2.23383e11 0.756023
\(355\) 0 0
\(356\) 2.95156e11 0.973929
\(357\) 4.22282e11 1.37593
\(358\) 1.55717e11 0.501028
\(359\) −4.53052e11 −1.43954 −0.719770 0.694213i \(-0.755753\pi\)
−0.719770 + 0.694213i \(0.755753\pi\)
\(360\) 0 0
\(361\) −2.87559e11 −0.891138
\(362\) 3.27066e10 0.100103
\(363\) 5.42436e11 1.63972
\(364\) 7.75297e10 0.231479
\(365\) 0 0
\(366\) 3.09546e11 0.901697
\(367\) 3.57014e11 1.02728 0.513639 0.858007i \(-0.328297\pi\)
0.513639 + 0.858007i \(0.328297\pi\)
\(368\) 1.97982e10 0.0562745
\(369\) −1.92109e11 −0.539424
\(370\) 0 0
\(371\) 4.05884e11 1.11229
\(372\) −4.08892e11 −1.10705
\(373\) 8.64026e10 0.231120 0.115560 0.993301i \(-0.463134\pi\)
0.115560 + 0.993301i \(0.463134\pi\)
\(374\) 3.25402e11 0.859999
\(375\) 0 0
\(376\) 2.29393e11 0.591881
\(377\) 1.22985e11 0.313556
\(378\) 2.44093e11 0.614954
\(379\) 2.85135e11 0.709862 0.354931 0.934892i \(-0.384504\pi\)
0.354931 + 0.934892i \(0.384504\pi\)
\(380\) 0 0
\(381\) 1.96354e11 0.477396
\(382\) 2.65896e11 0.638892
\(383\) −7.39172e10 −0.175530 −0.0877650 0.996141i \(-0.527972\pi\)
−0.0877650 + 0.996141i \(0.527972\pi\)
\(384\) 3.30916e11 0.776655
\(385\) 0 0
\(386\) −1.77474e11 −0.406904
\(387\) −1.34086e11 −0.303867
\(388\) 9.99945e10 0.223992
\(389\) −7.20854e11 −1.59615 −0.798075 0.602558i \(-0.794148\pi\)
−0.798075 + 0.602558i \(0.794148\pi\)
\(390\) 0 0
\(391\) 4.95057e11 1.07117
\(392\) 3.23874e11 0.692769
\(393\) 8.45149e11 1.78717
\(394\) −6.82100e9 −0.0142599
\(395\) 0 0
\(396\) 1.54157e11 0.315019
\(397\) −7.41808e11 −1.49877 −0.749383 0.662136i \(-0.769650\pi\)
−0.749383 + 0.662136i \(0.769650\pi\)
\(398\) −1.90278e11 −0.380114
\(399\) −2.50125e11 −0.494059
\(400\) 0 0
\(401\) 3.16583e11 0.611417 0.305708 0.952125i \(-0.401107\pi\)
0.305708 + 0.952125i \(0.401107\pi\)
\(402\) 2.34502e11 0.447847
\(403\) −2.21635e11 −0.418568
\(404\) 6.27928e11 1.17272
\(405\) 0 0
\(406\) 4.85126e11 0.886109
\(407\) 3.12227e10 0.0564021
\(408\) 5.80844e11 1.03774
\(409\) −8.53891e11 −1.50885 −0.754427 0.656383i \(-0.772085\pi\)
−0.754427 + 0.656383i \(0.772085\pi\)
\(410\) 0 0
\(411\) −9.77838e11 −1.69036
\(412\) −3.28563e11 −0.561799
\(413\) −8.46962e11 −1.43248
\(414\) −1.32257e11 −0.221267
\(415\) 0 0
\(416\) 1.71689e11 0.281076
\(417\) 6.72252e11 1.08873
\(418\) −1.92741e11 −0.308803
\(419\) 7.64667e11 1.21202 0.606009 0.795458i \(-0.292769\pi\)
0.606009 + 0.795458i \(0.292769\pi\)
\(420\) 0 0
\(421\) 3.19607e11 0.495846 0.247923 0.968780i \(-0.420252\pi\)
0.247923 + 0.968780i \(0.420252\pi\)
\(422\) 9.96634e10 0.152978
\(423\) 1.25137e11 0.190043
\(424\) 5.58289e11 0.838905
\(425\) 0 0
\(426\) −7.25903e11 −1.06791
\(427\) −1.17365e12 −1.70850
\(428\) 6.00566e10 0.0865095
\(429\) 3.47913e11 0.495921
\(430\) 0 0
\(431\) 6.33999e10 0.0884996 0.0442498 0.999020i \(-0.485910\pi\)
0.0442498 + 0.999020i \(0.485910\pi\)
\(432\) −2.74173e10 −0.0378746
\(433\) −1.44375e12 −1.97377 −0.986886 0.161422i \(-0.948392\pi\)
−0.986886 + 0.161422i \(0.948392\pi\)
\(434\) −8.74263e11 −1.18287
\(435\) 0 0
\(436\) 3.13388e11 0.415329
\(437\) −2.93230e11 −0.384629
\(438\) −8.33354e11 −1.08192
\(439\) −3.23421e11 −0.415602 −0.207801 0.978171i \(-0.566631\pi\)
−0.207801 + 0.978171i \(0.566631\pi\)
\(440\) 0 0
\(441\) 1.76677e11 0.222437
\(442\) 1.22796e11 0.153033
\(443\) 1.00232e12 1.23649 0.618246 0.785985i \(-0.287844\pi\)
0.618246 + 0.785985i \(0.287844\pi\)
\(444\) 2.17373e10 0.0265449
\(445\) 0 0
\(446\) 4.75813e11 0.569416
\(447\) 4.67589e10 0.0553962
\(448\) 6.23524e11 0.731311
\(449\) −4.59898e11 −0.534014 −0.267007 0.963695i \(-0.586035\pi\)
−0.267007 + 0.963695i \(0.586035\pi\)
\(450\) 0 0
\(451\) 2.33698e12 2.65988
\(452\) −3.62206e11 −0.408162
\(453\) −1.66484e12 −1.85751
\(454\) 9.94219e11 1.09832
\(455\) 0 0
\(456\) −3.44044e11 −0.372625
\(457\) −7.20432e11 −0.772628 −0.386314 0.922367i \(-0.626252\pi\)
−0.386314 + 0.922367i \(0.626252\pi\)
\(458\) 4.60977e11 0.489536
\(459\) −6.85573e11 −0.720936
\(460\) 0 0
\(461\) 3.61758e11 0.373047 0.186524 0.982450i \(-0.440278\pi\)
0.186524 + 0.982450i \(0.440278\pi\)
\(462\) 1.37238e12 1.40147
\(463\) −1.63053e12 −1.64898 −0.824490 0.565876i \(-0.808538\pi\)
−0.824490 + 0.565876i \(0.808538\pi\)
\(464\) −5.44909e10 −0.0545749
\(465\) 0 0
\(466\) 2.87769e11 0.282688
\(467\) −7.48072e11 −0.727809 −0.363904 0.931436i \(-0.618556\pi\)
−0.363904 + 0.931436i \(0.618556\pi\)
\(468\) 5.81741e10 0.0560561
\(469\) −8.89123e11 −0.848563
\(470\) 0 0
\(471\) −1.53041e12 −1.43290
\(472\) −1.16499e12 −1.08039
\(473\) 1.63113e12 1.49835
\(474\) −3.52449e10 −0.0320696
\(475\) 0 0
\(476\) −8.58952e11 −0.766898
\(477\) 3.04553e11 0.269359
\(478\) 7.43562e11 0.651466
\(479\) −1.90591e12 −1.65421 −0.827107 0.562045i \(-0.810015\pi\)
−0.827107 + 0.562045i \(0.810015\pi\)
\(480\) 0 0
\(481\) 1.17824e10 0.0100365
\(482\) 6.27832e10 0.0529824
\(483\) 2.08789e12 1.74561
\(484\) −1.10335e12 −0.913926
\(485\) 0 0
\(486\) 4.50959e11 0.366669
\(487\) 4.13291e11 0.332947 0.166474 0.986046i \(-0.446762\pi\)
0.166474 + 0.986046i \(0.446762\pi\)
\(488\) −1.61435e12 −1.28857
\(489\) 3.58908e11 0.283853
\(490\) 0 0
\(491\) −5.57466e11 −0.432864 −0.216432 0.976298i \(-0.569442\pi\)
−0.216432 + 0.976298i \(0.569442\pi\)
\(492\) 1.62701e12 1.25184
\(493\) −1.36255e12 −1.03882
\(494\) −7.27343e10 −0.0549500
\(495\) 0 0
\(496\) 9.82001e10 0.0728525
\(497\) 2.75228e12 2.02343
\(498\) −1.13026e12 −0.823465
\(499\) 7.42448e11 0.536060 0.268030 0.963411i \(-0.413627\pi\)
0.268030 + 0.963411i \(0.413627\pi\)
\(500\) 0 0
\(501\) −1.20830e12 −0.856853
\(502\) 9.59967e11 0.674667
\(503\) 1.36593e12 0.951422 0.475711 0.879602i \(-0.342191\pi\)
0.475711 + 0.879602i \(0.342191\pi\)
\(504\) 5.88352e11 0.406163
\(505\) 0 0
\(506\) 1.60889e12 1.09106
\(507\) 1.31291e11 0.0882469
\(508\) −3.99399e11 −0.266085
\(509\) −6.51348e11 −0.430113 −0.215057 0.976602i \(-0.568994\pi\)
−0.215057 + 0.976602i \(0.568994\pi\)
\(510\) 0 0
\(511\) 3.15969e12 2.04998
\(512\) −1.49965e11 −0.0964441
\(513\) 4.06076e11 0.258869
\(514\) 1.06274e12 0.671572
\(515\) 0 0
\(516\) 1.13560e12 0.705181
\(517\) −1.52227e12 −0.937096
\(518\) 4.64770e10 0.0283631
\(519\) −2.55606e12 −1.54638
\(520\) 0 0
\(521\) 1.00231e12 0.595982 0.297991 0.954569i \(-0.403683\pi\)
0.297991 + 0.954569i \(0.403683\pi\)
\(522\) 3.64012e11 0.214585
\(523\) 1.77614e12 1.03805 0.519027 0.854758i \(-0.326294\pi\)
0.519027 + 0.854758i \(0.326294\pi\)
\(524\) −1.71909e12 −0.996114
\(525\) 0 0
\(526\) 3.61069e11 0.205662
\(527\) 2.45550e12 1.38673
\(528\) −1.54150e11 −0.0863158
\(529\) 6.46562e11 0.358971
\(530\) 0 0
\(531\) −6.35515e11 −0.346897
\(532\) 5.08772e11 0.275373
\(533\) 8.81903e11 0.473313
\(534\) 1.97162e12 1.04927
\(535\) 0 0
\(536\) −1.22298e12 −0.639996
\(537\) −1.84453e12 −0.957199
\(538\) 6.49848e11 0.334419
\(539\) −2.14925e12 −1.09683
\(540\) 0 0
\(541\) 3.32080e12 1.66669 0.833346 0.552751i \(-0.186422\pi\)
0.833346 + 0.552751i \(0.186422\pi\)
\(542\) −2.17902e11 −0.108459
\(543\) −3.87424e11 −0.191244
\(544\) −1.90215e12 −0.931214
\(545\) 0 0
\(546\) 5.17891e11 0.249386
\(547\) −6.94762e11 −0.331813 −0.165906 0.986142i \(-0.553055\pi\)
−0.165906 + 0.986142i \(0.553055\pi\)
\(548\) 1.98899e12 0.942151
\(549\) −8.80646e11 −0.413739
\(550\) 0 0
\(551\) 8.07060e11 0.373013
\(552\) 2.87187e12 1.31656
\(553\) 1.33632e11 0.0607642
\(554\) −1.54028e11 −0.0694716
\(555\) 0 0
\(556\) −1.36741e12 −0.606823
\(557\) 3.92680e12 1.72858 0.864291 0.502992i \(-0.167767\pi\)
0.864291 + 0.502992i \(0.167767\pi\)
\(558\) −6.56000e11 −0.286451
\(559\) 6.15538e11 0.266625
\(560\) 0 0
\(561\) −3.85453e12 −1.64300
\(562\) −1.42021e11 −0.0600538
\(563\) 1.77824e10 0.00745938 0.00372969 0.999993i \(-0.498813\pi\)
0.00372969 + 0.999993i \(0.498813\pi\)
\(564\) −1.05981e12 −0.441032
\(565\) 0 0
\(566\) −1.12828e12 −0.462105
\(567\) −3.90678e12 −1.58743
\(568\) 3.78573e12 1.52610
\(569\) 2.82415e12 1.12949 0.564746 0.825265i \(-0.308974\pi\)
0.564746 + 0.825265i \(0.308974\pi\)
\(570\) 0 0
\(571\) −1.89626e12 −0.746509 −0.373255 0.927729i \(-0.621758\pi\)
−0.373255 + 0.927729i \(0.621758\pi\)
\(572\) −7.07680e11 −0.276410
\(573\) −3.14966e12 −1.22059
\(574\) 3.47876e12 1.33758
\(575\) 0 0
\(576\) 4.67859e11 0.177098
\(577\) 4.58042e12 1.72034 0.860169 0.510009i \(-0.170358\pi\)
0.860169 + 0.510009i \(0.170358\pi\)
\(578\) 2.50842e11 0.0934814
\(579\) 2.10226e12 0.777379
\(580\) 0 0
\(581\) 4.28540e12 1.56027
\(582\) 6.67954e11 0.241320
\(583\) −3.70485e12 −1.32820
\(584\) 4.34611e12 1.54612
\(585\) 0 0
\(586\) −2.09277e12 −0.733132
\(587\) 2.85381e11 0.0992097 0.0496049 0.998769i \(-0.484204\pi\)
0.0496049 + 0.998769i \(0.484204\pi\)
\(588\) −1.49631e12 −0.516208
\(589\) −1.45443e12 −0.497938
\(590\) 0 0
\(591\) 8.07978e10 0.0272431
\(592\) −5.22045e9 −0.00174687
\(593\) −1.06834e12 −0.354783 −0.177391 0.984140i \(-0.556766\pi\)
−0.177391 + 0.984140i \(0.556766\pi\)
\(594\) −2.22805e12 −0.734320
\(595\) 0 0
\(596\) −9.51109e10 −0.0308761
\(597\) 2.25392e12 0.726197
\(598\) 6.07143e11 0.194149
\(599\) 2.46712e12 0.783013 0.391507 0.920175i \(-0.371954\pi\)
0.391507 + 0.920175i \(0.371954\pi\)
\(600\) 0 0
\(601\) 7.90173e11 0.247051 0.123526 0.992341i \(-0.460580\pi\)
0.123526 + 0.992341i \(0.460580\pi\)
\(602\) 2.42805e12 0.753484
\(603\) −6.67150e11 −0.205492
\(604\) 3.38641e12 1.03532
\(605\) 0 0
\(606\) 4.19450e12 1.26344
\(607\) 2.41014e12 0.720598 0.360299 0.932837i \(-0.382675\pi\)
0.360299 + 0.932837i \(0.382675\pi\)
\(608\) 1.12667e12 0.334374
\(609\) −5.74653e12 −1.69289
\(610\) 0 0
\(611\) −5.74456e11 −0.166752
\(612\) −6.44511e11 −0.185716
\(613\) 4.34443e11 0.124268 0.0621342 0.998068i \(-0.480209\pi\)
0.0621342 + 0.998068i \(0.480209\pi\)
\(614\) −1.73213e12 −0.491839
\(615\) 0 0
\(616\) −7.15723e12 −2.00277
\(617\) −4.77599e12 −1.32672 −0.663361 0.748299i \(-0.730871\pi\)
−0.663361 + 0.748299i \(0.730871\pi\)
\(618\) −2.19477e12 −0.605258
\(619\) 3.28418e12 0.899122 0.449561 0.893250i \(-0.351580\pi\)
0.449561 + 0.893250i \(0.351580\pi\)
\(620\) 0 0
\(621\) −3.38968e12 −0.914634
\(622\) −1.26603e12 −0.339145
\(623\) −7.47545e12 −1.98811
\(624\) −5.81712e10 −0.0153595
\(625\) 0 0
\(626\) 2.93733e12 0.764484
\(627\) 2.28310e12 0.589959
\(628\) 3.11297e12 0.798650
\(629\) −1.30538e11 −0.0332513
\(630\) 0 0
\(631\) 3.55254e12 0.892087 0.446044 0.895011i \(-0.352833\pi\)
0.446044 + 0.895011i \(0.352833\pi\)
\(632\) 1.83809e11 0.0458291
\(633\) −1.18056e12 −0.292261
\(634\) −8.26042e11 −0.203049
\(635\) 0 0
\(636\) −2.57932e12 −0.625098
\(637\) −8.11060e11 −0.195176
\(638\) −4.42816e12 −1.05811
\(639\) 2.06516e12 0.490005
\(640\) 0 0
\(641\) −1.09653e12 −0.256543 −0.128271 0.991739i \(-0.540943\pi\)
−0.128271 + 0.991739i \(0.540943\pi\)
\(642\) 4.01173e11 0.0932017
\(643\) 6.94265e12 1.60168 0.800840 0.598878i \(-0.204386\pi\)
0.800840 + 0.598878i \(0.204386\pi\)
\(644\) −4.24693e12 −0.972945
\(645\) 0 0
\(646\) 8.05824e11 0.182051
\(647\) 2.69988e12 0.605725 0.302862 0.953034i \(-0.402058\pi\)
0.302862 + 0.953034i \(0.402058\pi\)
\(648\) −5.37373e12 −1.19726
\(649\) 7.73095e12 1.71053
\(650\) 0 0
\(651\) 1.03560e13 2.25985
\(652\) −7.30045e11 −0.158211
\(653\) −2.74009e12 −0.589734 −0.294867 0.955538i \(-0.595275\pi\)
−0.294867 + 0.955538i \(0.595275\pi\)
\(654\) 2.09340e12 0.447458
\(655\) 0 0
\(656\) −3.90745e11 −0.0823809
\(657\) 2.37086e12 0.496434
\(658\) −2.26600e12 −0.471241
\(659\) 9.28259e11 0.191728 0.0958638 0.995394i \(-0.469439\pi\)
0.0958638 + 0.995394i \(0.469439\pi\)
\(660\) 0 0
\(661\) −4.04087e12 −0.823319 −0.411659 0.911338i \(-0.635051\pi\)
−0.411659 + 0.911338i \(0.635051\pi\)
\(662\) 5.54760e12 1.12265
\(663\) −1.45458e12 −0.292365
\(664\) 5.89452e12 1.17677
\(665\) 0 0
\(666\) 3.48738e10 0.00686856
\(667\) −6.73686e12 −1.31793
\(668\) 2.45778e12 0.477583
\(669\) −5.63622e12 −1.08785
\(670\) 0 0
\(671\) 1.07129e13 2.04013
\(672\) −8.02228e12 −1.51753
\(673\) 8.50021e12 1.59721 0.798604 0.601856i \(-0.205572\pi\)
0.798604 + 0.601856i \(0.205572\pi\)
\(674\) 2.38533e11 0.0445225
\(675\) 0 0
\(676\) −2.67056e11 −0.0491860
\(677\) −5.00631e12 −0.915944 −0.457972 0.888967i \(-0.651424\pi\)
−0.457972 + 0.888967i \(0.651424\pi\)
\(678\) −2.41950e12 −0.439737
\(679\) −2.53257e12 −0.457243
\(680\) 0 0
\(681\) −1.17770e13 −2.09832
\(682\) 7.98015e12 1.41248
\(683\) 2.20816e12 0.388274 0.194137 0.980974i \(-0.437809\pi\)
0.194137 + 0.980974i \(0.437809\pi\)
\(684\) 3.81755e11 0.0666856
\(685\) 0 0
\(686\) 1.34700e12 0.232225
\(687\) −5.46048e12 −0.935245
\(688\) −2.72727e11 −0.0464066
\(689\) −1.39809e12 −0.236346
\(690\) 0 0
\(691\) 1.06597e13 1.77866 0.889329 0.457268i \(-0.151172\pi\)
0.889329 + 0.457268i \(0.151172\pi\)
\(692\) 5.19921e12 0.861905
\(693\) −3.90436e12 −0.643057
\(694\) −2.65749e12 −0.434865
\(695\) 0 0
\(696\) −7.90428e12 −1.27679
\(697\) −9.77061e12 −1.56810
\(698\) 3.10564e12 0.495225
\(699\) −3.40875e12 −0.540068
\(700\) 0 0
\(701\) −3.70907e12 −0.580141 −0.290071 0.957005i \(-0.593679\pi\)
−0.290071 + 0.957005i \(0.593679\pi\)
\(702\) −8.40794e11 −0.130669
\(703\) 7.73197e10 0.0119396
\(704\) −5.69144e12 −0.873263
\(705\) 0 0
\(706\) −7.07787e12 −1.07221
\(707\) −1.59036e13 −2.39391
\(708\) 5.38229e12 0.805041
\(709\) −1.01872e13 −1.51407 −0.757035 0.653375i \(-0.773353\pi\)
−0.757035 + 0.653375i \(0.773353\pi\)
\(710\) 0 0
\(711\) 1.00270e11 0.0147150
\(712\) −1.02824e13 −1.49946
\(713\) 1.21408e13 1.75931
\(714\) −5.73772e12 −0.826224
\(715\) 0 0
\(716\) 3.75191e12 0.533512
\(717\) −8.80782e12 −1.24461
\(718\) 6.15581e12 0.864421
\(719\) 1.21879e13 1.70078 0.850391 0.526151i \(-0.176365\pi\)
0.850391 + 0.526151i \(0.176365\pi\)
\(720\) 0 0
\(721\) 8.32153e12 1.14682
\(722\) 3.90719e12 0.535115
\(723\) −7.43695e11 −0.101221
\(724\) 7.88049e11 0.106593
\(725\) 0 0
\(726\) −7.37031e12 −0.984625
\(727\) −1.01425e13 −1.34661 −0.673305 0.739364i \(-0.735126\pi\)
−0.673305 + 0.739364i \(0.735126\pi\)
\(728\) −2.70091e12 −0.356384
\(729\) 3.93227e12 0.515667
\(730\) 0 0
\(731\) −6.81955e12 −0.883340
\(732\) 7.45836e12 0.960160
\(733\) 7.07904e12 0.905745 0.452873 0.891575i \(-0.350399\pi\)
0.452873 + 0.891575i \(0.350399\pi\)
\(734\) −4.85090e12 −0.616865
\(735\) 0 0
\(736\) −9.40482e12 −1.18141
\(737\) 8.11578e12 1.01327
\(738\) 2.61027e12 0.323916
\(739\) −2.44746e12 −0.301867 −0.150934 0.988544i \(-0.548228\pi\)
−0.150934 + 0.988544i \(0.548228\pi\)
\(740\) 0 0
\(741\) 8.61570e11 0.104980
\(742\) −5.51492e12 −0.667915
\(743\) 1.41311e13 1.70109 0.850545 0.525902i \(-0.176272\pi\)
0.850545 + 0.525902i \(0.176272\pi\)
\(744\) 1.42446e13 1.70440
\(745\) 0 0
\(746\) −1.17399e12 −0.138784
\(747\) 3.21553e12 0.377842
\(748\) 7.84039e12 0.915758
\(749\) −1.52106e12 −0.176595
\(750\) 0 0
\(751\) 4.52777e12 0.519403 0.259701 0.965689i \(-0.416376\pi\)
0.259701 + 0.965689i \(0.416376\pi\)
\(752\) 2.54524e11 0.0290235
\(753\) −1.13712e13 −1.28893
\(754\) −1.67104e12 −0.188285
\(755\) 0 0
\(756\) 5.88130e12 0.654825
\(757\) 1.57044e12 0.173817 0.0869083 0.996216i \(-0.472301\pi\)
0.0869083 + 0.996216i \(0.472301\pi\)
\(758\) −3.87425e12 −0.426262
\(759\) −1.90580e13 −2.08444
\(760\) 0 0
\(761\) 6.80692e12 0.735732 0.367866 0.929879i \(-0.380089\pi\)
0.367866 + 0.929879i \(0.380089\pi\)
\(762\) −2.66795e12 −0.286669
\(763\) −7.93719e12 −0.847825
\(764\) 6.40664e12 0.680315
\(765\) 0 0
\(766\) 1.00434e12 0.105403
\(767\) 2.91741e12 0.304382
\(768\) −1.06932e13 −1.10913
\(769\) 3.96959e12 0.409333 0.204667 0.978832i \(-0.434389\pi\)
0.204667 + 0.978832i \(0.434389\pi\)
\(770\) 0 0
\(771\) −1.25886e13 −1.28302
\(772\) −4.27615e12 −0.433286
\(773\) 4.26504e11 0.0429650 0.0214825 0.999769i \(-0.493161\pi\)
0.0214825 + 0.999769i \(0.493161\pi\)
\(774\) 1.82188e12 0.182467
\(775\) 0 0
\(776\) −3.48352e12 −0.344858
\(777\) −5.50541e11 −0.0541870
\(778\) 9.79454e12 0.958464
\(779\) 5.78730e12 0.563063
\(780\) 0 0
\(781\) −2.51224e13 −2.41620
\(782\) −6.72654e12 −0.643223
\(783\) 9.32946e12 0.887010
\(784\) 3.59357e11 0.0339706
\(785\) 0 0
\(786\) −1.14834e13 −1.07317
\(787\) 1.98338e13 1.84298 0.921489 0.388404i \(-0.126974\pi\)
0.921489 + 0.388404i \(0.126974\pi\)
\(788\) −1.64349e11 −0.0151844
\(789\) −4.27702e12 −0.392912
\(790\) 0 0
\(791\) 9.17362e12 0.833195
\(792\) −5.37040e12 −0.485001
\(793\) 4.04272e12 0.363032
\(794\) 1.00793e13 0.899987
\(795\) 0 0
\(796\) −4.58464e12 −0.404759
\(797\) −1.39367e13 −1.22348 −0.611742 0.791057i \(-0.709531\pi\)
−0.611742 + 0.791057i \(0.709531\pi\)
\(798\) 3.39855e12 0.296675
\(799\) 6.36440e12 0.552455
\(800\) 0 0
\(801\) −5.60917e12 −0.481451
\(802\) −4.30154e12 −0.367146
\(803\) −2.88412e13 −2.44789
\(804\) 5.65022e12 0.476884
\(805\) 0 0
\(806\) 3.01145e12 0.251344
\(807\) −7.69773e12 −0.638898
\(808\) −2.18752e13 −1.80551
\(809\) −1.07051e13 −0.878661 −0.439330 0.898326i \(-0.644784\pi\)
−0.439330 + 0.898326i \(0.644784\pi\)
\(810\) 0 0
\(811\) −8.79121e12 −0.713600 −0.356800 0.934181i \(-0.616132\pi\)
−0.356800 + 0.934181i \(0.616132\pi\)
\(812\) 1.16889e13 0.943561
\(813\) 2.58114e12 0.207207
\(814\) −4.24236e11 −0.0338686
\(815\) 0 0
\(816\) 6.44480e11 0.0508866
\(817\) 4.03934e12 0.317184
\(818\) 1.16022e13 0.906045
\(819\) −1.47338e12 −0.114429
\(820\) 0 0
\(821\) −1.68572e13 −1.29491 −0.647456 0.762103i \(-0.724167\pi\)
−0.647456 + 0.762103i \(0.724167\pi\)
\(822\) 1.32863e13 1.01503
\(823\) 7.63277e11 0.0579940 0.0289970 0.999579i \(-0.490769\pi\)
0.0289970 + 0.999579i \(0.490769\pi\)
\(824\) 1.14462e13 0.864944
\(825\) 0 0
\(826\) 1.15080e13 0.860183
\(827\) −2.54768e12 −0.189396 −0.0946979 0.995506i \(-0.530189\pi\)
−0.0946979 + 0.995506i \(0.530189\pi\)
\(828\) −3.18666e12 −0.235613
\(829\) −2.61115e13 −1.92016 −0.960079 0.279728i \(-0.909756\pi\)
−0.960079 + 0.279728i \(0.909756\pi\)
\(830\) 0 0
\(831\) 1.82454e12 0.132723
\(832\) −2.14777e12 −0.155393
\(833\) 8.98574e12 0.646623
\(834\) −9.13417e12 −0.653766
\(835\) 0 0
\(836\) −4.64400e12 −0.328824
\(837\) −1.68130e13 −1.18408
\(838\) −1.03899e13 −0.727799
\(839\) 2.02768e13 1.41277 0.706385 0.707828i \(-0.250325\pi\)
0.706385 + 0.707828i \(0.250325\pi\)
\(840\) 0 0
\(841\) 4.03478e12 0.278124
\(842\) −4.34263e12 −0.297748
\(843\) 1.68231e12 0.114731
\(844\) 2.40134e12 0.162897
\(845\) 0 0
\(846\) −1.70028e12 −0.114118
\(847\) 2.79447e13 1.86563
\(848\) 6.19453e11 0.0411365
\(849\) 1.33649e13 0.882839
\(850\) 0 0
\(851\) −6.45419e11 −0.0421851
\(852\) −1.74903e13 −1.13715
\(853\) −5.68425e12 −0.367623 −0.183811 0.982962i \(-0.558844\pi\)
−0.183811 + 0.982962i \(0.558844\pi\)
\(854\) 1.59469e13 1.02593
\(855\) 0 0
\(856\) −2.09220e12 −0.133190
\(857\) −2.21261e13 −1.40117 −0.700586 0.713568i \(-0.747078\pi\)
−0.700586 + 0.713568i \(0.747078\pi\)
\(858\) −4.72724e12 −0.297793
\(859\) 5.39127e12 0.337848 0.168924 0.985629i \(-0.445971\pi\)
0.168924 + 0.985629i \(0.445971\pi\)
\(860\) 0 0
\(861\) −4.12074e13 −2.55541
\(862\) −8.61442e11 −0.0531427
\(863\) 2.64450e12 0.162291 0.0811457 0.996702i \(-0.474142\pi\)
0.0811457 + 0.996702i \(0.474142\pi\)
\(864\) 1.30241e13 0.795128
\(865\) 0 0
\(866\) 1.96169e13 1.18522
\(867\) −2.97134e12 −0.178594
\(868\) −2.10649e13 −1.25957
\(869\) −1.21977e12 −0.0725589
\(870\) 0 0
\(871\) 3.06264e12 0.180307
\(872\) −1.09175e13 −0.639440
\(873\) −1.90030e12 −0.110728
\(874\) 3.98424e12 0.230964
\(875\) 0 0
\(876\) −2.00792e13 −1.15207
\(877\) 1.72860e13 0.986723 0.493362 0.869824i \(-0.335768\pi\)
0.493362 + 0.869824i \(0.335768\pi\)
\(878\) 4.39445e12 0.249563
\(879\) 2.47898e13 1.40063
\(880\) 0 0
\(881\) −5.09524e12 −0.284953 −0.142477 0.989798i \(-0.545507\pi\)
−0.142477 + 0.989798i \(0.545507\pi\)
\(882\) −2.40059e12 −0.133570
\(883\) 5.94406e12 0.329048 0.164524 0.986373i \(-0.447391\pi\)
0.164524 + 0.986373i \(0.447391\pi\)
\(884\) 2.95871e12 0.162955
\(885\) 0 0
\(886\) −1.36190e13 −0.742495
\(887\) −9.01179e12 −0.488826 −0.244413 0.969671i \(-0.578595\pi\)
−0.244413 + 0.969671i \(0.578595\pi\)
\(888\) −7.57263e11 −0.0408685
\(889\) 1.01156e13 0.543168
\(890\) 0 0
\(891\) 3.56605e13 1.89556
\(892\) 1.14645e13 0.606335
\(893\) −3.76974e12 −0.198372
\(894\) −6.35332e11 −0.0332646
\(895\) 0 0
\(896\) 1.70479e13 0.883657
\(897\) −7.19187e12 −0.370916
\(898\) 6.24883e12 0.320667
\(899\) −3.34151e13 −1.70618
\(900\) 0 0
\(901\) 1.54895e13 0.783024
\(902\) −3.17536e13 −1.59721
\(903\) −2.87614e13 −1.43951
\(904\) 1.26182e13 0.628405
\(905\) 0 0
\(906\) 2.26209e13 1.11541
\(907\) −1.80291e13 −0.884589 −0.442295 0.896870i \(-0.645835\pi\)
−0.442295 + 0.896870i \(0.645835\pi\)
\(908\) 2.39552e13 1.16954
\(909\) −1.19332e13 −0.579721
\(910\) 0 0
\(911\) −8.74176e12 −0.420500 −0.210250 0.977648i \(-0.567428\pi\)
−0.210250 + 0.977648i \(0.567428\pi\)
\(912\) −3.81736e11 −0.0182720
\(913\) −3.91165e13 −1.86312
\(914\) 9.78882e12 0.463951
\(915\) 0 0
\(916\) 1.11070e13 0.521276
\(917\) 4.35396e13 2.03340
\(918\) 9.31517e12 0.432911
\(919\) 4.88737e12 0.226025 0.113012 0.993594i \(-0.463950\pi\)
0.113012 + 0.993594i \(0.463950\pi\)
\(920\) 0 0
\(921\) 2.05179e13 0.939645
\(922\) −4.91536e12 −0.224009
\(923\) −9.48040e12 −0.429951
\(924\) 3.30667e13 1.49234
\(925\) 0 0
\(926\) 2.21548e13 0.990188
\(927\) 6.24403e12 0.277719
\(928\) 2.58850e13 1.14573
\(929\) −3.90471e13 −1.71996 −0.859979 0.510329i \(-0.829524\pi\)
−0.859979 + 0.510329i \(0.829524\pi\)
\(930\) 0 0
\(931\) −5.32241e12 −0.232185
\(932\) 6.93365e12 0.301017
\(933\) 1.49966e13 0.647927
\(934\) 1.01644e13 0.437038
\(935\) 0 0
\(936\) −2.02662e12 −0.0863038
\(937\) 3.22449e13 1.36657 0.683286 0.730151i \(-0.260550\pi\)
0.683286 + 0.730151i \(0.260550\pi\)
\(938\) 1.20809e13 0.509549
\(939\) −3.47940e13 −1.46053
\(940\) 0 0
\(941\) −3.12301e13 −1.29843 −0.649217 0.760604i \(-0.724903\pi\)
−0.649217 + 0.760604i \(0.724903\pi\)
\(942\) 2.07944e13 0.860432
\(943\) −4.83090e13 −1.98941
\(944\) −1.29262e12 −0.0529781
\(945\) 0 0
\(946\) −2.21629e13 −0.899739
\(947\) −3.13952e12 −0.126849 −0.0634247 0.997987i \(-0.520202\pi\)
−0.0634247 + 0.997987i \(0.520202\pi\)
\(948\) −8.49208e11 −0.0341489
\(949\) −1.08837e13 −0.435592
\(950\) 0 0
\(951\) 9.78483e12 0.387919
\(952\) 2.99234e13 1.18071
\(953\) −2.60434e13 −1.02277 −0.511387 0.859351i \(-0.670868\pi\)
−0.511387 + 0.859351i \(0.670868\pi\)
\(954\) −4.13810e12 −0.161746
\(955\) 0 0
\(956\) 1.79158e13 0.693705
\(957\) 5.24535e13 2.02148
\(958\) 2.58963e13 0.993330
\(959\) −5.03754e13 −1.92324
\(960\) 0 0
\(961\) 3.37790e13 1.27759
\(962\) −1.60093e11 −0.00602676
\(963\) −1.14132e12 −0.0427651
\(964\) 1.51273e12 0.0564176
\(965\) 0 0
\(966\) −2.83691e13 −1.04821
\(967\) 4.11231e13 1.51240 0.756200 0.654341i \(-0.227054\pi\)
0.756200 + 0.654341i \(0.227054\pi\)
\(968\) 3.84377e13 1.40708
\(969\) −9.54534e12 −0.347804
\(970\) 0 0
\(971\) −1.83064e13 −0.660870 −0.330435 0.943829i \(-0.607195\pi\)
−0.330435 + 0.943829i \(0.607195\pi\)
\(972\) 1.08656e13 0.390442
\(973\) 3.46325e13 1.23873
\(974\) −5.61555e12 −0.199930
\(975\) 0 0
\(976\) −1.79121e12 −0.0631862
\(977\) −3.09720e13 −1.08753 −0.543767 0.839236i \(-0.683003\pi\)
−0.543767 + 0.839236i \(0.683003\pi\)
\(978\) −4.87664e12 −0.170449
\(979\) 6.82348e13 2.37402
\(980\) 0 0
\(981\) −5.95564e12 −0.205314
\(982\) 7.57452e12 0.259928
\(983\) −8.41222e12 −0.287356 −0.143678 0.989625i \(-0.545893\pi\)
−0.143678 + 0.989625i \(0.545893\pi\)
\(984\) −5.66803e13 −1.92732
\(985\) 0 0
\(986\) 1.85135e13 0.623797
\(987\) 2.68418e13 0.900293
\(988\) −1.75250e12 −0.0585128
\(989\) −3.37180e13 −1.12067
\(990\) 0 0
\(991\) 1.06870e13 0.351986 0.175993 0.984391i \(-0.443686\pi\)
0.175993 + 0.984391i \(0.443686\pi\)
\(992\) −4.66483e13 −1.52944
\(993\) −6.57138e13 −2.14479
\(994\) −3.73964e13 −1.21504
\(995\) 0 0
\(996\) −2.72330e13 −0.876855
\(997\) 5.74730e13 1.84219 0.921097 0.389333i \(-0.127295\pi\)
0.921097 + 0.389333i \(0.127295\pi\)
\(998\) −1.00880e13 −0.321896
\(999\) 8.93800e11 0.0283920
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.10.a.f.1.5 10
5.4 even 2 65.10.a.c.1.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.10.a.c.1.6 10 5.4 even 2
325.10.a.f.1.5 10 1.1 even 1 trivial